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We evaluate the total cross section for pion production in the reaction pd —+pdm under the assump-
tion that it is entirely due to the quasifree elementary process pn ~de . Close to threshold only large-
momentum components of the target deuteron wave function can contribute. This provides a qualitative
explanation of recent measurements of a surprisingly small near-threshold cross section for the
pd —+pdm. reaction. The final-state interaction between the proton and the deuteron in the exit channel
is found to be significant. When it is taken into account the energy dependence of the measured

pd —+pdm. reaction is reproduced. We conclude that the main properties of the pd ~pdvr reaction near
threshold can be explained by a simple quasifree reaction model.

PACS number(s): 25.40.Qa, 25.10.+ s

I. INTRODUCTION

Recently, the total cross section of the reaction
pd ~pd~ has been measured near threshold with the In-
diana University Cooler [I]. The aim of the measurement
was to investigate, in a still tractable system, to what ex-
tent pion production in a "many-body" environment can
be explained by the contribution from "elementary" pro-
cesses with two nucleons in the initial state. In the exper-
iment, it was found that very near threshold this cross
section is almost three orders of magnitude smaller than
the cross section of the pn —+d~ reaction, when the two
cross sections are evaluated at energies of equivalent pion
center-of-mass momentum. This came as a surprise, and
seemed to indicate that pion production in the three-
nucleon system is more than a superposition of pion pro-
duction processes involving two nucleons. In the present
work we address the question of whether the experirnen-
tal pd —+pd~ result is indeed surprising and incompati-
ble with a quasifree reaction mechanism, or whether
there is a simple explanation of the observed data once
the kinematic aspects of the reaction are fully taken into
account.

The possible elementary NÃ channels that can contrib-
ute to pd —+pd m are pn ~d m, pp ~pp m, and
pn ~pn ~ . Recent experiments provide us with accurate
total cross-section data close to threshold for pn —+d~
[2], as well as pp~ppm. [3], while for pn~pnvr the ex-
perimental situation at low energies is still poor.

The pn~d~ cross section is large in comparison to
pp upper [4] since, in the latter, pion production via an
Nb, intermediate state is suppressed [5]. Resonant pro-
duction is allowed in pn~pnm. , so its cross section is
also large. But, in this case, most of the Aux may be ex-
pected to go into the four body final state, i e.,
pd ~ppnm . One reason for this is that a deuteron which
retains its identity cannot emit a pion (even when the

*Present address: Department of Theoretical Physics, Univer-
sity of Helsinki, SF-00170, Helsinki, Finland.

pion rescatters from the spectator). Furthermore, s-wave
rescattering is suppressed by an order of magnitude, and
is forbidden when it involves charge exchange of one of
the nucleons in the deuteron. The only pn~pn~ pro-
cess that could contribute significantly is the one where
the beam proton becomes part of the deuteron by charge
exchange with the target neutron which in turn emerges
as a free proton. The amplitude for this process is pro-
portional to the deuteron form factor evaluated at the
momentum transfer to the deuteron, which, close to the
threshold is always large. The necessary rearrangement
of the spins and isospins to form a deuteron in the final
channel leads to an additional suppression of this mecha-
nism.

From the arguments in the previous paragraph it
seems justified to include in the quasifree analysis of
pd~pdm. only the single elementary process pn~d~ .
This simplifies the analysis, since the inclusion of other
processes would require the knowledge of the relative
phases. The dominance of the pn ~d~ channel could be
verified experimentally by studying the angular distribu-
tion of the protons from pd —+pd~ which, in this case,
should be given by the momentum distribution in the
deuteron.

Near threshold there are only a few contributing par-
tial waves. It has been shown [2,3] that the energy
dependence of the elementary (NN) cross sections is well
explained in terms of the phase-space factors and final-
state interactions. If it turns out that the three-nucleon
process departs from this behavior, this could be taken as
an indication that processes are important that arise from
the complexity of the system. The near-threshold region
is thus especially suited for a study of the reaction mecha-
nism.

There have been two previous studies of pion produc-
tion in the three-nucleon system, both involving the reac-
tion pd —+nd~+, both restricted to differential cross sec-
tions in a part of the phase space where quasifree

pp —+de.+ production is favored. The first, at a bombard-
ing energy of 585 MeV [6], concludes that the data admit
several possible reaction mechanisms, while the second,
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at 800 MeV [7], finds quantitative agreement with a spec-
tator model.

II. DERIVATION OF THE CROSS SECTION

ks' ks'

q q

A. Introduction

B. Quasifree amplitude

For the present discussion we present the three-
nucleon momenta by k; in the initial state and by k,

' in
the final state, as shown in Fig. 1(a). The pion momen-
turn is denoted by q.

Ignoring, for the time being, distortions and spin-
isospin degrees of freedom, the initial-state wave function
1s

4;(1,2, 3)=Cd(r, 2)e " "e ' '/(2m. )

where Ki2=k, +k2 and R,2= —,'(r, +rz) are the momen-
tum and the center-of-mass coordinate of the initial
deuteron, and where r, 2 =r, —r2 is the relative coordinate
of the particles forming the deuteron. The normalization
of the wave function is chosen to conform with the ex-
pression for the incident fiux given in Refs. [8] and [9].
The only differences between the initial and the final state
is that nucleons have changed their roles as bound parti-
cles or free nucleons, so that the wave function for the
final nucleonic state becomes (with the normalization
consistent with Ref. [9])

I I

%'f(1,2, 3)=e ' '%'d(r23)e (2)

As in Ref. [10], the pion wave function is contained in

We assume that in process I (pd ~pd ir ) the beam pro-
ton interacts with the neutron in the target deuteron to
form the final deuteron and the m. (process II, JIn ~der ),
as indicated in Fig. 1. Our goal is then to express the to-
tal cross section n, (pd ~pdir ) in terms of the total
cross section oii (pn ~der ) This. task can be divided
into two parts. First, the amplitude for reaction I has to
be related to the amplitude of the subprocess II (Sec.
II B). Second, the integration over the phase space has to
be carried out, starting with the square of these ampli-
tudes (Sec. II C). Spin and isospin parts of the wave func-
tions are ignored throughout the derivation of o.„ they
will be discussed separately at the end of Sec. II C.

ki kz

a)

FIG. 1. (a) Notation for the nucleon momenta in the specta-
tor model for the reaction pd~pdm. . (b) Notation for the mo-
menta of the external particles in the evaluation of the phase-
space integrals.

—iq.R=e "h (q, r23) (3)

In order to separate the coordinates r, and r2, and to
make the transition to the pair (2,3) plus a spectator pos-
sible, we carry out a Fourier decomposition of the initial
deuteron wave function into momentum eigenstates

4;(1,2, 3)= 6 f d k, d k2@d
(2n. ) 2

X5(K,2
—ki —k2)

ik l
~

I + ik2.r2+ ik3 3Xe (4)

Here, the Fourier transform of the deuteron wave func-
tion %d(r) is given by

@d(a.)=f d r%d(r)e "', (5)

with the normalization condition

e, ~ ' '~= 2~'.
The transition matrix element then becomes

the operator for pion production from the nucleon pair
(2,3). This operator, in its simplest form, can be written
as [10].

Iq r2 —iq.r38 (2, 3)=(f/p)(q. cr2r2 Pe '+q o p3 Pe ')

', f d3k, d3k, e„
(2m. )

k) —k~
5(Ki2 —ki —k2)

I I

The integration over r, results in a 5 function which forces the conservation of the spectator momentum, k& =k1, and,
after a coordinate change from r2 and r3 to R23 and r23, the integral over R23 ensures momentum conservation in the
(2,3) subsystem. After integrating over momenta, we obtain

I

&'nfl~ (2, 3)lq'; & =5(Ki2+k3 —ki —K23 —q)@'~(ki —-'Ki2) f d'r~3'pd(r23+ (q, r23)e
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C. Phase-space integrals

In the reaction pd —+pdm, the externally observable
four-momenta of the participating particles are denoted
by P, =(E, ,p, ) and the final-state pion by Q =(co,q), with
the corresponding labels defined in Fig. 1(b). The square
of the total center-of-mass energy, s, is related to the
bombarding energy, T;„„by

s =(m +md ) +2md T;„, .

In the following, kinematic quantities without a prime
are Lorentz invariant. There are two specific reference
frames used. The first, R„d, is the center-of-mass system
of the pn ~d~ reaction. The second, R d, is the frame
in the pd —+pdm reaction where the final-state ++d sys-
tem is at rest. These two frames are not identical: while
the final-state parameters Ed, co, and q are the same in
both frames, the initial-state parameters differ because
the target neutron is free in R d but bound in R d.
Quantities in the R d system are denoted by an asterisk,
those in R d are denoted b~ a prime. The invariant
mass of the rr+d system is Qsz.

In the following we will frequently refer to the book on
relativistic kinematics by Byckling and Kajantie [9].
Specific equations therein are referred to by (BK,m, n)
where m is the chapter and n the equation number in Ref.

The total cross section for the reaction pd~pdm is
given (BK,III,2.2 —2.3) as

o d d
0=I3(s)/[2(2m. ) A,

' (s, m~, md ) ] . (10)

The remaining integral is the off-shell amplitude
T 2( sz, q, k23) for the elementary reaction pn ~de. in the
(2,3) subsystem. In principle, this amplitude can be cal-
culated from a model, as is done, for instance, in Ref.
[10]. Here, however, we relate the square of this ampli-
tude to the measured on-shell cross section of the elemen-
tary reaction. The amplitude depends only on the total
energy Qs2 in the subsystem and the angle between the
incident proton and the pion in the final state. It is ad-
vantageous to evaluate this amplitude in a frame where
the de. system [or the initial nucleon pair (2,3)] is at rest
where Kz3+q=kz+k3=0. The matrix element for pion
production becomes

(2 3)Iq; ) =fi(KIz+k3 ki K23 q)

XC&d[(ki+k3)/2]T2(s2, q, k23) . (9)

At this stage, it would be possible to relax the assump-
tions made in deriving this expression. In the amplitude
T2 initial-state correlations, including Xh admixtures,
could be introduced, and the pion production operator
could be generalized to contain terms required by Galile-
an invariance, as well as the effect of s-wave pion-nucleon
rescattering [10]. In fact, by determining T2 from the ex-
perimental cross section, such effects are included in the
(2,3) system, but interactions between the beam proton
and the spectator are still neglected as is required by the
assumptions of the model.

Here, A, is the usual triangle function (BK,III,6.4), defined
as

277
I3(s)=

16K, ' (sm m )

X f ' ' f' dtq'fdn, , ~M, ~'.
S& g t

(13)

Here, the remaining two integration variables are chosen
as the square s2 of the invariant mass of the (2,3) system,
and the invariant angle variable t:

t =(PII P, ) =2m ——2EI'IE,'+2pi'Ip, 'cos8,'II . (14)

The integration limits s2~ and t (BK,V,5.—11), are given
by

s2+ =(&s —m )

s2 =(md+m„)

t =2m —(1/2s)(s +m —md )(s —sz+m )

+(1/2s)gi (s m m„)g ~ (s s m )

(15)

The cross section o.» for the elementary pn ~d~ reac-
tion in terms of its invariant matrix element M» follows
from phase-space considerations for a two-body final
state and, when evaluated in the R d frame
(BK,IV,4.19), becomes

pp d (7??
M„i =16(2n.) s2 (16)

The invariant matrix element M?? depends on the nonin-
variant amplitude T2 for pn~d~ by the usual energy-
dependent normalization prescription, and M? is related
to the same Tz by the use of Eq. (9):

iM
/

=2E„*2E*2Ed'2co*iT2i
(17)

Noting that Ed, cu, and q are the same in the two frames
used here, and combining Eqs. (16) and (17), we obtain

2ETE~Esf ~MI~ q'dQ .= ~@d(ic)~ 16(2')
n p

X$2p &II('qii ) (18)

where o.
?? is the total pn ~d~ cross section as a function

(a,, b, c)=a +b +c 2—ab 2—bc —2ac .

The denominator in Eq. (10) is the fiux factor and I3(s)
contains the integration over the three-body phase space
(BK,III,2.4):

dpd dp, d3q

d S

(12)

where Mt is the invariant matrix element for pd ~pdm. .
Integrating over five of the variables in Eq. (12) leads to
(BK,V, 5.6)
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X tr ii(i)ii) (19)

This is the final result, relating rJI=cr(pd~pdm. ) to
rr II

=o (pn ~d m }. Again, it is customary to describe the
energy at which a, is evaluated by g&, the largest center-
of-mass pion momentum in units of m, or

(s, (md+m~), m )l(2m &s ) . (20)

The limits of the integration in Eq. (19) have been defined
in Eq. (15). In order to evaluate Eq. (19), the ingredients
have to be calculated in terms of invariant masses and the
integration variables. It is straightforward to express the
following momentum and energy variables in terms of in-
variants:

p*=A, '~ (s2, m, m„)/(2+s2),
E„"=(s2+m„—m )/(2+s2),
Ez' = (sz+ m~

—m„)/(2+s2 ),
E,' = (s —s2 —m ) /(2+s 2 ).

(21)

To obtain the remaining variables in Eq. (19), we make
use of the fact that in the R „d frame the sum of the mo-
menta of the target neutron and the beam proton must
vanish. This leads to the condition p,

' —p~=pT. Fur-
thermore, the total energy E' = (s +p, )

'~ must add up to
the sum Ez+ET of the beam and target energies. To-
gether with the definition of t [Eq. (14)] this leads to

ET = (s2+ md t) /(2V's~ ), —

Eii =(s m~ md+—t)l(2—+s2) .
(22)

Finally, the nucleon momentum in the target deuteron
rest frame is needed in order to evaluate the deuteron
wave function @d(a). Making use of a =

—,
'

~p,'+ps, and
the definition of t [Eq. (14)], one finds

of the energy. It is customary to describe the energy
dependence in terms of g», the center-of-mass pion
momentum in units of its rest mass with q&&=q'/m . In-
serting Eq. (18) into Eq. (13) leads to

(2~) ETE~Esf ds2d~p*V s2 ~Nd(a)~
A, (s, m, md )

in the pd system arises from the magnetic quantum num-
bers pd=+1, p~=+ —,

' with probability 1, and from

pd —0 pp
—+ 2 with probability 2- In short, the spin

statistical factors can be omitted in relating o.
~ to 0.

&&.

Using standard recoupling techniques for the isospin,
one can relate the initial state with the nucleons 1 and 2
[see Fig. 1(a)] coupled to TI2=0 (i.e., the deuteron), to
states where the nucleons 2 and 3 are coupled either to
T23 0 or 1 ~ Since T23 =0 is not allowed as an initial
state ofpn ~der in the (2,3) subsystem, the initial state is
set for NN +du—with an amplitude of &3/2. The final
state of a proton and a m with total isospin —,

' has the am-

plitude I/&3, and so the overall probability for isospin
overlap is —,'. In the experimental cross section o&& a fac-
tor of —, is already included since only one-half of the ini-
tial np system is in the T = 1 state needed for dm. In ad-
dition, the reaction could have originated in the (1,3) pair
which accounts for a factor of 2. Again, the isospin sta-
tistical factors can be omitted in relating o., to o.».

D. Elementary cross section and deuteron wave function

10 I I I I I I I I I I I I I

10—4

10—5

10—6

10

10—8

The only dynamical quantities needed to calculate the
pd ~pd m cross section [Eq. (19)] are the deuteron
momentum probability density ~IIid

~
and the measured

cross section o.» of the elementary process, pn~d~ .
For the final-state deuteron the full wave function is (im-
plicitly) taken into account. The initial deuteron, howev-
er, explicitly enters the cross section [Eq. (19)] as the

Ic= ,' "tlp, +Pii +2P,—'Piicos( 8,'ii )

,'"I/ (Eii+E,') 4—mp+t— (23) 10-9

The physical input to Eq. (19), @d(a)~ and o»(qii}, will

be discussed in the next section.
Up to now, the spin and isospin parts of the wave func-

tions have been neglected. It is thus necessary to investi-
gate whether the ratio 0.,/0. » depends on these degrees of
freedom.

Averaging over the initial states introduces to the cross
section a factor of —,

' in pn ~de, and a factor of —,
' in

pd —+pd~ . In the sum over final states of the latter pro-
cess, however, each np state appears with a weight factor

For example, the np state with both nucleon spins up

10—10

I I I I

200

/'

/

400 600

Ic (MeV/c)

FIG. 2. Momentum probability density in the deuteron as
obtained from the Bonn potential [11]. Shown are the contribu-
tions of the S state (dashed), the D state (dotted), and the sum

of the two (solid line). The normalization of ~@d~ is
defined in Eq. (6).
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Fourier transform Nd of the wave function. In the
present context we choose ~@d ~

to be the sum of the S-
and D-state probability densities as a function of the mag-
nitude of the vector argument, thereby neglecting the
nonspherical aspects of the deuteron D state.

The deuteron momentum-space wave function used
here is derived from the Bonn potential [11]. The
squared wave functions corresponding to the S and the D
state are given by Eq. (26) in Ref. [11]. The individual
contributions of the two angular-momentum states are
shown in Fig. 2 as a function of the momentum ~ of a nu-
cleon in the deuteron (dashed and dotted lines), together
with their sum

~
@(Ir)

~
(solid line).

The total cross section u» for pn ~d ~ is
parametrized as a function of g», the center-of-mass pion
momentum in units of its rest mass, as follows. Below
g&&

= 1 we use the analytic expression

102 I I I I I I

10

100

10—1

10
0.2 0.3

FIG. 4. The cross section 0.
&

from Eq. (19) evaluated with a
constant input cross section of o.» = 10 pb.

crz= —tltr[184 Pb+(781 Pb)gn]

1O4 I I I l 1 I

103

10
Il ~d1T

which was obtained from a Gt to a recent, accurate mea-
surement close to threshold [2]. For r)„)1 a Lorentzian
form is fitted to the world's supply ofpp ~d~+ cross sec-
tions [12] in this energy region. The result is then scaled
according to

o (pp ~dr. +
) la(pn —&der ) =2,

a factor arising from isospin symmetry and the identity of
particles in one of the channels. It needs to be stressed
that the present study shows very little sensitivity to the
input cross section o.» for g) 1. The resulting cross sec-
tion o.

&&
is shown as a dotted line in Fig. 3 together with

available measurements [2,12].

III. RKSUI.TS

After numerically integrating Eq. (19) one obtains o„
the pd ~pdm cross section arising from quasifree pro-
duction in the pn —+de. channel. The result is shown as
a dashed line in Fig. 3 as a function of rj, [Eq. (20)].

To discuss this result it is instructive to repeat the eval-
uation of Eq. (19), replacing the elementary cross section
o.» in the integral by a constant value, for example,
0.»=10 pb. From Fig. 4 it can be seen that the calculat-
ed three-body final state approaches the input cross sec-
tion for high energies (rj ) 1), but is strongly suppressed
close to the threshold (g=0). The suppression is due to
the limited range of momenta accessible in the deuteron.
The shaded area in Fig. 5 indicates the range in which
the nucleon momentum a. enters the integral Eq. (19) as a
function of g. It is obvious that close to threshold the re-
action pd —+pd ~ samples the deuteron momentum distri-
bution in a narrow range around 200 MeV/c where the
probability density is low. Beyond g=1, ~=0 can be
reached and the calculated cross section approaches the
input cross section.

When evaluating 0.
1 at a given g, the input cross sec-

10

1oo

10—1

600

10—2
0.1 0.2 0.3 0.6

400

FIG. 3. Total pion production cross section as a function of
g=q, /m . Shown are the elementary input cross section
mid(g) =o (pn ~d~ ) (dotted line), together with available data
(squares [2] diamonds [12]), and the pd —+pd~ cross section
o.&(q) calculated according to Eq. (19) (dashed line). The solid
curve illustrates the energy dependence with the final-state in-
teraction included. The data for pd ~pdm (closed dots) are the
result of a recent measurement with the Indiana Cooler [1].

200—

0
0.1 0.2 0.3 0.6 1

FIG. 5. Range of deuteron internal momenta that contribute
to cr& in Eq. (19) as a function of the energy variable g.
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tion o.» is needed at energies corresponding to g» in the
range 0 & g» & g, . Consequently, the calculated cross sec-
tion below g, = 1 is not very sensitive to the p-wave com-
ponents of o-», or to its value in the 3,3 resonance region.

The fact that the calculated cross section underesti-
mates the data is not surprising. This can be due to (i)
the coherent contribution of other production processes
(such as pn ~pn rr ), or more complicated reaction mech-
anisms [6], (ii) the neglect of off-shell parts of the ampli-
tude, or (iii) the effect of the final-state interaction be-
tween the proton and the deuteron in the exit channel.
The latter effect can be shown to be significant, and will
be discussed in the next section.

IV. FINAL-STATE INTERACTION

Watson [13] has suggested a procedure to separate the
energy dependence due to the final-state interaction be-
tween two collision partners (in our case the proton and
the deuteron) from the reaction amplitude. In essence,
the procedure involves expressing the square of the ma-
trix element as a term that varies slowly with energy
times the s-wave elastic-scattering cross section of the
two particles. The method is valid if the relative momen-
tum kf between the interacting particles is small, and the
final-state interaction is strong compared with the pri-
mary reaction (here, pion production). When the in-
tegrand in the phase-space integral, Eq. (19), is multiplied
by the resulting final-state weight factor gr„, taken at the
appropriate momentum kf, a cross section o.

& &„ results
that is of arbitrary normalization but reAects the
modification of the energy dependence by the final-state
interaction.

Because ~p scattering through a 6 is isospin forbidden,
and mp s-wave scattering is weak, we only take into ac-
count the interaction between the proton and the deute-
ron in the exit channel. Expressing the pd scattering
cross section in terms of the s-wave phase shift, one ob-
tains for gr„. in the case of pd scattering.

1 2 1
22 2

+
2Cpkf 1 +cot 5& 1 +cot 5&

k&= —,'Qq' +p,'

with

q'=A, '~ (s2, md, m )/(2+s2),

p,'=A, ' (s, sz, m~ )/(2+s2) .

(27)

Multiplying the integrand in Eq. (19) by the weight factor
gr„(kI ), the integral is reevaluated. The arbitrary overall
normalization of the resulting cross section o.

& &„ is fixed
by the experimental cross section. The result is shown in
Fig. 3 as a solid line. This calculation makes no state-
ment about the magnitude of the pd~pd~ total cross
section but it clearly demonstrates that its energy depen-
dence is explained very well if the final-state interaction is
included.

The upper limit of the integration over kf grows

Here, m„d is the reduced mass in the pd system. The ex-
pansion coefficients a„, b„, c„ in Eq. (24) have been deter-
mined from a fit to pd elastic-scattering phase shifts [16]
in the range 0 & k& & 180 MeV/c. Their respective values
are [16] a& = 11.88 fm, b& =2.63 fm, c& = —0.54 fm ,
aD=2. 73 fm, bD=2. 27 fm, and ca=0.08 fm . The re-
sulting final-state weight factor gr„(k&) can now be calcu-
lated from Eq. (24); the result is shown in Fig. 6 as a solid
line. For comparison, the same parameter is also calcu-
lated for uncharged particles (dashed line in Fig. 6). This
demonstrates that the Coulomb repulsion between the
final-state particles reduces the effect due to the strong in-
teraction between them.

In our case, the argument kf of the final-state weight
function [Eq. (24)] is given by

k/= —(p. pd) —(p. +q ) .

This involves the angle between p,
' and q' which has been

integrated out between Eqs. (12) and (13). Fortuitously, it
turns out (as can be shown numerically) that gr„, to a
very good approximation, is independent of this angle,
and that kf can be taken as

where the two terms correspond to channel-spin qua-
druplet (Q) or doublet (D) scattering. 5& D are the
respective phase shifts, and kf is the center-of-mass
momentum in the rest system of the collision partners.
The factor Cp in the denominator appears because of the
Coulomb interaction [14]. The phase shifts 5& D are ob-
tained from an effective-range expansion, which, for
charged particles, becomes [13,15]

1 1
Cpkf cot5 +2ykf H + 6 kf +c kf + )

Q 2

25

20

15

I I I

i

I I I I

1

I I I I

where p stands for either Q or D, and

(25)
0

0 50 100

k, (Mev/c)

150 200

y=e m„d/(A' k/), Co =2vry/(e ~ —1),
oo

1H = —0.57722+y g —lny .
„=& n(n +y )

(26)
FIG. 6. Final-state interaction weight as a function of the

center-of-mass momentum in the pd system (solid curve). The
same parameter for uncharged particles is shown by the dashed
curve.
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linearly with g, and for g) 1 is beyond the validity of the
amplitude parametrization of Eq. (25). Therefore, an ex-
tension of this treatment of the final-state interaction
beyond the range covered by the present data would be
suspect.

V. CONCLUSIONS

We have calculated the total cross section for pion pro-
duction in the reaction pd ~@de. under the assumption
that it is entirely due to the quasifree elementary process
pn —+d m . The absolute magnitude of the calculated
cross section is in qualitative agreement with a recent
near-threshold measurement. In particular, the calcula-
tion reproduces the strong suppression close to threshold
of the pd~pd~ cross section as compared to the con-
tributing pn —+d~ process. This suppression is under-
stood as a direct consequence of the deutero~
momentum-probability distribution in conjunction with
the limitations of three-body phase space.

The above calculation, although it reproduces the main
features of the experimental cross section, does not give
the correct energy dependence and underestimates the

measurement. We find that when the interaction between
the final-state pd pair is included, the energy dependence
of the data is reproduced very well. The present treat-
ment of the final-state interaction is approximate and
only serves to demonstrate that the effect is important.
For a quantitative comparison of the data with predic-
tions of the amplitude for s-wave pion production, a more
detailed treatment of the interaction between the parti-
cles in the exit channel is needed, using, for instance, a
distorted-wave Born approximation, as outlined in Ref.

In summary, it seems that the pd ~@de reaction near
threshold [between threshold (208 MeV) and 300 MeV]
can be explained by a simple quasifree reaction model, us-
ing as input phenomenological information on the deute-
ron and the elementary XN pion production cross sec-
tion.
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