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Crossing-symmetric two-particle reduction of four-point vertex
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We develop a nonperturbative reduction scheme for the four-point vertex T of a generic field theory
with interactions among bosons, fermions, and antifermions. We exhibit integral equations which ex-

press, in a manifestly crossing-symmetric way, the full vertex in terms of its two-particle irreducible part,
together with the dressed three-point vertices and two-point propagators. This scheme generalizes the
usual summation of ladder or bubble diagrams, thus providing for the consistent summation of a larger
subset of all diagrams.
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The four-point vertex T describes some of the most in-
teresting results of a field theory, since it contains the am-
plitudes for two-body scattering and for annihilation to
two-body final states. The one- and two-body intermedi-
ate states play a special role in these processes. Formally,
these states are the starting point for bootstrap-type
dispersion relations [1] and for Green's function methods
in solid-state physics [2] as well as methods introducing
parametrized effective interactions [3—8]. Physically,
they are important because they dominate the low-energy
scattering, since states with more particles typically have
higher energy [9]. As a result, it is often important to
consider these states explicitly by distinguishing their
contributions to the four-point vertex. A partial reduc-
tion of this sort is often accomplished by Lippmann-
Schwinger or Bethe-Salpeter type integral equations
which sum ladders or bubbles, respectively. We present
equations which accomplish a complete reduction to a set
of fully one- and two-body irreducible kernels.

Here we consider the four-point vertex of a generic
field theory with fermions and bosons. Our analysis is in-
dependent of the form of the bare interaction, which
plays no role in the discussion. Crossing-symmetric
equations have been constructed for the pion-nucleon sys-
tem in Ref. [10],but with the unitary summation of only
boson rescattering. We generalize that approach to in-
clude the scattering of fermions in both the initial and
final states and also in intermediate states, thus allowing
for the description of fermion-fermion scattering (and re-
lated crossed-channel processes) as well as fermion-boson
scattering, and including a much larger class of diagrams
for boson-boson scattering. We use the Bethe-Salpeter
type equations exploited also in Ref. [11]. While the gen-
eral form of the equations we develop is quite similar to
Refs. [11,12] (the idea goes back to Bethe and Salpeter),
there are considerable differences which allow a much
broader application. In particular, our treatment of pole
contributions to the scattering kernel solves an over-
counting difficulty which in Ref. [11] prevented a con-

sistent treatment of one-particle intermediate states.
Reference [12] treats the counting problems correctly but
considers only systems of either bosons or fermions. The
nonrelativistic analog of this problem (potential interac-
tion) has also been considered by many authors [12—15].
The equations for the four-fermion interaction matrix are
of the familiar Bethe-Salpeter type, but the bosonic chan-
nels are lacking. Our work represents a generalization of
Ref. [12] to the case when both bosons and fermions are
present, and treats them on an equal footing.

We need to express the four-fermion vertex in terms of
the three-point vertex and full propagators. Our aim is to
treat all the channels equally, as required by crossing
symmetry of scattering amplitudes. In the language of
perturbation theory this also means a resummation of a
much larger class of diagrams than when treating one
channel preferentially, i.e., summing ladder or bubble di-
agrams only. The price to pay is the proliferation of un-
known vertex functions including those corresponding to
boson-fermion and boson-boson scattering (and related
processes in crossed channels).

The general idea for constructing crossing-symmetric
equations is quite simple [10—15]. First, one has to intro-
duce the one-particle irreducible (proper) four-fermion
vertex [16]. It is obtained from the four-point connected
Green's function by separating the one-particle reducible
contributions and then truncating the fermion propaga-
tors on the legs (Fig. 1). Next, one separates the contri-
butions to the four-point proper vertex with respect to
two-particle reducibility in different channels. Then one
writes Bethe-Salpeter type equations for the two-particle
reducible contributions in a definite channel, in terms of
the two-particle irreducible (2PI) diagrams in that chan-
nel. For the four-fermion vertex T we use the following
decomposition:

/
/

'L /
/

'L /
A

/
/

/
l

ST
(()

TSU TU
-T (2]

SU

*Present address: Kernfysisch Versneller Institut, NL-9747
AA Groningen, The Netherlands.

FIG. 1. The four-fermion vertex contributions which are
two-particle reducible in more than one channel.
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FIG. 4. Decomposition of the truncated two-fermion —two-
boson Green's function into one-particle reducible and 1PI
terms.
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FIG. 2. Bethe-Salpeter type equations for the contributions
T&, Tz, and TU to the four-fermion vertex T.

T = Tr + Ts+ Tr + TU —Tsz. —TsU —T~U

where Tr is 2PI in all channels; Ts, Tz-, and TU are two-
particle reducible in s, t, and u channels, respectively; and
Tsz-, TsU, and T~U are two-particle reducible in both of
the two indicated channels. The subtraction of the last
three terms is necessary to avoid double counting, since
these diagrams will appear twice in the sum
Ts+Tz-+TU. The existence of diagrams reducible in
two channels is a consequence of our not distinguishing
between boson and fermion reducibility. However, by in-
spection it is easy to see that the number of diagrams re-
ducible in more than one channel is very limited. They
are all given in Fig. 1 and we do not need any additional
equations for them. Note that the propagators and
three-point vertices are the full ones, i.e., these are
skeleton graphs.

We start with the equation for Tz-, the vertex reducible
in the t channel, which we take to correspond to the
fermion-fermion or antifermion-antifermion scattering;
see Fig. 2(a). In a somewhat condensed notation we write
the equation in the following form:

T' = Tr + Ts + T~+ TU —Tsv —TsU —T~U (3)

The last two terms on the right-hand side of the above ex-
pression are the terms reducible in more than one chan-
nel and they are shown in Fig. 5. The equations for the

that this result diff'ers from Ref. [11]by treating all the
pole terms equally, and solves the related di%culty dis-
cussed there. The term Rs —RU+ T —Tz. includes all di-
agrams which are not two-particle reducible in the t
channel, while the rest of the diagram, connected by two
fermion lines, can be any connected 1PI (looking in the t
channel) diagram. The factor —,

' compensates for generat-
ing each diagram twice, since Rs and R U are related by
the Fermi statistics, and T and T~ possess the correct
(anti)symmetry with respect to the exchange of the in-
coming (1,2) or outgoing (3,4) legs.

The equation for Ts is analogous to expression (2).
Since only 1PI diagrams contribute, Rs should not be in-
cluded in the equation, but RU still gives a 1PI contribu-
tion. The total fermion number flowing through this
channel is zero and this means that the two-particle redu-
cibility can also be of the "bosonic" type, i.e., we can
separate the diagram into two disconnected pieces by cut-
ting two boson lines. This forces us to consider four-
point vertices with two fermion and two boson legs (dis-
tinguished by a prime from four-fermion vertices). First,
we decompose the truncated Green's function into one-
particle reducible and 1PI terms (Fig. 4). Then, similar to
expression (1) for the four-fermion vertex, we perform the
decomposition with respect to two-particle reducibility in
different channels:

Tr 2(Rs RU+T Tr)Gv(Rs RU+'T) (2)

Gz- is the product of two full fermion propagators in the t
channel, and Rs and RU are the one-particle reducible
contributions to the four-fermion connected Careen's
function defined in Fig. 3. It is necessary to include
them, since in the t channel they generate 1PI contribu-
tions. On the other hand, Rz has to be excluded since it
would then generate one-particle reducible terms. Note
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FIG. 3. Decomposition of the truncated four-fermion

Green s function into one-particle reducible and one-particle ir-
reducible terms.

FIG. 5. The two-fermion —two-boson vertex contributions re-
ducible in more than one channel.
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particle reducible contribution, leading to overcounting.
The second term is analogous to the one in Eq. (4), but
with a sign changed, assuring the antisymmetry under ex-
change of outgoing fermions.

The four-point vertex with two fermion and two boson
legs, T', can be treated in the same way as the four-
fermion vertex T. The equations for the terms T&, TT,
and TU in the decomposition (3) are graphically shown in
Fig. 6. Algebraically they read
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Tz. =(T' Tz +—R U+Rz )Gr '( T'+RU+Rz ), (6a)

Ts= —,'(T"—Ts'+Rr'+RU')Gs' ~(T'+Rr+Rp)

+ ( T' —Ts +R z-+ R U )Gs '( T +R U ),

R'~+ R„"+T"—Ts"T'—T'+RpR'

(6b)

TU=(T' —TU+Rs+Rr )GU' '(T'+Rs+Rz ) . (6c)

Equation (6b) represents one of the two possibilities of
writing down the contributions to the s-channel reducible
terms. The other is to divide each diagram into a part
not s-channel reducible starting from the fermion lines [in
distinction from starting with the boson lines in Eq. (6b)]
and the rest of the diagram, leading to an alternative
equation:

y

u

T '-T '+R'+R'

Tq =
—,
'

( T"+R ~'+ R p )Gg' '( T'+ Rs +R ~ Ts)—
+(T'+Rs+R~)Gs '(T —Ts+RU) .

FIG. 6. Bethe-Salpeter type equations for the contributions
T&, Tz, and TU to the two-fermion —two-boson vertex T'. (6b')

The double primed symbols refer to (truncated) four-
boson Green's functions; see Fig. 7 for their definition.
The labeling of the left-hand side of Eq. (6c) is somewhat
misleading, implying the contribution of diagrams reduc-
ible in the u channel. What it actually means is shown in
Fig. 6(c). These diagrams are necessary and insure the
symmetry of T' under exchange of the two external bo-
son legs. We checked that in the sum Tz+ TT+ TU the
diagrams TzT, TzU, and TTU are generated correctly in
this way, i.e., each of them twice.

Finally, we have to construct the equations satisfied by
the four-boson proper vertex T", defined in Fig. 7. After
classifying the contributions with respect to two-particle
reducibility

other terms are given below. Now we can write the equa-
tion for T&..

Ts= —
(
—RU+ T —Tg)Gs '( —RU+T)

+ —,
'

( T' —Ts +Rs +R U )Gq '( T'+ Rs +R U ), (4)

where Gz ' denotes the product of two fermion propaga-
tors in the s channel, while G&

' corresponds to two bo-
son propagators [for the graphical representation of the
equation see Fig. 2(b)]. We note that there is no overlap
between these two sets of diagrams [those with Gz' ' and

Gs ' in expression (4)], since the first two-particle reduci-
bility (encountered when going from the bottom to the
top) of the diagram is in one case of fermion and in the
other of boson type.

Finally, we write the equation for TU [Fig. 2(c)]:

T"= Tr + Ts + TT + TU —TsT TsU TTU ~

where the doubly reducible contributions are shown in
Fig. 8, we can write the equations for the two-particle re-
ducible contributions (Fig. 9):TU = (Rs + T TU )GU(Rs + T—)

—
—,
'

( T' —TU +Rs +R U )G pp'( T'+ Rs +R U ), Ts =
—,'(T"+Rr'+RU')Gs' '(T"+Rz +RU —Tq )

+(T'+Rr+RU)GsI '(T'+Rz+RU —Ts),
which is analogous to the contribution for Tz. In the first
term Rz replaces RU, since the latter would give a one- (Sa)

2. 3

FIG. 7. Decomposition of the
truncated four-boson Green's
function into one-particle reduc-
ible and 1PI terms.

i42. '4

T"(1 P I)R"
S

CROSSING-SYMMETRIC TWO-PARTICLE REDUCTION OF. . .



2484 C. L. KORPA AND PHILIP J. SIEMENS 47

11

ST

I
I
I
I
I
I
I
I
I
I

I

I

I

I
I

I

I

I

I

I

Ts

T+R/RU

T'—T'+ R'+R'
S U

+T"

RI+ RU+T"—Ts

\

\

I
I

I

I
I
I

I

RT+ RU+T' —TI RI+R „'+T'

+ 1/2 R "+RU+ T"—TT' R "+ R "+T"

-4
Kl /I
I \ /
I L / I

I \ / I

I V I

I A I

I I 'L I

I I \ I

I J s
V sI-4

T II

U

/
I

/
I

I
\

I

I
'I I
A

I
'I

I
I

/
\

\

+1/2

T"+R" +R"
S

T"—T"+ R"+R"
U

I
t I

I
f

\ I
I

/
I

I
V
n

j
I

I
I

I \

u

TU

FIG. 8. The four-boson vertex contributions which are two-
particle reducible in more than one channel.

Tr'= —,'( T"+Rs'+R U)GP'(T" +Rs'+RU —Tr')

+(T'+Rs+RU)Gr' I(T'+Rs+RU —Tz ), (8b)

TU z(T"+Rs+Rr)GU '(T"+Rs+Rr Tv)

+(T'+Rs+RU)GU '(T'+Rs+RU —TU) . (8c)

The parts of the four-boson vertex reducible in more than
one channel, Tz~, Tz'U, and Tz-'U, are skeleton graphs
analogous to the contributions of this type to T and T'.

Until now we did not say anything about the two-
particle irreducible contributions to the considered four-
particle vertices, TI, TI, and TI". The reduction is espe-

FIG. 9. Bethe-Salpeter type equations for the contributions
Ts', T&', and TU to the four-boson vertex T".

cially useful when the particles involved have masses, or
are coupled by gradient couplings. In these cases, the
description of low-energy scattering and annihilation may
be simplified by our reduction, since then the 2PI parts
are used in kinematic regimes where they are not singu-
lar. This means that they might be small, or if not they
can be parametrized in a simple way [3]. It also means
that they may be dominated by a few skeleton graphs, as
is the case for nonrelativistic potential scattering [13].
We discuss the applications of the above result in another
publication [9].
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