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Momentum distribution of fragments in heavy-ion reactions:
Dependence on the stochastic collision process
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The momentum distribution of fragments produced in the C+ C reaction at 28.7 MeV/nucleon
is analyzed with an antisymmetrized version of molecular dynamics. Calculations are made for

several cases of stochastic collisions and the projectile-fragmentation peak in the momentum dis-

tribution is reproduced by the incorporation of the many-body nature into the stochastic collision

process. Furthermore, the value of the cross section is found to be reflected in the low-momentum

part of fragments such as n particles and Be.

PACS number(s): 25.70.Pq, 24.10.Cn, 24.60.Dr

I. INTRODUCTION

Fragment formation is the most characteristic feature
of the heavy-ion reactions in the intermediate-energy re-
gion. The main reaction mechanism of the peripheral
collision is the projectile fragmentation, in which a pro-
jectilelike fragment produced by stripping some nucle-
ons from the projectile is emitted with the velocity close
to the beam velocity. In the central collision, on the
other hand, the reaction mechanism is more complicated
and many fragments with various mass numbers are pro-
duced. At the same time, if we focus on the collective
momentum How instead of fragment mass number, the
central collision in this energy region is believed to be a
good tool to investigate the equation of state of nuclear
matter.

There are many models that describe these features of
intermediate-energy heavy-ion reactions. The abrasion-
ablation model, for example, gives a very intuitive pic-
ture of projectile fragmentation and is successful in repro-
ducing the mass distribution of projectilelike fragments.
This model, however, assumes the reaction mechanism
itself, and cannot answer the question of whether the
projectile fragmentation is possible in low-energy heavy-
ion reactions. In these years, projectile fragmentation is
observed in experiments at the incident energies down
to 30 MeV/nucleon. It may not be trivial theoretically
that the participant spectator picture is true at this in-
cident energy comparable to the Fermi energy of nuclei.
The central collisions, on the other hand, are sometimes
described by the statistical models if one puts empha-
sis on the multifragmentation as the phase transition.
In the statistical models, however, dynamical effects are
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not fully incorporated and collective momentum flow is
usually calculated by the Vlasov-Uehling-Ilhlenbeck ap-
proach, which cannot describe fragment formation with-
out further assumptions.

In order to study these phenomena in a uni6ed way
with few assumptions on reaction mechanisms, micro-
scopic simulations which can treat fragment formation
is indispensable. Quantum molecular dynamics (QMD)
[1,2] has been the most powerful among such microscopic
simulation methods. QMD is, however, largely of classi-
cal nature and, for example, it cannot describe shell ef-
fects either of colliding individual nuclei or in the reaction
process. In previous work [3,4] we constructed an anti-
symmetrized version of molecular dynamics (AMD) by
incorporating two-nucleon collision process as the resid-
ual interaction into the fermionic molecular dynamics
[5] proposed by Feldrneier. AMD describes the system
with a Slater determinant of Gaussian wave packets, and
therefore can describe quantum-mechanical features such
as shell effects. Furthermore, AMD can describe frag-
ment formation as well as QMD. These features of AMD
has been demonstrated by the calculation of mass distri-
bution of fragments in the previous work [3,4] with the
combination to the statistical cascade decay calculation.
AMD can also be applied to the study of nuclear struc-
ture of light nuclei [6,7] with some extensions of the wave
function.

In this paper the momentum distribution of fragments
produced in C+ C reaction at 28.7 MeV/nucleon is
mainly discussed because it has much more information
on the reaction mechanisms such as projectile fragmen-
tation than the mass distribution does. Since the incor-
poration of the stochastic collision process has some am-
biguity, we have made calculations with different types
of stochastic collision process, not only by changing the
cross section but also by including the many-body na-
ture such as nucleon-alpha collisions in addition to the
usual two-nucleon collisions. It will turn out that the
momentum distribution of fragments is very sensitive to
the stochastic collision process. This fact means that de-
tailed analysis of momentum distribution of fragments
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is powerful to settle the ambiguity of stochastic collision
process, which has been the main obstacle in extracting
the equation of state of nuclear matter by the analysis of
collective momentum flow.

In Sec. II, the framework of AMD, with the inclusion
nucleon-alpha collisions in addition to the usual two-
nucleon collisions, is presented. In Sec. III, the results
of calculation for the reaction C + G are compared
to the data, and the dependence of the momentum dis-
tribution of fragments on the stochastic collision process
is discussed, which will reveal the reaction mechanisms
both of the peripheral collision and of the central colli-
sion. The manifestation of collective momentum flow of
fragments will also be mentioned. Finally in Sec. IV, we
will summarize the results and discuss future problems.

(C'(Z) l(i&g, —H) IC'(Z))

C'(Z) lC (Z))
=0

which leads to the equation of motion for (Z):

zh C,~,,~Z, ~ = „and c.c.,
t' cr

(6)

(C (Z) le(Z (7)

where a., ~ = x, y, z. '8 is the expectation value (H) of
quantum mechanical Hamiltonian H,

II. FORMULATION OF AMD

Since the framework of the antisymmetrized version of
molecular dynamics (AMD) was described in detail in
Ref. [4], here is shown only the outline of our framework
about the wave function and the equation of motion. The
treatment of the stochastic collision process is updated
from Ref. [4], and therefore is described here in detail.

A. Wave function

is a positive definite Hermitian matrix.
The same effective interaction as in the previous work

[3,4], i.e. , Volkov No. 1 [8] with m = 0.576 is used.
Coulomb interaction is included. The problem of the
zero-point oscillation of the fragment center-of-mass mo-
tion is overcome phenomenologically with the prescrip-
tion we have proposed in Ref. [4]. As has been shown in
Ref. [4], the binding energies of nuclei lighter than C
are reproduced very well by this choice of parameters
concerned with equation of motion.

where n, represents the spin-isospin label of ith single-
particle state, o, ; = p t', p $, n 1', or n $, and y is
the spin-isospin wave function. Pz,. is the spatial wave
function of ith single-particle state, which is a Gaussian
wave packet

(~l4*.) = (—)
2

exp —v F — + ~Z~ ) 2

where the width parameter v is treated as time inde-
pendent in our model. We took v = 0.16 fm in the
calculation presented in this paper. If we define D and
K as Z = v vD + (i/25~v)K, then

In AMD, the wave function of A-nucleon system 1C ) is
described by a Slater determinant 1C'(Z));

1
1C'(Z)) =

&t
det[p. (j)], p' = Pz, x „

C. Stochastic collision process

The second process that determines the time develop-
ment of the system is the stochastic collision process due
to the residual interaction. We incorporate this process in
a similar way to @MD, i.e. , the momenta of two nucleons,
which have approached toward each other, are changed
stochastically. In AMD, however, this is not straightfor-
ward to do, since the centers of Gaussian wave packets
(Z, } are no more physical coordinates of nucleons due
to the effect of antisymmetrization. We overcome this
difficulty by introducing the physical coordinates (W, )
[3,4] as

(4zlr 14z)/(Wzlf z) = »
(0 laid )/(& 14 ) =K

(3) where

(4)
Q,, =

„

ln(C (Z)1C (Z)).
2

(10)

B. Equation of motion

The time developments of the centers of Gaussian wave
packets, (Z, (i = 1, 2, . . . , A)), are determined by two
processes. One is the time development determined by
the time-dependent variational principle

The position R~ and momentum P~ of W~ = ~vR~ +
(i/2hv v)P~ can be interpreted to be the physical posi-
tion and momentum coordinates of nucleons [4].

As a manifestation of the Pauli principle, there is a
Pauli-forbidden region in the phase space of physical co-
ordinates. Taking account of this fact, the Pauli blocking
in the Anal state of the two-nucleon collision is introduced
in a natural way [3,4], i.e. , the collision is Pauli blocked if
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the physical coordinate of the 6nal state is in the Pauli-
forbidden region.

The in-medium cross section of the two-nucleon colli-
sion is parametrized as

100 mb

1 + E/(200 MeV) + C min((p/po) 2, 1)
where E is the energy in the laboratory system of two-
nucleon scattering, and p is the density at the middle
point of the colliding two nucleons. The parameter C
controls the reduction of the cross section due to the
medium eKect. Isotropic scattering is assumed.

So far we considered only two-nucleon collisions as
the effect of residual interaction. There may be, how-
ever, other effects of residual interaction in which more
than two nucleons are concerned. A simple example that
shows the necessity of the many-body nature of residual
interaction in the AMD framework is the proton-alpha
elastic scattering, which is the dominant process in p+ n
reactions up to the intermediate energy region. First
of all, the incident proton is deflected at most 20' by
the equation of motion of AMD if the incident energy
is greater than 30 MeV, though the large-angle elastic
scattering is observed in experiments. The two-nucleon
collision process in AMD does not remedy this situation
because the a particle is inevitably excited once the two-
nucleon collision occurs between the incident proton and
a nucleon in the a particle.

In order to study the eKect of the many-body nature
of residual interactions in heavy-ion reactions, we also in-
corporate the following many-body stochastic collisions,
which we call nucleon-alpha collisions, in addition to the
usual two-nucleon collisions. When a nucleon and an o,
cluster (a cluster of four physical coordinates with dif-
ferent spin isospins, which is judged by the chain clus-
tering method with the critical distance [AW[ = 0.25)
have approached toward each other, (i) they are scat-
tered elastically with the cross section o.lv~ el(E, p) and
(ii) the nucleon and a nucleon in the n cluster are scat-
tered in the usual way with the cross section o~;„«(E).
The same energy and density dependence as that of the
two-nucleon collision is assumed for the in-medium total
nucleon-alpha cross section as

&Nn, tot(E~ P) —&lVn, el(E~ P) + &Na, inel(E)
571 mb

1 + E/(200 MeV) + C min((p/po) 2, 1)
(12)

As for the energy-dependent inelastic cross section we
use the experimental data of the reaction cross section
[9) (see Fig. 1), which can be parametrized as

O iVn, lnel(E)

20 162 —(K—20 MeV)/(10 MeV)

(13)
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The angular distribution of the elastic nucleon-alpha
scattering is assumed to be

oc exp — +10exp—

(14)

The parametrization of Eqs. (12), (13), and (14) repro-
duces the data of the elastic differential cross section of
the @+et reaction at E = 28.1 MeV [9] for e & 30' in the
case p = 0 as shown in Fig. 2. Note that it is not nec-
essary to reproduce the data for small scattering angles,
since the small angle elastic scatterings are described not
only by the stochastic collisions but also by the equation
of motion of AMD. The energy dependences of total and
inelastic cross sections are shown in Fig. 1, where the
data of the reaction cross section are also shown. The
parametrization is consistent with the essential feature
that the elastic cross section decreases as the energy in-
creases.

When the n cluster composed of nucleons i1, i 2, i 3, and
i4 is to be scattered elastically, the momentum transfer,
which should be received by the a cluster, is shared not
only by the four nucleons but also by the other nucleons
j with the weights proportional to exp( —4~Z~ —Z, ~2),
where the nucleons j and i have the same spin and
isospin. This prescription is aimed to suppress the Pauli-
blocking probability of the scattered a, cluster, which
seems too large, but for this prescription. When two
n clusters have approached, nucleon-alpha collisions de-
fined above are made between nucleons in one a cluster
and the other o. cluster. It is randomly decided which o.
cluster is treated as merely four nucleons.

Although a procedure to scatter two particles with the
given cross section cr has been described in Ref. [4], the

I IG. 1. Energy dependence of the cross sections of nu-
cleon-alpha collisions. The solid line and dotted line are the
total cross sections parametrized as Eq. (12), for p = 0 and
p & po (C = 2), respectively. The dot-dashed line is the
inelastic cross section parametrized as Eq. (13) and various
symbols are the experimental data of reaction cross section of
p+ ct reaction presented in Ref. [9].
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FIG. 2. Differential cross section of nucleon-alpha elas-
tic collisions at E = 28.1 MeV. The solid line shows the
parametrization of Eq. (14), and dots are the data [9].

scattering probability appearing in this procedure ex-
ceeds unity when it is applied to the nucleon-alpha colli-
sions. In the calculation presented in this paper we use
the following procedure when the nucleon-alpha collision
process is included. At each time step, it is examined
whether each pair of two particles (which may be two
nucleons or a nucleon and an n cluster) should make a
stochastic collision. The probability with which the two
particles are scattered (up to the Pauli blocking) when
the relative coordinate changes from r to r+dr in a time
interval dt is assumed to be proportional to the density
overlap of the two Gaussian wave packets as

P(r)/dr] = ne '
/dr/,

where the proportionality constant n is determined by
the condition that the total cross section should be o
if two particles move on straight lines before they are
scattered,

state of each simulation is constructed by boosting two
randomly rotated C nuclei in ground states, which have
been obtained by the frictional cooling method [6,3,4].
Simulations are repeated many times (typically 1000
times) for various impact parameters and for different
random seeds, and each simulation is considered to cor-
respond to an experimental event.

AMD calculations are made for three types of stochas-
tic collision process. The calculation presented in Refs.
[3,4], where only the two-nucleon collisions are incorpo-
rated and the parameter C in Eq. (11), which controls
the medium effect is taken to be 0, is called case (a) here.
In cases (b) and (c), both the two-nucleon collisions and
nucleon-alpha collisions are incorporated, and C = 1 for
case (b), and C = 2 for case (c). Note that the cross
section is smaller for larger value of C.

After the AMD calculation, which is truncated at
t —200 fm/c, most of the produced fragments are in
their excited states and should decay into lighter frag-
ments before they are detected in experiment. We calcu-
late statistical cascade decay of each of these fragments
by using a computer code [10,3,4], which is similar to
CASCADE of Piihlhofer [11].

B. Mass distribution

The calculated isotope distribution of fragments is
compared to the experimental data in Fig. 3 for case
(c). As in case (a), which we have already discussed in
Refs. [3,4], the mass distribution is reproduced very well,
especially the large production cross section of n parti-
cles. Prom Fig. 4 in which mass distributions for two
stochastic collision processes (b) and (c) are compared,
we can see that the mass distribution of fragments lighter
than the projectile and the target is insensitive to the
stochastic collision process. The cross sections of heavier

27r bdb[1 —exp( —ne'er/ve "
)] = o.

This condition can be rewritten as

where

(16)

(i7)

(is)

10-

10-E 2

o 101

10'-

10-
0~ 10'-

Li

When more than two stochastic collisions should occur
at the same time step, the order of collisions is decided
randomly.

10

10-

III. RESULTS AND DISCUSSIONS
0 2 4 6 8 10 12 14 16

Mass Number

A. Numerical calculation

AMD simulations are made for the reaction C + ~ C
at the incident energy 28.7 MeV/nucleon. The initial

FIG. 3. Isotope distribution of fragments produced by
C+ C at 28.7 MeV/nucleon. The results of calculation in

case (c) described in the text are shown by circles connected
by solid lines, and the data are shown by squares connected
by dotted lines.
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FIG. 4. Calculated mass distribution for cases (b) and
(c) of the stochastic collision process for ' C+' C at 28.7
MeV/nucleon.

C. Projectile fragmentation

In Fig. 5, the energy spectra of Be at the angle 5.5' are
compared to the experimental data [12] for three cases of
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I

I
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fragments are, on the other hand, reflect the stochastic
collision cross section. The smaller the parameter C is,
i.e. , the larger the cross section of stochastic collisions is,
the more abundantly heavy fragments are produced.

stochastic collisions. In experiment, the projectile frag-
mentation peak appears very close to the beam veloc-
ity even in this relatively low incident energy E = 28.7
MeV/nucleon, but calculation (a) with only two-nucleon
collisions fails to explain this phenomenon. This failure
can be understood by the fact that the momentum of
the nucleon in the projectile, which has experienced a
two-nucleon collision with a nucleon in the target, is too
small in the projectile frame for the nucleon to escape
from the projectile. If two nucleons, which collide, have
zero momenta in the projectile and the target frame, re-
spectively, and the scattering angle is 90', which is the
most probable case, the nucleon in the projectile has the
kinetic energy E/2 in the projectile frame (as long as
the energy correction [4] in the two-nucleon collision is
ignored), where E is the incident energy per nucleon in
the laboratory system. Since E = 28.7 MeV/nucleon in
the present case, the typical kinetic energy of a scattered
nucleon in the projectile is 15 MeV. It is diKcult for this
scattered nucleon to escape from the projectile, since the
proton separation energy of C is also about 15 MeV.

This situation evidently depends on the incident en-
ergy. In fact, in the calculation with the incident energy
70 MeV/nucleon and the impact parameter 6 fm, and
only with two-nucleon collisions, we have found that 15
projectilelike and targetlike fragments with mass num-
bers 11, 10, and 9 have been produced in 58 events be-
fore statistical cascade decay, while only one projectile-
like fragment is found in the same calculation but with
the incident energy 28.7 MeV/nucleon.

The inclusion of the many-body nature in stochastic
collision processes has the effect to increase the kinetic
energy of the scattered nucleon in the projectile, and
therefore the nucleon can easily escape from the projec-
tile or, otherwise, the excitation energy of the projectile is
large enough for the projectile to decay into Be. By the
inclusion of nucleon-alpha collisions, we have succeeded
in the reproduction of the projectile fragmentation peak
in the energy spectrum (Fig. 5), at least qualitatively. We
have checked that the calculated projectile fragmentation
peak comes from the impact parameter range 6 ) 5 fm as
shown in Fig. 6, and in Fig. 7 the effect of the statistical
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FIG. 5. Energy spectra of Be at 0 = 5.5 for three cases
(a), (b), and (c) of stochastic collision process for C+ C at
28.7 MeV/nucleon. Histograms are the result of calculation
and the dotted curves are the data.

FIG. 6. Calculated contribution to the energy spectrum of
Be at 8 = 5.5' from peripheral (5 ) 5 fm) and central (5 & 5

fm) collisions in case (c) of stochastic collision process for
C+' C at 28.7 MeV/nucleon.
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C (28.7 MeV/u) + C, 0 fm & b & 5 fm

nucleon He Be
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FIG. 9. The same as Fig. 8, but with
the contribution only from central collisions
(b ( 5 fm).
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p, A(MeV c)

processes of the shape of the hill in the momentum dis-
tribution of a particles in Figs. 8 and 9. This means that
the momentum distribution of fragments such as n and
Be is a good indicator of the cross section of stochastic

collisions in the reaction C + C, though this situa-
tion may depend on the mass number of targets, since
the dissipation of the kinetic energy of the pi ojectile is
expected to be large for the heavy target. The momen-
tum distribution of nucleons, on the other hand, does
not show clear dependence on the cross section, while
the spreading of distribution is larger if nucleon-alpha
collisions are included. The last feature is considered to
appear because the momentum of the nucleon that has
been scattered by an o, cluster is larger than the mo-
mentum of nucleon that has been scattered by another
nucleon. It is desirable to have data of nucleon energy
spectra in this reaction.

E. Discussion on the collective momentum flow

In the calculated energy spectrum of Be at the for-
ward angle (Fig. 5), there has appeared a dip, which does
not exist in the data, between the projectile fragmen-
tation peak and the low-energy bump. This dip corre-
sponds to the valley in the momentum distribution (Fig.
8) which has appeared as the result of clear separation
of two components, i.e. , projectile fragmentation peak
and the low-momentum hill. The direction of the ridge

of the hill in the momentum distributions of fragments
is about —45', which means that the projectile and the
target go around each other and are deflected by this an-
gle on an average. This clear flow pattern in calculation
can be understood from Fig. 10, where the emitted an-
gles of ~2C fragments before statistical decay are plotted

~ with collisions

o without collisions
I I I I

0—
Cl

CP

bO

Cg

0
OP

0
0:..QO: . ~o

~y a ~
~r ~ fp.g OOt

~ ~ ~ ™l
~

I'
~ ~ ~ ~ 4

~ ~
~ ~ ~Q ~

~ ~ ~

~ ~

~ ~o ~ ~
~ ~ ~

2 4 6
Impact parameter (fm)

FIG. 10. Deflection angle of the C fragments produced in
AMD calculation before statistical cascade decay as a func-
tion of impact parameter. Open circles show the result of
calculation without any stochastic collisions, and dots show
the result of the calculation for case (c) of stochastic collision
process.
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FIG. 11. Energy spectrum of Be at 0 = 5.5' obtained
by artificially rotating the momenta by +20' in the reaction
plane when!p, /A! ( 75 MeV/c.

as a function of impact parameter for two calculations
with and without collisions. We can see that the flow
angle, about —45', has been caused not by the effect
of stochastic collisions but by the mean-field effect, and
the deflection angle suddenly changes from —10' to —45'

80-
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20

ress ~\ + + 0 r
y r

He, 15'

10

He, 25'

10
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a

40 50

FIG. 12. Energy spectra of n particles for C+ C at
28.7 MeV/nucleon. Results of calculation are shown by his-
tograms, and the data are shown by dotted curves. Alpha
particles produced in the calculation are assumed to have mo-
mentum spreading of Gaussian form with the standard devia-
tion Ap/2, where Ap is the momentum spreading of the wave
packet of the center of mass of the o, particles.

when the impact parameter changes from 6 to 5 fm. If
this change were more moderate and/or the negative flow
were smaller, the separation between two components in
the momentum distribution would not have been so clear
and the valley in the energy spectrum of sBe would have
been filled up. In fact, we have checked that if the Gogny
force [13] is used instead of the Volkov force, the calcula-
tion without collisions gives the negative flow angle which
is about half of that with the Volkov force. We get the
energy spectrum of sBe shown in Fig. 11 by artificially
rotating the momenta of produced fragments by +20' in
the reaction plane when ~p, /A~ ( 75 MeV/c.

In Fig. 12, calculated energy spectra of n particles of
three detection angles are compared to the data [14]. The
underestimation of the intermediate-energy part of the
spectrum of 6' and the overestimation of the cross sec-
tion at 25' can again be understood as due to the above-
mentioned fact that the negative flow is too large in the
present calculation by the use of the Volkov force as the
effective interaction. We have not included n aela-stic
collisions as the residual interaction since our main in-
terest has not been in the spectrum of o, particles but in
the spectra of projectilelike fragments such as Be. The
incorporation of n-n elastic collisions may be expected
to have some effects in enhancing the high-energy com-
ponent of the spectrum of a particles.

IV. SUMMARY

In this paper we have analyzed th mechanism of
the reaction izC + i C with the incident energy 28.7
MeV/nucleon with the antisymmetrized version of molec-
ular dynamics (AMD) by paying attention mainly to its
dependence on the stochastic collision process. Mass dis-
tribution of produced fragments, especially with mass
number smaller than 12, has turned out to be insen-
sitive to the stochastic collision process, and is always
well reproduced including the shell efFect. The momen-
tum distribution of fragments is, on the other hand, very
sensitive to the collision process. With the inclusion of
the many-body nature expressed representatively by the
nucleon-alpha collisions, the observed feature of the pro-
jectile fragmentation has been reproduced by calculation
in this reaction with relatively low incident energy. The
low-momentum component in the momentum distribu-
tion of fragments such as n particles and sBe, which
comes from central events, is sensitive to the value of
the cross section of stochastic collisions and hence is ex-
pected to give precious information about the cross sec-
tion of stochastic collisions.

Unfortunately we have not reproduced the data of mo-
mentum distribution perfectly since the adopted effective
interaction results in too large an attraction between the
projectile and the target, and therefore the negative mo-
mentum flow is too large. This means, in turn, that
the close analysis of momentum distribution can give
information about the effective interaction, or the mo-
mentum dependence and the density dependence of the
mean Geld. Especially the collective momentum flow of
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fragments such as o. particles seems to be a very clear
quantity that reflects the effective interaction, compared
to the flow of nucleons. The analysis of the flow of frag-
ments with other effective interactions, such as Gogny
force, is an interesting future problem.
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