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Pion electroproduction at threshold
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By using the partially conserved axial-vector current hypothesis and the electromagnetic current con-
servation law, we calculate transverse and longitudinal multipoles for threshold pion electroproduction
on the nucleon. We include off-shell form factors for the axial-vector current, the electromagnetic
current, and the pion-nucleon vertex. We confirm that if the electromagnetic off-shell form factors are
assumed to be finite in the chiral limit of the vanishing pion mass, the low-energy theorems are
unaffected by them. However, we show that if one of these form factors has simple-pole singularity in
the chiral limit, it shows up in the threshold amplitudes at next-to-leading order predicted by the low-

energy theorems.

PACS number(s): 11.40.Ha, 13.40.—f, 13.60.Le

I. INTRODUCTION

It is believed that chiral symmetry of the massless
quantum chromodynamics (QCD) is spontaneously bro-
ken by the vacuum and that the pion emerges as a mass-
less Nambu-Goldstone boson. The small pion mass m is
attributed to an explicit chiral symmetry breaking by the
small quark mass term in the QCD Lagrangian that leads
to the partial conservation of the axial-vector current
(PCAC) [1]. The PCAC hypothesis has been examined in
various aspects. Low-energy theorems have been derived
using the PCAC relation and the chiral algebra of
currents [2—10]. Recent accurate measurements [11,12]
of pion photoproduction close to threshold are of com-
pelling interest in this respect and indeed elicit much dis-
cussion about the validity of the predictions of the low-
energy theorems.

These low-energy theorems are written in terms of an
expansion in powers of the pion to nucleon mass ratio,
p=m /m. For m. production, the low-energy theorems
predict terms up to order p (next-to-leading order for
the reaction yp —+pm and leading order for the reaction
yn ~nor ) The coeff.icients are given by global proper-
ties of the nucleon, namely, mass, charge, magnetic mo-
ments, and the pion-nucleon coupling constant. Recent-
ly, however, Bernard, Kaiser, and Meissner [13] have cal-
culated pion photoproduction amplitudes at threshold
within the framework of chiral perturbation theory and
found that the triangle diagram that contributes to the
half off-shell photon-nucleon vertex produces effects of
order p, namely, of the same order as predicted by the
low-energy theorems. They argue that one-loop diagrams
develop singularities in the limit of the vanishing pion
mass and yield a large contribution to the threshold am-
plitudes. They also calculated m electroproduction am-
plitudes [14] and found contributions of order
v2= —k /m, with k being the four-momentum of the
virtual photon, while Scherer and Koch [10] predicted
that model-dependent terms start from order pv2.

Since derivation of low-energy theorems relies only on
general principles, namely, PCAC, current algebra, gauge

invariance, Lorentz invariance, and crossing symmetry, it
is quite unlikely that these theorems are violated in any
event [15]. It is desired that the finding of Bernard et al.
[13,14] should be understood within the same framework
as the low-energy theorems are derived. Since the singu-
larities Bernard et al. [13,14] found are related to off-
shell form factors of the nucleon, it is necessary to reex-
amine their role in low-energy theorems. Although it is
believed that low-energy theorems are not affected by in-
clusion of off-shell form factors, this conclusion was de-
duced from the premises that these form factors do not
depend on the pion mass. Furthermore, as was pointed
out in the previous paper [16], off-shell form factors of
the axial-vector current were not considered for the cal-
culation of its four-divergence so that the Ward-
Takahashi identity [17] was not satisfied and therefore
off-shell effects of pion electroproduction were not treated
consistently in the literature. The purpose of this paper
is to rederive low-energy theorems paying particular at-
tention to the effects of off-shell form factors and to show
that model-dependent terms appear at order p and v2 for
neutral pion production and at order p and v2 for
charged production.

The present paper is organized as follows. In Sec. II
we define off-shell form factors for the axial-vector
current, the electromagnetic current, and the pion-
nucleon vertex function. Consequences of PCAC and
gauge invariance are examined for these form factors and
for the radiative pion decay vertex. In Sec. III we derive
the PCAC constraint condition on the electroproduction
amplitude. In Sec. IV we calculate electroproduction
multipoles at threshold. A brief summary is given in Sec.
V.

II. VERTEX FUNCTIONS

We assume that the isovector axial-vector current
j„"'(x)at space-time position x and the physical pion field
P' (x) satisfy the operator PCAC relation

(2.1)
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where f is the pion decay constant defined by the matrix
element between the vacuum and the one physical pion
state,

(0lj„"'(0)I '(q)&= o"f q„. (2.2)

The superscript is an isospin index. The nucleon matrix
elements of the current operator and the pion source
function are

(N(p')Ij„'(0) N(p)) =u(p )J„(p p)u(p),

(N (p')
~

J' (0) N(p) ) = u (p')I'(p', p )u(p),

(2.3)

(2.4)

where u (p) and u (p') are Dirac bispinors of the nucleon
in the initial and final states, respectively. The source
function is defined by

(
—8„+m )P'„(x)=J' (x) . (2.5)

The nucleon matrix element of the isovector current
operator has the factor —,

'~' while that of the pion source
has ~' so that there appears the factor —,

' repeatedly. We
use a convention in which the isospin dependence can be
factored as

J„"'(P"'P ) =r'J„"(P',P ),
r'(p', p ) = 'r(p', p ) .

(2.6)

(2.7)

Namely, —,
' j„"'(x)is defined to be the current operator and

correspondingly f is defined to be twice as large as the
standard definition. Therefore, the m

+—decay constant is

f /&2. The PCAC relation (2.1) in momentum space
becomes

+Lf (p p')„— , , r(p', p) ."(p —p') +m

(2.9)

The nonpole part j„(p',p ) must then satisfy

(p —p')p „"(p',p)= (iy—p'+m )ys ys—(iy p+m)
—if r(p', p) . (2.10)

In deriving low-energy theorems we want to investigate
the effect of off-shell current matrix elements but the
literature is not available concerning the off-shell form
factors of the axial-vector current. We examine the
structure of the axial-vector current from the PCAC
equation (2.10). Let us consider the process in which an
on-shell nucleon with four-momentum p interacts with
the axial-vector current carrying momentum q and makes
a transition to the state with momentum p —

q that is not
necessarily on the mass shell. The most general form of
the half off-shell matrix element is characterized by six
independent form factors. We take the form

(p p—')p„(p',p)= —(iy p'+m)y, y—,(iy p+m)

if—„m I (p',p),
(p —p')'+ m '„

(2.8)

where (2.5) is used. To be as transparent as possible, we
avoid the complication caused by the use of the dressed
propagators for nucleons and pions, and employ the free
propagators for them. In discussing low-energy phenom-
ena, it is advantageous to separate the pion-pole term
from the axial-vector current,

J„"(P'P») =J „'(P' P»)

j „"(p qp)u(p»)=l—L»"y ys F2qpl s+LF—3 ~p.q.ys

+ [Ly (p —
q )+m ](iF4 y„ys Fs q ys+iF6" —Lr„q ys)] u(p) (2.11)

The PCAC equation (2.10) leads to the two constraints
among form factors

FA+ 2F A —
1 f

2mFL" qF 2" +[(p —q) +m —]F4 =f gL .

(2.13)

(2.14)

The form factors F3 and F6 are unconstrained by the
PCAC relation. All form factors are functions of q as
well as the invariant mass squared of the off-shell nucleon
(p —

q ), but we restrict ourselves within the form factors

Similarly, the half off-shell pion-nucleon vertex function
has two independent form factors, and we write it as

I'(P q, P )u (P) =i
l g L

—+ [iy (P —
q )™]g2]ysu(p) .

(2.12)

that depend on q alone. (This is assumed only for sim-
plicity. The most general case is discussed in the previ-
ous paper [16].) This assumption leads to F3" =0 from
the symmetry under charge conjugation. Furthermore,
we must have F4" =0 for (2.14) to be valid at arbitrary
(p —q) . The Goldberger-Treiman relation [18]

2mF,"(0)=f„g,(0) (2.15)

1

f 2m
(2.16)

follows from (2.14) in the soft limit q =0. Eliminating F,"
from (2.13) and (2.14), one finds for the real pion with

q = —m,
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where p=m /m and a is defined by

2
a= (F "+2mF ) . (2.17)

Equation (2.16) will turn out to be of crucial importance
in deriving low-energy theorems.

Since F z and F 5 are known from F&, g &, and gz, the
half off-shell current operator becomes

j (p —q,p)=t F& 'y — y q y5+[i y'(p q)+—m ] —
2

+iF6 oz,q, y& if— , 1 (p q,p—) .
q q g

(2.18)

In exactly the same manner, when the nucleon with momentum p' is on shell, we get the current operator in the form

j„(p',p'+q)=iFi" y„— "y.q yz+ — " iF6"—o„q, y&[iy (p'+q)+m] —if "I (p', p'+q) .
g q

(2.19)

Note that the sign of the F6 term is reversed because of
the charge conjugation symmetry. When the nucleon
stays on the mass shell in the initial and final states, (2.18)
and (2.19) are reduced to the standard expression

(N(p')~j, (0)~N(p)) =u(p')j (p', p)u(p),

the Ward-Takahashi identity

(2.21)

J I. (p p)='Fi yp 2'Y'q y5+f rl 2 y5
qp

A=iF& T Ts F 29' 'Ys (2.20)

(p' p).i.(p' p—) =ieNY (p p)

where

e~= —,'e(1+r )

(2.22)

(2.23)
where the Dirac equations are used on both sides of the
current.

As for the off-shell structure of the electromagnetic
current there exists the literature [19-24,9]. The current
conservation 8 j (x)=0 implies, in momentum space,

is the nucleon charge operator and e is the proton charge.
We again use the free propagator for the nucleon. We
parametrize the half off-shell current operator using six
independent form factors as

j (p+k, p)u(p)= IiFiy —iF2cr &k&+F3k + [iy (p+k)+m ](iF4y iF&o &k&+—F6k )]u(p) . (2.24)

Each form factor has isoscalar and isovector components, and

The identity (2.22) imposes constraints

F)+2mF4+k F6=e~,
k F, —[(p+k) +m )F4=0 .

(2.25)

(2.26)

(2.27)

k kj,(p', p' k)=ie~, y
—k+iF, y — y kk' . k'

—i ,oikIiF 2+[i y(p' —k)+m ]F, I .

(2.30)

We again assume that all form factors are functions of k
alone. The charge conjugation symmetry then requires
F3=0. Therefore we must have F4=0 from (2.27). As a
result F6 is not independent any more but is completely
determined by F&,

(~'(q) j (0)l~'(q —k))=j,"(q, q
—k), (2.31)

with

The photon-pion interaction vertex function is also de-
rived in a similar way. In momentum space

eN F1F
k

(2.28) j "(q,q
—k ) = iee "j,(q, q

—k )—, (2.32)

Consequently, the half off-shell electromagnetic current
operator becomes

the Ward-Takahashi identity

k,j"(q, q
—k ) =q —(q —k ) (2.33)

k kj.(p+k, p)= e~i, y k+iF, y.— '
y k

k k

—i IF~+[iy (p+k)+m]F5Icr ski„, (2.29)

constrains the form of the current operator. Using the
electromagnetic form factor F of pions, which is as-
sumed to be a function of k, we find
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k k~j,(q, q
—k ) =(F —1) 6,&

— (2q —k )~

+(2q —k ) (2.34)

The PCAC relation implies [25]

1

q +m
(3.2)

To conclude this section we examine the
photon —pion —axial-vector vertex function. We are con-
cerned with the matrix element

and the current conservation law

k M„' = i—e e 'ij "i(p',p ) . (3.3)

(0~j„"'(0)~vri(q —k), y(k)) =S„'~ e (k), (2.35)
In Eq. (3.2), M' is the virtual-pion photoproduction
operator defined by

where e (k) is the polarization vector of the virtual pho-
ton with four-momentum k. The structure function S'~

has the trivial isospin dependence

(X(p') J' (0) X(p), y(k)) =u(p')M' u(p)e (k)

which satisfies the gauge-invariance requirement

(3.4)

S'~ = —ice 'jS
PV JMV

(2.36)

Since the axial-vector current and the electromagnetic
current are involved, the isospin independent function
S„must satisfy two Ward-Takahashi identities. In the
Appendix their derivation is given. From the PCAC,

q +m
k M' = iee—'J irig, ((q —k) )y5 .

(q —k) +m
(3.5)

In taking the low-energy limit we have to separate the
infrared divergent term. To this end we split M„ into
three pieces

q„S =if (q —k) if m—„j,(q, q
—k), (2 37)

1

q +m
M„' =+~ +G~ +R (3.6)

and from the electromagnetic current conservation,

(q —k) +m„
k S„=if (q —k)„—if q„V PV TT P 'iT P (2.38)

where 8„' is the isolated-pole terms, namely, the terms
that contain nucleon and pion poles, G„' is the term that
is required to make 8„', gauge invariant, and R „' is the
remainder term. We also split M' into three pieces

We can split S„ into known parts and the rest

S„= if 5„+—if q„j (q, q
—k )+S„1

q +m~

M' =8' +G' +R'

k,R„' =0, k R' =0.
From their definitions, we must have

(3.7)

(3.8)

(2.39)

where the first part comes from the minimal coupling to
(2.2) and the second term from the tree diagram with the
pion pole (the pion with momentum q

—k adsorbs a pho-
ton and propagates with momentum q before being an-
nihilated). From (2.37) we get

It is noted that 8„' and 8', and correspondingly G„' and
G' are not uniquely defined but the low-energy theorem
follows independently of how we define them as long as
8„' and 8' have the correct poles and G„' and G' make
them gauge invariant. Here we take as 8„' the general-
ized Born term,

q„S„=if I(2q —k), j(q, q
—k)], —

and from (2.38)

k S„=O.

(2.40)

(2.41)

B„' =j„'(p',p+k) . j (p+k, p)
1

iy p+k +.m

+j.(P',P' k) . , k
— j „"'(P' kP)—

iy p' —k +m

Consequently we find that S„has the form
+S'~ ig, ((q —k) )rjy,

(q —k) +m
(3.9)

k„kS„=—2if (F —1) 5
k

—if (k„q„—q k6„)S, (2.42)

The low-energy theorem follows from the PCAC rela-
tion and the current conservation law applied to the radi-
ative axial-vector vertex

(%(p') ij „"'(0)i&(p), y(k) ) = u (p')M„' u (p)e (k) . (3.1)

where (2.34) is used and S is the structure function that
cannot be determined by the conservation law or the
PCAC [25].

III. PCAC CONSTRAINT
ON ELKCTROPRODUCTION

in which all off-shell effects are included. All the neces-
sary vertex functions are defined in the preceding section.
One sees that the off-shell current matrix elements pro-
duce nonpole contributions to 8„'

By taking the four-divergence with the help of (2.22)
and (2.38),

k.B,'.=J„"'(p',p+k)e„e~j „"'(p' k—,p)—
+ice 'waif

q +m

Xig, ((q —k) )r~y5,

(q —k )„
(q —k) +m„

(3.10)

we confirm that 8„' is not gauge invariant by itself.
However, we can make B„' gauge invariant by adding to
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1
G& =Gp +lf qp 2 2 Gv

q +m
(3.1 1)

(2q —k )

, ir'ys[gi(q') —g i«q —k)')]
q

—(q —k)

The first term is obtained from j „"by using the minimal
substitution, and the second term describes the decay
process of the virtual pion produced by the gauge term

+ice "rjy ysg2(q ), (3.12)

which is generated from the pion-nucleon vertex function
[24]. The explicit form of G „' is [16]

zG„' =ice '~r~ [i[Fi"(q ) —Fi"((q —k) )]y&ys [F2 (q ) Fz ((q k) )]q&ysI
q

—q-
iee—1 5„g 2"((q —k) )ys+iee ' ~iF s (q )q„y ys

+ —,'e(& '+r')F6 (q )[o„~qi y ]ys —,'iee'"r'F,"(q')[o»q, , y, ]ys . (3.13)

The first term terms come from the momentum depen-
dence of the form factors F, and F 2, and the last three
terms from the momentum dependence of the vertex
operators. We can check that the sum of B„' and G„'

satisfies the gauge-invariance requirement

Fs=F s +f, , gz
q +m

(3.16)

are retained. Therefore the gauge term is obtained by
substituting F2 and Fs in place of F z" and F s" in (3.13).
The result is the sum of (3.11) and

k„(B„' +G„' )= iee '~j—„"J(p',p) . (3.14) iee 'Jif— —5„+q„(2q—k),P 2+ 2

A 1F2=F ~ +f„ i g, ,
q +m

(3.15)

As remarked above, the gauge term is not unique. Our
choice (3.13) is sufficient for our purpose because it
satisfies the condition (3.14).

The validity of the expression (3.11) can be examined in
the following way. The full axial-vector current j„' can
be made gauge invariant if we construct the gauge term
from the current operator in which the full pseudoscalar
form factors

X ig, ((q —k) )r'ys .
1

(q —k) +m
(3.17)

This additional term is contained in the last term of B„
[see Eq. (2.39)] and should be dropped.

The generalized Born approximation B„' corrected by
G„', however, does not satisfy the PCAC requirement
(3.2). To see this, we first calculate the divergence of B„'
using the Ward-Takahashi identities for the axial-vector
vertices, (2.8) and (2.37),

q„B„' = iee 'Jif (q —k—), irig, ((q —k) )ys —if m B', ~'ysj (p+k—,p) j„(p',p' —k)~'—ys,'(q —k)'+m'. q'+m'.

(3.18)

where the generalized Born approximation for the virtual-pion photoproduction, B, is constructed as

B' =I'(p', p+k) j,(p+k, p)+j,(p', p' —k) . , I '(p' —k,p)

+j 'J(q, q
—k) 2irjg, ((q —k) )ys .

(q —k) +m
(3.19)

The gauge term G' (3.12) makes B', gauge invariant, namely,

2 2

k (B'+G' )= iee 'J — ir~g, ((q —k) )ys,
q +m

(q —k) +m
(3.20)

where (2.22) and (2.38) have been used. On the other hand, q„G„' becomes
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q +m

ie—e ' r i [F"(q ) —F ((q —k) )] y— (2q —k )

2
P.k Ps+Ee& '~7. EP Ps,

q
—(q —k)

(3.21)

where we have used the relations (2.13) and (2.14) to eliminate the form factors F z" and F s", except for F z" in the first
term of (3.21). Summing up (3.18) and (3.21), and using (2.9), we find

1
q„(B„' +G„' )= ie—e 'Jj ~(p', p) if —m (B'„G', )

q +m

iee '—~~~i [F, (q ) F,"—((q —k) )] y, —
(2q —k)

q
—(q —k)

+i«'"~'iy. y s r'y d—.(p+ k p ) i.(p'—,p' k)r'y—
s (3.22)

The form factor I'6 drops out in this procedure since it appears in divergence-free forms both in B„' and G„' .
By subtracting (3.22) from q„M„' (3.2) we find the relation between R„' and R'„. The residual term R„'„still contains

the pion-pole term which should be written in terms of R ',
R„'„=R„',+if q„R'1 (3.23)"q'+m'

Consequently R „', and R ' must satisfy the PCAC relation

q„R „',= if R'+ie—e '~r~i[F,"(q ) F, ((q ——k) )] y— (2q —k )

q
—(q —k)

iee 'J—r~iy, ys+r'ysj (p+k, p)+j (p', p' —k)r'ys .

1R'= —iV

k
+ice '&r~i(F, 1) y ——

2 y k y, ie(7'F2+—5"F2 )o „i,ki, ys
k

We can solve this constraint equation in the following way,

iee '~r~i[F, (q ) —F, ((q —k) ) y, — y.k y,
(2q —k )

f q
—(q —k)

(3.24)

—ie(r'Fs+5' F» )[(p+p') ky —(p+p') y k]ys+ie "rjiFs (q ky„—q y k)ys +R ' . (3.25)

k R '=0. (3.27)

There is no further restriction on R '. The electromag-
netic form factors of the nucleon in (3.25) are functions of
k.

IV. THRESHOLD ELECTROPRODUCTION
AMPLITUDES

The residual amplitude R ' must obey the conditions

q„R„',= if R'— (3.26)

and

I

where

~~= —Xso ~k~

Ms=iys[P, (4mv~ —k )+(2q —k )mv],

c=ys(2mvsy y'kq

M =2y ( —mvy Py k) —2mM-

ME=i y( sm2vsk —k q, ),
M =y(ykk —ky)

(4.3)

We are now in the position to derive the multipoles for
the pion electroproduction. For this purpose we follow
the standard procedure and decompose M' according to
the isospin dependence

with P = ,'(p+p') and—
2m

' ~ Zm
(4 4)

M' =S"M'+'+ '[r' ~']M' '+r'-M"'-
V V V (4.1) We follow the definition of Dennery [26] instead of the

original one by Fubini, Nambu, and Wataghin [27] and
choose Mz so that the invariant amplitudes B and E are
free from kinematical singularities as vz —+0.

At threshold we only have the Eo+ and Lo+ ampli-
tudes,(4 2)

Each of the three amplitudes is further decomposed into
six invariants
M' —' '=e(A' —' 'M +B'—' 'M + . +F' ''M )—F
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e

4m(1+ @)
e

Lo+ = (V, + 7,),
(4.5)

k.ea=t — k .
ko

(4.7)

where V, and V5 are the coefficients of the amplitude

o'kk. a%=ia".aP, +i1 k2 5

with

(4.6)

The amplitude 7 is obtained by reducing the four-
component Dirac matrices to two-component ones in the
center-of-mass system. The center-of-mass amplitudes V,
and V5 can be calculated from the invariant amplitudes
as

1
1
=—m

1
m5 4

2p+p +V2 p V2
pA+mp 2(1+p) C+ my D —mv2F

2 I+p
)2 ]1/2

)1/2

[(2+p) —v2]'/ (2—p)(2p+p +v2) 2p+p +v2
(P —v2) —A —m B—mpD —m p E —m(2+@)F

)3/2 4(1+@) 2(1+@)

(4.8)

A(+ 0) 1 Fvs
4m

1 1

Vg V Vg+V

It is straightforward to decompose the amplitudes ob-
tained in the preceding section into these invariants. The
Born approximation supplemented by the gauge term
satisfies k, (B', +G' )=0 for the on-shell pion [see Eq.
(3.20)] so that it can be decomposed into invariants

b, =(q —k) =k —4m v~ —m2 . (4.10)

The nucleon pole contributions completely agree with the
results using the pseudoscalar pion-nucleon coupling
without off-shell effects. The off-shell effects produced by
g2 and F5 appear as nonpole contributions to (4.9). In
(4.9) all strong form factors are evaluated at q = —m

except g, (b, ), which is evaluated at

A( —)—

B(+,0)

1 14-' -,-- v, +-1

2m Q +m v —v

1

Vg+V

gF ' ——g2(F ' +2mF ' ) In the invariant amplitude E' ', F —1, and Fi —1 ap-
pear instead of F and F, because we included off-shell
effects in the photon-nucleon and photon-pion vertices.
However, these effects do not inAuence low-energy ampli-
tudes because E' ' will be multiplied by the quantity of
O(p, p v2) [see Eq. (4.8)] and we can safely make an ex-
pansion

B ( —)— g Fv
2m 6+m

1

Vg +V
g, (b, )=g, +(b, +m )XO(1)

to get the standard result

C(+0) 1 FVS
4m

1

Vg+V
1 g1(F F)— (4.11)

C( —) — 1 F&
24m vg v

V—g2F5

D(+,0)— FV, S
4m

1 1

Vg V Vg+V g FVS

E(+,0) g1 Fivs 1 1

4m 5 +m v v v +v

E (
—)— Fi 1

4m 6+m

D( )= gi Fv 1 1

4m vg v vg+v2

(4.9)

(F ' +2mF )
1

2 5

FA(g2) FA( 2
)

f. a'+ m'. f.
D(+,0) FV, S1

(4.12)

for the pion pole term. The pion poles in B and E in (4.9)
in conjunction with the nucleon poles arise from the
definition of the invariant amplitudes devoid of kinemati-
cal singularities and do not remain in the final expres-
sions.

The correction R ' induced by the PCAC constraint is
also decomposed into the invariant amplitudes

, [(F —1)gi(&') —(Fi —I)g)],
k 6 +m„

F'+' '=0 F' '= (F 1)g—1

F,"(b, ) —F,"(—m )

f 6+m
F, —1

f. k'

The residual amplitude R ' in Eq. (3.25) will be treated
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separately at the end of this section. We now add the
PCAC correction (4.12) to the Born approximation
corrected by the gauge term (4.9). Apart from the nu-
cleon and pion pole terms we get

A(+' '= —g F ' + —g — 2mF '1 1
2 2 f 2 2m 5

the soft-pion limit [2—5,8]

g (+,0) Fvs(k2)gi(0)
2'

gi(0) Fi"(k )F( ) = Fv—(k 2)
2m F,"(0)

(4.21)

C( —)—

D(+,0)

2 F) (b' ) F,"—
( —m )

f. a'+m'. f.
FV,S

V—
g2 Fs

(4.13)

F( —)— F)"(b, ) —F,"(—m )

f 5+m
F, —1

g'2

1 +O(p ) .2

2m
(4.14)

Furthermore, we assume that F
&

can be expanded as

F,"(—m )=Fi (0)+O(p ) .

At threshold we have

(4.15)

P +25 =I
1+p

so that

(4.16)

One notices that the off-shell pion-nucleon form factor g2
appears only in the combination 1/f g2. —

Let us make a systematic expansion of (4.13) in terms
of p. From the relation (2.16), we find

where the Goldberger-Treiman relation (2.15) has been
used in deriving F' '. Consequently, apart from the F5
terms, all the amplitudes are in complete agreement with
the conventional results. The off-shell form factors of the
axial-vector current, F3 and F4, and those of the elec-
tromagnetic current, F3 and F4 were dropped to be con-
sistent with the assumption that all form factors do not
depend on virtual nucleon masses. The form factors F 2,
F ~", and F6 are eliminated using the relations (2.14),
(2.13), and (2.28), respectively. The form factor F6 drops
out in taking the four-divergence of M„' . Finally the
off-shell form factor g2 disappears because of the relation
(4.14).

Since our amplitudes coincide with the usual results ex-
cept for F5, there is no need to repeat the derivation of
the remaining terms in detail. Nonetheless, we would
like to make a remark concerning the derivation of P~
as there is subtlety in p and v2 expansions. Firstly, in

', we can replace 2+p in the coefficient of F' ' by 2
since the ignored piece contributes the amplitude of
O()M, )Mv2) [note that F' ' is finite at k =0 as is seen
from (4.21)]. Secondly, we replace g, (0) by gi in (4.21)
using (4.20) again. Then we can prove that all terms con-
taining the electromagnetic form factor F, cancel out ex-
actly by the use of

and

5 =k +O()M, pv2) (4.17)
2@+p + v2 (2+)M) —v2

4(1+@) ' 4(1+p)
The term containing F2 becomes

(4.22)

F,"(6 ) =F, (k )+O(p, pv2) .

To leading order, we get

(4.18)
1 ~2

2mF2 +—v .
4m 2 —v2 4 2 —

v2
+O(p, pv2) (4.23)

g (+,0) FVS
2m

F,"(k )
—F,"(0) g,C( —)— + F

k 2m

up to a normalization factor. In the curly brackets of
', the term containing F [see Eq. (4.11)]and the term

containing F, (k ) [see Eq. (4.19) with g, (0) replaced by
g, ] are combined to

D(+,0) FVS
2m

(4.19)
1

6 +I„2 g, F„+gj F
F A (k 2)

Fi (0) k
(4.24)

where (4.16) is used to split the F term into two pieces.
By multiplying —,

' m ()(2
—v2), we obtain

F, (k )
—F, (0) g, F, 1—

F( —)—
f k2 2m

g, =g)(0)+O(p ), (4.20)

we can replace all gi by gi(0) in (4.19). We now recover

In calculating the threshold amplitudes, C( ' will be
multiplied by the factor of O()M, pv2) and D' ' ' by the
factor of O()M, )Mv2) [see Eq. (4.8)], so that they will not
survive in low-energy theorems if F~ is considered to be
O(p ). Moreover, if we assume the difference between g,
and g, (0) to be order p, ,

V() +v2) g, F,"(k )F
2m p2(2+@)—v 2m F) (0)

(4.25)

where we have dropped terms of p X (a function of v2).
Note that it is not necessary to assume that F j and g&
have identical q dependence, in contrast to Ref. [10].

We now turn to the evaluation of the F5 contribution
to the multipoles for threshold electroproduction. The
F5 terms in (4.13) bring about the amplitudes
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()) 1 [(2+p) —v2]

4 ( 1+ )3/2

Xm p 4(1+p)

+(P —v2)

1 [( +P)' —,]' '
4 (1+p)' '

1
X m'p(2p, +p'+v, )

+ ()) 1 [(2+p) —v2]'

4 (1+ )3/2

FV,S

F'
(4.26)

g(+,0) p (1+ vs)+ ) ~v, s ) Gv, s

+—,'p (5, +52 )
—

—,'v252' +O(p', pv2),

~(+,0) — P ) G VS 2 + ) 25VS+O( 3
)0+ 2+ 2 E

p vp
(4.30

Fi
~ v

v
V 2+ —,

' GM + (p+ ,' v2) 5—2+0 (p ~ pv2 ) ~F,"(0)
g( —)—

0+

~( )
PP 2( +v) v

p (2+p) —v ' 2 —v

+ (p+ —,
' v2)52+ O(p )pv2) .

Here z=2mF2(0) is the anomalous magnetic moment of
the nucleon and G~ and GE are the Sachs magnetic and
electric form factors:

X m (p —v2) —2 —g2—1

f ' 2m G~ =F, +2mF2, GE =F, + 4v22mF2 . (4.31)

FV,S
5

The parameters 6& and 62 characterize the form factor
F5,

-'=o. 6i = —40!m pF5, 52= m pF5 (4.32)

2m +m F+ (4.27)

In our notation, F2+ =2mF2 and F2 =2 (Fm+22mF&),
we find

1
Fs = F2 ~

m
(4.28)

In light of these facts, we have to derive the corrections
to the multipoles Eo+ and Lo+ by taking pF& to be
O(p ). We give the results in units,

One immediately notices that the off-shell form factor F5
produces corrections of order p F& and pv2F& for the (+)
and (0) amplitudes, and those of order p F3 and pv2F~
for the (

—
) amplitude. We confirm that the off'-shell

effects do not inAuence low-energy theorems as long as
we assume that F5 is independent of m

If we calculate off-shell form factors in explicit models,
however, they depend on the pion mass and we cannot
take them to be O(p ). In fact, Bernard, Kaiser, and
Meissner [13,14] calculated pion photo- and electropro-
duction amplitudes using chiral perturbation theory and
found that the triangle diagrams produces terms of
O(p ). Many years ago, using dispersion relations in
the nucleon mass and assuming the threshold dominance,
Nyman [22] predicted that

M(yn ~per ) =&2(M' ' —M' '),
M(yp p~0) =M'+'+M"'

M(yn~n~ )=M ' —M' '.
(4.33)

To conclude this section, we comment on the residual
amplitude R ' which satisfies

—m R() = if R'— (4.34)

at threshold, qo =m„. We expand R ' in terms of the in-
variants as in (4.2). The crossing symmetry requires that
the amplitudes 3 '+' ', B'+' ', O' ', D'+' ', E' ', and
F' ' are even functions of v, and 3 ' ', B ' ', C'+' ',
D' ', E'+' ', and F'+' ' are odd functions of v. At
threshold where v and v~ are small, we can make double
power-series expansions of even functions, e.g. ,

g (+,0) (+,0) + (+,0) + (+,0) 2+. . . (4 35)

Each of the expansion coe%cients is a function of m and
k . The first term aoo ' ' vanishes in the chiral limit as is
seen from (4.34). As a result,

where a is given by (2.17). In deriving the first term of
80(+) in (4.30), the Kroll-Ruderman term [28], we have
made use of the expansion (4.20) and the Goldberger-
Treiman relation (2.15). In Table I we display the physi-
cal channel amplitudes given by

M(yp

~nor+�

) =&2(M' '+M' '),

1 I
(2+p)' —v2]'"

0+ 2m 8~(1+p) (1+p)1/2 0+

eg, 1 [(2+p) —v ]'
2m 8m(1+p) (1+p))/2

Our results are

(4.29)

a +' =a'+' 'm +00 00 1T
(4.36)

With the aid of the relations (4.22), we can make an ex-
pansion in powers of p and v2,

A'+ 0'=m(ma '+ '+ma'+ ' ——'a'+ ')p'+ .m ma oo ma2o —ao

(4.37)
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We have retained only terms that contribute to the final
results. Similarly odd functions can be expanded as

and

'=a
&0

'v+ - =ma
&Q p+

C (+,0) (+,0)—mc, o p
F(+ 0) p(+ 0)—mg 10 p

(4.38)

(4.39)

+mc'+ "—m "+") 'mc io
' mi~&0 ' p

Zo'~' =m'ea'„'p',

L,'~) =m'ea'„) p() + —,'v, ) .

(4.40)

If expansion coefficients possess singularities in the chiral
limit, these terms can also contribute to low-energy am-
plitudes.

The leading-order contributions from R ' can be summa-
nzed as

E'+' '=m e(ma'+' '+ma'+' ' ——'a' ' '+me'+' ')0+ —m e ma 00 ma20' —,ao& mc&0'

Xp' —m'efI~+ o)pv, ,

L, '+' ' =m e'ma '+' '+ma'+' ' ——'a'+' '

V. SUMMARY

We have investigated the consequences of including
off-shell form factors in the derivation of the pion elec-
troproduction amplitudes at low energies. The PCAC re-
lation and gauge invariance are rigorously respected. We
have shown that as long as off-shell form factors are tak-
en to be parameters independent of the pion mass, we re-
cover the conventional results. There occurs a cancella-
tion among various off-shell effects and the low-energy
theorems remain unchanged. In reality, off-shell form
factors also contain the pion mass because loop diagrams
involve virtual-pion propagation. In the chiral limit
where the pion mass vanishes, the loop diagrams can de-
velop singularities so that the electroproduction ampli-
tudes get modified to a large extent. We have seen that if
we assume F~ to behave as p ', it gives contributions to
the threshold amplitudes at the order where the low-
energy theorems are considered to hold true. This does
not necessarily mean that the low-energy theorems are
violated. If one distinguishes the pion mass that enters
the Born approximation from the pion mass that is car-
ried by internal lines in loop diagrams, one can still
differentiate model-independent terms and others theoret-
ica11y [15]. However, it is not possible to distinguish the

TABLE I. Threshold pion electroproduction multipoles @0+ and Xo+ in units defined in Eq. (4.29).
Terms of O(p, pv2) are dropped for the charged pion production and terms of O(p', pv2) are dropped
for the neutral pion production. The quantities with superscripts p and n are defined by
GQ" =

z (GM+Gzr ), etc. All form factors are functions of k'.

Channel &o+

F, v2
&2 —GM ——p+ p62 —V252F~(0) 2 —v2 2

F1~(0) 2 —v2 2

p7T —p+ —p, '(1+ir~) —GQ +p'(5~+5$) —vz5(
2 2 V2

p K + GM p (~1+~2)+v2~2
2 V2

P(P+ v2) v2 1+2
2 F~ —GE ——p+ p+ —v2

p (2+@)—v2 2 —v2 2 2

P(P+ V2)v'2 — F Gg ——p ——p+ —vz 5z
p (2+p) —v2

p7T
—V+ —V' —Gk +V'5f

2 2 v2

G Tl p2$7l
V2

2 V2
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internal and external pion masses experimentally. In this
respect, it is dificult to check the validity of the low-
energy theorems by experiments.

APPENDIX

(OlT[y'.(x')y'. (x)]lo& =5'SF(x' —x) . (A2)

The vertex function S„' possesses the isospin dependence

S'~ (xyz)= iee 'J—S„(xyz) . (A3)

One of the Ward-Takahasi identities follows from the
electromagnetic current conservation t) j (z) =0, the
equal-time commutator

[p' (x),jo(z)]5(xo —zo)= iee '~p—j(x)5(x —z),
and the chiral SU(2) X SU(2) algebra

[j„"'(y),jo(z) ]5(yo —zo ) = ie ej„"—'(y)5(y —z) .

(A4)

By taking the derivative of (Al) with respect to the pho-
ton position z, we obtain

cl S„(xyz)= —i 5(z —y)G„(y —x)

In this appendix we derive the Ward-Takahashi identi-
ties for the radiative pion decay vertex function defined
by the vacuum expectation value of the time-ordered
product,

(OI T[P'.(x)j„"'(y)j.(z)]IO&

= f d x'S'J (x'yz)b~(x' —x), (Al)

where 5F is the dressed pion propagator

[j (z),jo '(y)]5(yo —zo)=ice 'Jj "i(y)5(y —z) .

The term coming from the equal-time commutator

[p' (x),jo '(y)]5(xo —zo )

(A12)

does not contribute to (All). In (All) j"is the photon-
pion interaction vertex defined by

we find

(q —q')„S„(q,q')=G (q') —G„(q)b~(q)i) F '(q') .

(A9)

For the physical pion, we can use the reduction formula
to rewrite the pion decay matrix element as

(Olj„'(0)lm'(q)&=5' lim (q +I )~F(q)G„(q)
q ~—m

(A 10)

From the definition of the pion decay constant (2.2) we
get G„=if q„and therefore Eq. (2.38) in the text.

Another Ward-Takahashi identity follows by taking
the derivative of (Al) with respect to the position of the
axial-vector current, y„,

a
gy

S (xyz) =i 5(z —y)G, (y —x)

+if m f d y'EF(y —y')j (xy'z),

(Al 1)

where we have used the PCAC relation (2.1) and the
chiral algebra,

+i f d x'G (y —x')b'F(x' —z)

Xb,~ '(z —x), (A6)

(0~ T[P~ (x)P'„(y)j (z) ] ~0 &

=i f d x'd y'bF(y —y')j, '~(x'y'z)bF(x' —x)

(A13)
where G„ is the nonradiative pion decay vertex

(0~ T[P'(x)j„"'(y)]~0&

=i 5'f d'x'G„(y —x')b F(x' —x ) . (A7)

with the isospin dependence

j '~(xyz)= iee "j—(xyz) .

Using the momentum representation,

(A14)

In momentum space,

S (xyz)= d q'd qe' ' '+' " 'S (q, q'),Pv (2 )8 P~ P 7

(xyz) — f d q d q
eiq. (y —z)+iq (z —x)'

(2qr )'
Xj (q, q'), (A15)

iI)F(x' —x ) = d q e"'" "'&F(q),

G (x' —x)= d qe'q' 'G (q),(2~)'

(A8) we obtain

q„S„(q,q') =G,(q') —if m AF'(q)j (q, q')

which leads to Eq. (2.37) in the text.

(A16)
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