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Nucleon-nucleon bound state contribution to the proton scattering by nuclei
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Sensitivity of proton-nucleus scattering is studied to the off-shell behavior of the nucleon-nucleon

(NN) effective interaction, particularly to the presence of the NN bound state. The effect is found

to be negligible in a kinematical region where an optimal factorization approximation is justi6ed. A
sensitivity can be seen below 100 MeV of beam energy and for the light nuclei ( C, 0). The effect
is more pronounced for a tensor part of the NN t matrix which is shown in the charge-exchange
cross section of proton scattering from C.

PACS number(s): 25.40.Cm

It has been observed in Refs. [1—3] that a nonrelativis-
tic first-order optical potential treatment of the proton-
nucleus scattering at intermediate energies is sensitive to
an off-energy-shell form of a nucleon-nucleon (NN) ef-
fective interaction. One should, therefore, be careful in
doing any simplification in evaluating the off-shell NN f
matrix. Our aim is to investigate the role of the bound
state in the NN t matrix, which is a genuine off-energy-
shell effect, in the proton-nucleus scattering. Such a
study can provide a useful insight on reliability of anal-
ogous calculations in situations where the number and
location of elementary bound states is less known than
in the NN case. The example we have in our minds is
the antinucleon-nucleus scattering, where the pole struc-
ture of the antinucleon-nucleon amplitude is still rather
obscure.

A straightforward way on how to get the off-shell NN
t matrix is to obtain it from a NN potential by solving
the Lippmann-Schwinger (LS) equation or in the case of a
real potential by solving the K-matrix equation [4]. The
fully off-shell t-matrix can be obtained also by solving
the Low equation [5]. When the t matrix is needed at
many different energies, the last method is best suited in

I

regard to computing time consumption and we used it in
our calculation. By virtue of the Low equation, we have
the NN bound state pole term easily under control. This
is not the case in the LS equation.

Using the Bonn potential, Elster et al. [1] have found
that the optimum factorization procedure can simulate
the full-folding integral in the first-order nucleon-nucleus
optical potential very well. It has also been confirmed
that even for low energies (100 MeV), the factorization
can be used with a little loss of accuracy. On the other
hand, Arellano et al. [2] have concluded that in the case
of the Paris potential the on-shell approach is not an ad-
equate approximation to the full-folding model. We have
supposed, therefore, that the suitably chosen factoriza-
tion scheme is reasonable for our purpose here as we are
not ambitious to describe the data exactly.

The transition matrix T for the elastic scattering of
a proton from a target nucleus is calculated using the
nonrelativistic first-order optical potential formalism de-
veloped by Kerman, McManus, and Thaler [6, 7]. In this
scheme, an auxiliary matrix T' = (A —l)T/A satisfies
the LS equation which, in the proton-nucleus center of
mass frame (Ac.m. ) reads as

dsk U'(E Q' k) T'(E; k, Q)
(2~)' E —Eo(k) +i'

Here A is the mass number of the nucleus, E = E(Q) is

the total kinetic energy, and Q (Q') is the on-shell ini-

tial (final) relative proton-nucleus momentum. We have

assumed that the first-order optical potential U' is well

represented by the optimal factorization approximation
(OFA) [8]

p = z(k —k,s),

p' = k' —2(k+ k, ir).

(2), we have used the fact that the t matrix is
Galileo invariant.

The nucleon effective momentum is chosen in the Ac.m.

U'(E; k', k) = (A —1) t(e; p', p) Fo (q), (2)
ketch = A —1„, A+ j.

2A 2A (4)

where Fq(q) is the nuclear ground state form factor, q =
k' —k is the momentum transfer, and p (p') is the initial
(final) proton-nucleon relative momentum

and the two-body energy in the two-body center-of-mass
frame (2c.m. )
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is assumed on shell. Note that the energy e depends on
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where m is the nucleon mass and the proton-nucleon total
momentum

K = Q + k.& = (Q' + Q),
A —1
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the proton-nucleus scattering angle in the Ac.m. We use
the isospin formalism setting the mass of the proton equal
to that of the neutron m = 938.9 MeV/c .

In order to describe a nuclear structure of even-
even nuclei properly, we have employed the symmetrized
Fermi densities [9] for the nuclear scalar isoscalar form
factor which reproduce the nuclear charge form factors
up to 3 fm of momentum transfer. Vector and isovec-
tor form factors for spin and isospin one-half nucleus
sC are evaluated using the wave function of Tiator and

Wright [10] which is limited to the 1p shell.
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FIG. 1. The contribution of the pole term in Eq. (7) to the
real part of the oB-energy-shell t matrix with p'=p is demon-
strated for s, d, and mi~ed s-d partial waves. The dot repre-
sents the on-shell value for p = 1 fm

FIG. 2. The dependence of proton C elastic di8'erential
cross section on the pole term in Eq. (7) for several energies
below 100 MeV is shown. The experimental data are from
Ref. [13].
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In the case of the energy-independent potential, the Low equation has the form in the 2c.m.

t('p' p) =t(sp p' p)+&o(p')@0(p),", " + d3k, , 1
s t(egal I p, k)t (tA, I p, k)

2vr ' 6 —
6A + 27/

1

t'& —6g + 2'll

(7)
Here sp and Qo(p) are the binding energy and wave function of the deuteron, respectively, and e„=p2/m.

The half-shell t matrix needed as an input into Eq. (7) is evaluated numerically by solving the Blankenbecker-Sugar
(BbS) equation with the one-meson-exchange potential (OBEPQ) [11]. Applying the minimal relativity factors [11],
the covariant BbS equation can be cast into the Lippmann-Schwinger-like equation that is finally solved

t(s'p p) =»&E(p p)+m
d k voBE(p', k) t(s; k, p)

(2vr)s p~ —k2 +irI (8)

The antisymmetrization of the wave function between
the scattered proton and the target nucleus is neglected
but the two-body t matrix is symmetrized properly like
in the free NN scattering process.

The deuteron wave function and the binding energy
used in Eq. (7) correspond to vcinE consistently [11].

The numerical solution of Eqs. (1) and (8) is performed
in the LSJ basis using the matrix inversion method. The
static Coulomb interaction is included by the prescription
of Vincent and Phatak [12]. The charge form factor of the
nucleus is assumed in the form given by F(q) normalized
to the number of protons in the nucleus and multiplied
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FIG, 3. The sensitivity of the elastic differential cross sec-

tion to the presence of the pole term in Eq. (7) is demon-
strated for proton scattering from heavier nuclei.

FIG. 4. The sensitivity of charge-exchange cross section
and charge-exchange analyzing power to the pole term in
Eq. (7) is shown for proton C elastic scattering.
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by the proton charge form factor.
We have carried out calculations of the proton elas-

tic scattering from C) 01 Ca1 and 3C at energies
around 100 MeV. The aim was to estimate a sensitivity
of cross sections and analyzing powers to the pole term
in Eq. (7). The results for energies higher than 83 MeV
are not displayed here as they are completely insensitive
to the presence of the pole.

The contribution of the pole to the s, d, and s-d partial
wave NN t matrix is shown in Fig. 1 for p' = p. The on-
shell value at p = 1 fm is denoted by a dot. This value
is typical for the energy range studied here. It is apparent
from the Eq. (7) that the pole term is real and vanishes
on shell. The influence of the pole is significant for low
momenta in the 8 wave whereas d-wave matrix element
is less altered but in a wider range (Fig. 1). The mixed
s-d wave is more sensitive to the pole than the diagonal
waves. As the 8-d wave is produced by the tensor part
of the t matrix, we can conclude that the tensor part of
the t matrix is strongly affected by the pole term.

The inHuence of the pole on the differential cross sec-
tion of proton elastic scattering from the C at energies
65, 72, and 83 MeV is shown in Fig. 2. It is evident that
the pole becomes less significant with increasing energy.
The data are described only qualitatively because the
medium corrections start to be relevant here, especially
at 65 MeV.

Figure 3 demonstrates the effect for the heavier nuclei
isO and 4oCa. The significance of the pole is smaller for
4oCa than for isO or i2C (Fig. 2). The results displayed
in Figs. 2 and 3 support the observation in Ref. [7] that
the off-shell effects become less significant with increasing
energy and/or increasing target mass.

A more complex situation occurs in proton scattering
from the spin and isospin one-half nucleus isC which is
sensitive to the tensor part of the NN t matrix. Whereas
the results for elastic differential cross section and ana-
lyzing power are practically the same as those for proton

C scattering, a stronger effect appears in the charge-
exchange cross section and analyzing power (Fig. 4).
These observables are sensitive to the isovector tensor
part of the NN t matrix where the influence of the pole
is more pronounced (Fig. 1). This sensitivity, however,
also vanishes for energies above 100 MeV.

We conclude that the presence of the pole term in Eq.
(7) is irrelevant in the kinematical region where the OFA
model is justified, i.e. , above 100 MeV of the beam en-
ergy. There are, therefore, good reasons for omitting the
bound state contribution to the NN off-energy-shell t
matrix. One can intuitively expect a similar result also
for the antiproton-nucleon t matrix where the absorption
can even suppress an inHuence of the poles produced by
the diffractive part of the interaction [14].
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