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The one-level B-matrix approach is used to calculate alpha decay widths for several low-lying 0+,
2+, and 4+ excited states of the 0 nucleus, The interior wave functions are calculated within

the ZBM (pqy2, d5rq, sq12) shell-model space with various effective interactions. The exterior wave

functions are calculated from an n+ C folding model potential obtained with the M3Y interaction.

A new method for calculating the channel radius using the matching of the interior and exterior

wave functions in the o,-decay channel is presented.

PACS number(s): 21.60.Cs, 23.60.+e

I. INTRODUCTION

The theoretical study of o, decay has provided a basic
test for our understanding of several fundamental quan-
tum phenomena, such as tunneling through the potential
barrier, the clusterization process [1], and weak interac-
tion models [2]. However, in spite of the effort invested, a
detailed description of the n-particle emission is not yet
available.

By contrast to the case of p or P decay, where the
changes in the nuclear structure are small and may be
treated within perturbation theory, o. decay represents
the simplest case of a series including phenomena like
the heavy cluster decays and fission, when the transition
has dramatic eKects, generating in fact two new nuclei.
For the calculation of the decay rate, an alternative to
the Fermi's Golden Rule in this case was provided by the
semiclassical approximation, or later on by the R-matrix
theory of nuclear reactions [3]. Following the original
description of Gamow, within this theory the a decay
assumes two stages, consisting of the process of prefor-
mation (structure part), and the process of penetration
through the barrier (reaction part) [4, 5]. The micro-
scopic description of preformation has a key role in the
understanding of the decay process and requires a pre-
cise knowledge of the initial quantum state. To achieve
this purpose the shell-model description has been con-
tinuously improved considering the correct treatment of
Pauli efFects [6], of the proton-neutron interaction [7], or
extending the space with cluster wave functions [8, 9].

In the present work the o,-decay widths of some 0
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excited states will be calculated using the B-matrix for-
malism, with the shell-model wave functions given by
three different interactions, ZBM-II [10], Z (ZWM) [ll],
and REWIL [12]. The model space considered (ZBM) is
restrictive, including the last occupied level of 0, Ops~2
and the next two levels Qdq~q, 18qgq above the shell clo-
sure at N = Z = 8. However, the present calculation
accounts for all possible configurations within this model
space. The structure of 60 assumed here consists of an
inert C core, and four active nucleons. In the a decay
these four nucleons are emitted, and the calculation of
the widths provides a natural test of the efFective inter-
actions employed.

The ~2C-o. scattering wave functions will be generated
by the Coulomb potential plus the realistic MBY double
folding potential [13], in which one uses an efFective in-
teraction derived from the G-matrix elements based on
the Reid soft-core NN potential [14] in the form assum-
ing only a one-pion exchange potential (OPEP) force be-
tween the states with odd relative angular momentum
[15].

The next section contains a detailed presentation of
these calculations. The main parameter of the R-matrix
approach, the channel radius, will be chosen both ac-
cording to the previous suggestions [16, 17] as well as by
a new procedure which eliminates to a large extent the
ambiguities of matching the internal and scattering ra-
dial wave functions in the C+n channel. The results
and the main conclusions are summarized in Sec. III.

II. THE DECAY WIDTHS

Within the B-matrix formalism the many-body coordi-
nate space is separated in two regions by a hypersurfaee
S surrounding the origin at the channel radius r, . For a
general n decay A + 4 ~ A+ n the coordinates on this
surface are the internal coordinates of the fragments q;„t,
q,„t and the angular coordinates 0 of the relative motion.
Thus the surface element is dS, = r2dAdq, .„,dq,.„,. On S
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is defined a complete set of orthonormal functions 4,. If
the channel radius is infinite, then this set is given by all
possible channel spin functions

C

expressed in terms of the two internal functions of the
fragments and the angular wave function of the relative
motion. However, this set is assumed to be a reasonable
approximation also for finite radii.

In the external region the interaction between the frag-
ments n and A is given by a phenomenological potential,
and the radial wave function for the relative motion is a
superposition of regular (F) and irregular (G) solutions
for this potential scattering problem:

4„,= FL + CL (GL + i FL)

with the coefficient CL = —2(e ' —1) expressed in
terms of the phase shift angle bL, . This phase shift de-
pends on the energy, and when 6'L(E„) =

2 + m7r there
is a resonance. Near the resonance energy E„ the cross
section has a Breit-Wigner form and the derivative of the
phase shift with respect to the energy is related to the
width I' by the simple formula

2 dbL,

dE ~' (3)

At resonance the cross section has a maxjmum,
coeflicient CL = i and thus the wave function behaves
asymptotically as the irregular solution for the poten-
tial scattering. In our case the C-a potential is given
by the folding model previously employed in [18]. This
is obtained numerically, and then is interpolated by cu-
bic spline functions to improve the accuracy of the nu-
merical integration. The radial scattering wave functions
are calculated at the experimental resonance energies us-
ing the Numerov algorithm. At a distance of 10 fm the
nuclear folding potential V„has practically no contribu-
tion, and the regular solution is normalized to have the
asymptotic behavior of the Coulomb functions [19]. The
value of the irregular solution at this distance is obtained
from the Wronskian relation FL,GL, —FL,GL,

——1 and
then the whole irregular solution is obtained integrating
backwards to the origin. However, at small distances the
fragments interact strongly, and this asymptotic solution
should be gradually replaced by the "internal" wave func-
tion supposed to describe the compound system before
decay.

In the single-channel approximation the internal func-
tion is assumed to be a regular eigenfunction X' of the
model Harniltonian H,

(4)

normed in the volume surrounded by S and determined
such that [3]

dSC,* ~„~, (r,X) = B, dSC;X

with B, the boundary parameter.
If the fragments would remain distinct in the inter-

nal region, then X could be represented as a clusterlike
wave function, by an antisymmetrized product between
a surface function 4, and a radial function f;„« for the
relative distance. But as the fragments lose their iden-
tity, f;„» corresponding to the cluster component should
be extracted from the shell model state X by projection
onto the channel c. In terms of a complete orthonormal
set RNL the projected function f;„«will be defined by the
sum

fin»(r) = ) ~NqrRNL(r~ c»r) ~

where 8N, ——(A(Q;„«Q+«YLMRNL)
~

X) and A stands
for the antisymmetrization operator. The basis functions
B~L, are chosen as the radial eigenstates for a particle
having the reduced mass A„g = 4Aj(4+ A) placed in
a harmonic oscillator potential. The oscillator constant
is c»„= QA„gc»p, with c»p = g &, mp is the nucleon
mass, and w is the oscillator frequency for the shell model
potential of the initial nucleus. The radial function f;„«
has a central role in the R-matrix calculation because its
square at the channel radius gives the formation proba-
bility of the fragments. Using this function, the boundary
parameter B, may be simply estimated as

(f «)'B, =p
int

(7)

(A + 4) N+L/2

Nc= I( A )I

~ ) (.")"'(~~+~ IP)

x (Q,„»RNL(R, 2ap) YLM
~
@p). (8)

The intrinsic function of the n particle Q,„» is expressed in
terms of harmonic oscillator ground-state wave functions,
with the oscillator constant P = 0.702 fm 2 chosen to
fit the matter radius [15,21]. In the present calculation
the states X are represented by the shell-model wave
functions and correspond to the low-lying excited states
of 0 known to decay emitting an o. particle. The four-
particle coefficients of fractional parentage (@~@@~}X)
are obtained by assuming a wave function @p constructed
within the proton-neutron ZBM model space.

The last factor (@,„«RNL(R~, 2c»p)YLM(A~)
~

4p) is
calculated by expanding 4p in terms of products of two-

with the prime denoting the derivative with respect to
p = kr, k = v 2mpA„gE, /5, and E, is the decay
energy in the center of mass frame.

The coefficients 8', are complicated because it is dif-
ficult to perform separate integrals over the intrinsic co-
ordinates of the fragments, but it was shown [20] that a
simpler form may be obtained assuming that all centers
of mass of the nuclei involved in the reaction have a har-
monic oscillator motion with the same frequency. In this
case the integral defining 8 may be expressed in terms of
the whole wave function of the nucleus A, instead of the
intrinsic one, and introducing further a complete set of
four-body shell model wave functions

~
4p & then
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proton and two-neutron single-particle wave functions,
the expansion coefBcients being a product of two two-
particle fractional parentage coefficients [22]. The first
factor ( &+ )

+ ~ comes from the Moshinski transfor-
mation for nonequal masses [23].

In Fig. 1 we see the extent to which the projected ra-
dial function f;„t depends on the model Hamiltonian for

' the first four 2+ states of 0, denoted 2+i 4, having the
measured excitation energies E~=6.917, 9.844, 11.520,
13.020 MeV, [24]. The lowest excitation 2+i is below the
threshold for the o. emission (7.16 MeV), but it was also
included because of its importance for the study of the
parity violating n transitions [18,25].

When the internal and the external wave functions for
the resonance energy are joined at the channel surface,
a functional relation appears between the phase shift,
the boundary parameter, and the "reduced widths" p.
Therefore the explicit formula for the calculation of the
width using this approach is [17] Fl, (r) = Fl, (r)— dr Kl, (r, r )Fl, (r ), (12)

peak of the regular scattering wave function Fl. inside
the barrier. More precisely Ref. [17] takes the points
where FI. decreases to one-half of the peak value (case I)
and Ref. [16] takes the point corresponding to the peak
(case II). In increasing order, these three values will be
denoted in the following by rr '", rpp, rI ", and in our
case are close to the values 3.6, 4.3, and 5.6 fm used in
[25]. The average of the values rii for the transitions 22+ 4
is rf( = 4.24 fm, and this radius was also used for com-
parison. To fix a reference for the size range considered,
we recall that the experimental rms charge and matter
radius of isO are (r ),h ——2.71 fm and (r )„+„——2.59
fm [15,24, 21].

The antisymmetrization between the o. particle and
the residual C nucleus affects the radial scattering wave
functions, changing the function Fl. to

I' =
~+PS—P(S—B)

I"+(s B)'—
(9)

Here the overdots denote the derivative with respect to
the energy, B = pG'/G, P = p/(F2+ G ), S = P(FF'+
GG'), p = kr, tang = F/G = (9 —B)/P, and

h2 ) 8~ R~L, (r Ck ).
2mp&red

In particular if G has a maximum (B = 0) at the channel
radius and

~ & ~(( 1, as is usually the case in the barrier
region, this formula takes the simple form

I'p ——2Pp .

s r s r

I

& e

o, i
6

0.0
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4 6
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FIG. 1. The radial functions f;„& projected from 2+ shell
model states. Solid line: REWIL; dashes: Z; Dot-dashed line:
ZBM-II.

The major difficulty encountered in such a calculation is
a strong dependence on the channel radius, with large
variations around the nodes of G, where the boundary
parameter B becomes infinite and changes sign.

According to the previous suggestions [17,16] the chan-
nel radius should be chosen in the region of the last

where KI. is the Pauli kernel [6, 18]. Numerical calcu-
lations show that for all the states investigated the cor-
rected function Fl. has only one dominant maximum in
the internal region, at a radius rk„„,~ very close to rpI.
For small radii Fl, almost vanishes, while near the max-
imum and at larger distances it becomes identical with

The intrinsic wave function X was generated using
three different Hamiltonians: ZBM-II, Z, and REWIL.
The interaction ZBM-II was determined from Talmi fits
for isO in the p and sd shells [ll], while the Z interaction
was constructed using free nucleon-nucleon potentials,
with minimal corrections from the experimental energy
levels in A = 16, 17, 18 nuclei [11,12]. REWIL is entirely
obtained by a fit of 134 binding and excitation energies
of selected levels in A = 13—22 nuclei, considering the
matrix elements of the Hamiltonian as free parameters
[12].

The corresponding widths of the states 22 4 given by
(9) for the various alternatives in the choice of the chan-
nel radius and of the interaction are given in Tables I—
III. In addition the reduced widths and I'o calculated at
the average radius are included for comparison. For the
decay energies E, the experimental values were taken,
assuming that the shell-model calculation reproduces the
correct order of the levels.

Clearly, the variations in the widths determined by dif-
ferent choices of the channel radius or of the interaction
are large. In fact, the preformation amplitudes given by
the three interactions considered (Fig. 1) come very close
for the state 2+i below threshold, while large differences
appear for the other states.

The kernel correction to the position of the last maxi-
mum is small, showing that the radius range considered
is large enough to neglect the antisymmetrization effects
on the scattering states, and is appropriate for the choice
of the channel surface. However, up to this point precise
matching of the internal and scattering wave functions
has not been made and therefore the numerical estimates
remain to a large extent qualitative.

Further agreement with the data might be expected,
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TABLE I. Excitation energies E'" (MeV), widths (keV), and the reduced widths p (MeV? )
for the state 22. E, =2.69 MeV, r&

'"——3.67, ryy=4. 37, rq„,~=4.38, r& "——5.35.

Interaction E' "
Z

ZBM-II
REWIL

r (rl '") r (rlI) r (rII ) r (rKernel)

75.3 1.2 2.2 1.211.86

10.54 333 3.1 6.2 2.9
9.66 141 0.64 0.9 0.61

r (r;.")
6.2x 10
1.2x10 2

6.0x 10

r, (r, , )
2.1

0.9

~ (rll)
3.2x 10
5.4x10 2

2.0x 10

TABLE Ii. Excitation energies F'" (MeV), widths (keV), and the reduced widths p (MeV' )
for the state 23 . E, =4.36 MeV, r& '"=3.60, rqy=4. 23, rke»e~=4. 22, rq "——5.02.

Z

ZBM-II

REWIL

12.86
13.27

13.32

Interaction E'" r (rl '")
91
107
2.1

r («I) r (rll")
149 131
138 122

46.8 75.4

r (rKernel) r (rl ) r0 (rll )
160 0.53 51
150 0.46 47.2
41.8 0.24 16

~ (rll)
5.8x10 2

5.5x ]Q

3.2x ]Q

TABLE III. Excitation energies E'" (MeV), widths (keV), and the reduced width p (MeV )
for the state 24. E, =5.86 MeV, rq

'"——3.54, rqj=4. 12, rk„„,~=4.12, rq "——4.82.

Z

ZBM-II

REWIL

14.11
13.54

14.99

Interaction E'" r (r ")
23.5

80.3

(rII) r (rII ) r (rKernel) r (rI ) r0 (rll )
138 31.3 145 0.81 6.1
474 97.5 499 2.1 18.9
38 1.7 41.2 0.04 0.33

'7 (" )
1.9xjQ 2

3.4x 10
-4.5 x 10

TABLE IV. Excitation energies (MeV), widths (keV), and matching parameters for the states
0+,2+,4+ obtained with the REWIL interaction.

L+
Q+

2
Q+

0+
22
23
2+

4
4+.

4+
4+
4+

@exp

11.26
12.05
14.03
9.84
11.52
13.02
10.35
11.09
13.87
14.62

Eth

11.6
14.5
15.9
9.66
13.32
14.99
11.4
13.3
14.3
16.6

I exp

(2500)'?
1.5+0.5
200+15
0.625+0.1
71+3
150+10
27+3
0.28+0.05
~49

389

903
96
26
1.1
38.1
245
34.3
0.7
293
36.2

r.
839
89.5
26
1
37.4
210
46.6
0.64
209
31.4

5'
—15%
32%
OFo

24.5%

100'Po

OFo

29Fo
30'Fo

r, (fm)
3.34
2.44
3.79
4.1
4
3.09
3.43
3.95
3.66
3.63

rf '" (fm)
3.34
2.44
3.79
4.3
4
3.09
3.43
4.07
3.66
3.63
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if a more precise definition of the channel radius would
be available. In fact, we know that in the internal region
the relative wave function should be f;„t rather than I"I.,
and only near the barrier this becomes inaccurate and
must be replaced by the asymptotic solution Gl. . Thus
it appears natural to fix the channel radius near the last
maximum of f;„& instead of I"I„when both the internal
and the scattering wave functions should be accurate,
and such that B, = B, namely:

/

Int

—4

When this condition is fulfilled, it becomes possible to
extend continuously Gl. in the internal region by f~'„'t"
= vf;„t, with v = GI, (r, )/f;„t(r, ).

To solve this problem we adopted the method of fix-
ing the channel radius r, at the last maximum r&

~" of
f;„t, (B, = 0), and changing the nuclear folding poten-
tial V„(r) to (1+ s')V„(r). The point r&~'" was chosen
because it corresponds to the peak in the preformation
probability which is the furthest from the origin. Appar-
ently it corresponds to the largest decay rate, but this is
not always true, as one can see from Table I, where the
widths decrease continuously at the increase of the chan-
nel radius. In fact the resonant behavior of the global
wave function is reflected by the relative amplitudes of
the successive maxima and therefore if the internal func-
tion is assumed to be correct up to the last maximum,
then we may scale its amplitude at this point according
to the asymptotic normalization.

Following this matching procedure we calculated the
o;-decay widths from the low-lying 0& 4, 22 4, and 4& 4
states of isO obtained using both REWIL and ZBM-
II interactions. The widths and the parameters of the
REWIL calculation are summarized in Table IV. As an
example, the global wave functions resulting from the
matching of the internal and scattering states for the
2+ transitions are presented in Fig. 2. The number of
extrema between the origin and the matching point, de-
noted NG for G and Nf for f;„t, are the same and is
not afFected by the potential changes considered. For
the transition 2+4, the REWIL projected function has
the last maximum at 4.75 fm, and its amplitude is very
small (Fig. 1). Thus it is more realistic to consider the

10— 2+
2

—10

4 6
1-(&1T1)

FIG. 2. Solid line: extension from REWIL radial internal
functions to scattering states, normalized to have the asymp-
totic behavior of the Coulomb functions. Dots: the C-n po-
tential with the scale in MeV. For the states 22 3, the match-
ing radius r, and correction factor z of the M3Y potential are
given in Table IV.

matching at smaller distances, or even at the next-to-last
extremum. The matching outside the maximum (Fig. 2)
was achieved by solving Eq. (13) without any potential
change, obtaining r, = 3.7 frn and correspondingly a
width I' = 74 keV. The result of changing the potential
and matching at the next-to-last extremum, at 3.09 fm,
is 245 keV (see Table IV). We can obtain the matching
at B g 0 by solving (13) near rP" without any potential
change also for the decays of 2&+ and 42+ states. However,
we observed that in these cases a change in the poten-
tial shifting the matching point towards r&~

" brings the
widths closer to the experimental values. It is interesting
to remark that the small width observed for the 2&+ tran-
sition is correlated with the behavior of the global wave
function which appears concentrated in the internal re-

TABLE V. Excitation energies (MeV), widths (keV), and matching parameters for the states
0+,2+,4,+. obtained with the ZBM-II interaction.

L+
0+
0+
04+

22
2+
2+
4+
4+
4+
4+

@exp

11.26
12.05
14.03
9.84
11.52
13.02
10.35
11.09
13.87
14.62

@th

10.73
12.44
14.58
10.54
13.27
13.54
10.42
13.58
14.54
15.60

I exp

(2500)?
1.5+0.5
200+15
0.625+0.1
71+3
150+10
27+3
0.28+0.05
r 49
~389

502
0.13
214
6.7
192
23.8
26
3.5
709
0.06

r,
375
0.11
212
5.3
185
23.6
32
3.6
487
0.06

13.8%
—22'Fp
—5%
—30%
—14%
20%
90%
—30%
—8.5%

r. (fm)
3.21
4.41
3.44
3.8
3.79
4.19
3.41
3,6
3.2
3.14

r~
" (fm)

3.21
4.41
3.44
3.89
3.79
4.19
3.41
3.7
3.2
3.14
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gion (Fig. 2). A similar situation was noticed also for the
42+ transition. The results are not strongly infiuenced by
the manner of generating the potential change, because,
for example, the addition of a Woods-Saxon term with
variable depth has almost the same effect.

One should note that the matching of 4+& wave func-
tions at B = 0 requires a large potential change (s
100%) (Tables IV and V) and a different number of ex-
trema, N~ —Nf = 1. The same situation appears for the
04+ transition calculated with REWIL (Table IV) and 0&+

calculated with ZBM-II (Table V). In the case of ZBM-
II state 2s, (Table V), we have N~ —Nf = 1 but
the additional extremum of f;„t, has a very small am-
plitude. For the ZBM-II states 22, 42, the matching
at the last maximum would require a large s and a dif-
ference A~ =~ N~ —Nf

~

of at least 2. However, by
increasing NG the penetrability increases and the width
is overestimated. Therefore to obtain a reasonable value
it is convenient to allow for a small shift 6„ in r, from
the maximum if this decreases A~. In the present case
of ZBM-II 22, 42 states, for a channel radius close to
the ff ~" within 6„=0.1 fm (Table V) it is possible to
obtain a solution with A~ decreased by one.

The comparison between the excitation energies and
the decay widths obtained using REWIL (Table IV) and
ZBM-II (Table V) interactions shows that REWIL gives
better results for the 2+ states, ZBM-II for the 0+ states,
while in the case of the 4+ transitions the quality is al-
most the same. In both cases the results indicate also a
possible level crossing for the couple 4s+-44 with respect
to the data.

III. SUMMARY AND CONCLUSION

The a decays from the 0 excited states 22+ 4 were
used to compare three effective Hamiltonians ZBM-II, Z,
and REWIL defined within the ZBM shell-model space.
The three model Hamiltonians are obtained by different
procedures, but are known to give similar results concern-
ing the energy levels and the electromagnetic properties
of the light nuclei [12, 26]. This comparison is extended
now to the n channel, calculating the radial projected
functions and the decay widths. These functions (Fig. 1)
have almost the same radial dependence irrespective of
interaction, and in the case of REWIL, their last maxi-
mum for the 22 4 transitions appears at a larger distance
than for ZBM-II or Z. This shift brings this maximum
closer to the corresponding one for the scattering states
obtained with the unrenormalized folding model poten-
tial.

Considering first the previous suggestions in the choice
of the channel radius, we showed that a selection around
the last maximum of the regular scattering solution gives
the widths in a range including the measured values.
However, these results (Tables I—III) are mainly quali-
tative, appearing quite sensitive to the variations of the
reduced widths or of the channel radius parameter. For
more precise estimates, instead of expressing the width
only in terms of the scattering problem we started from
the internal projected wave functions f~„& and attempted
to find an appropriate asymptotic extension to the res-
onance wave functions G. In our case this matching of

the wave functions was obtained by fixing the channel
radius at the last peak of the internal function (B, = 0)
and changing the potential. This change shifts slightly
the last maximum of G inside the barrier until it has the
same position as the corresponding one for the internal
state. The results obtained in the treatment of o, decays
from the 0 excited states 2~ 4, 0& 4, and 4i 4 cal-
culated using the REWIL and ZBM-II interactions are
given in Tables IV and V. In the case of REWIL 0+,
23 4, and 4] 3 4 excited states the matching was obtained
at B = 0 by the change of the potential, while for the
narrow 22+ and 42+ transitions it was obtained without
potential change, at a channel radius outside, but near
the maximum, obtained by solving (13). The extensions
of radial functions projected from the REWIL 2&+ 4 shell-
model states are shown in Fig. 2.

In the case of ZBM-II excited states the matching was
obtained by potential change at the last maximum of f~„t, ,

excepting the 22 and 4& transitions, when the channel
radius is slightly off the maximum.

The calculated widths are in reasonable agreement
with experiment, reproducing quite well the variations of
several orders of magnitude observed between the decay
widths for the low-lying states considered at each angular
momentum investigated. The remaining differences may
be due to the limitations of the model space, as well as
to possible inversions in the level ordering. Enlarging the
space will allow the spatial extension of the volume oc-
cupied by the internal functions, and therefore a smaller
shift between their last maximum and the one observed
for the scattering functions might be obtained [8]. Worth
noting is that the treatment of the correlations responsi-
ble for clusterization and decay is improved not only by
the increase of the model space, but also by a complete
account of the possible configurations. The simple exten-
sion provided by the explicit inclusion of the cluster wave
functions [9] in the structure of the initial states seems
to diminish the discrepancy between theory and experi-
ment, but should be tested for other processes too in or-
der to be sure whether the additional cluster component
does not alter the properties already described within the
usual shell model. In our case, the shell-model treatment
proves to reproduce a large amount of experimental data
in 0, indicating the relevance of the present attempt
to achieve a microscopic description of the a decay.
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