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Correlation measurements in high-multiplicity events
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Requirements for correlation measurements in high-multiplicity events are discussed. Attention is

focused on detection of so-called hot spots, two-particle rapidity correlations, two-particle momentum
correlations (for quantum interferometry), and higher-order correlations. The signal-to-noise ratio
may become large in the high-multiplicity limit, allowing meaningful single-event measurements,
only if the correlations are due to collective behavior.
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I. INTRODUCTION

In the next ten years, ultrarelativistic heavy-ion col-
lisions are planned at Brookhaven's Relativistic Heavy
Ion Collider (RHIC) and CERN's Large Hadronic Col-
lider (LHC). In both cases, experimenters expect to see
multiplicities in excess of 1000 particles per unit rapid-
ity. As a result, there has been a lot of speculation about
single-event fluctuation measurements [1—3]. In this pa-
per, I assess requirements for various single-event mea-
surements, and calculate the number of events needed for
useful measurements in cases where single-event analyses
are not meaningful.

I begin with a discussion of searches for so-called
hot spots (regions of unusually high particle density)
in Sec. II. In Sec. III, I discuss measurements of two-
particle rapidity correlation functions, assuming that
high-multiplicity events are independent superpositions
of lower-multiplicity events. In Sec. IV, I discuss mea-
surements of two-particle momentum correlation func-
tions that are commonly constructed to measure collision
volumes using quantum interferometry. In Sec. V, I com-
pare results from two-particle correlation functions with
those from higher-order correlation functions. Finally, I
summarize the results in Sec. VI.

II. LOOKING FOR HOT SPOTS

One common suggestion is that it may be possible to
search for hot spots, or regions with unusually large num-
bers of pions. The basic motivation for these searches
is simple: any process that creates a lot of entropy in
a small rapidity bin is of interest. Thus, hot spots are
commonly thought of as possible signals for interesting
phenomena.

For definiteness, suppose that searches are made within
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where dN/dy = N/AY. The standard deviation is

o„=n2 —n = n(l —6'y/AY) = n, (2)

if the window is large (AY )) by).
The central limit theorem applies in the limit N —+ oo,

so particle number fIuctuations have a Gaussian distri-
bution. The probability that a given bin contains more
than n + bn particles is

( 1/2
'P(bn/n I ) —'( -bn /2n

q2~ h'n'

if 6n2 )) n To achie. ve success in a hot spot search, the
hot spots must be present significantly more often than
in a random distribution:

(4)

where f(bn) is the probability that a given bin contains
a hot spot with at least bn excess particles.

For definiteness, I assume that a useful result must
find hot spots at least ten times as often as expected. In
this case, hot spots that occur in 10'%%uo of the bins must
produce at least 2.4n / excess particles. For RHIC and
LHC events, particles are produced over about ten units
of rapidity, so hot spots that occur in more than 10% of
bins will be seen more often than once per event, and are
thus not very useful as triggers for interesting events. The
larger dN/dy is, the larger the hot spots must be before
they can be separated from the background fluctuations,
so it is likely that hot spot searches will be most profitable
in events of high energy but relatively low multiplicity.

For RHIC and LHC experiments, rapidity densities in
excess of dN/dy = 1000 are expected. A hot spot that
produces high-energy pions (p ) m in the hot spot rest

a rapidity window of size AY, using events with N parti-
cles in this window. If particles are randomly distributed
with a flat rapidity distribution, the mean number of par-
ticles in a bin of size by is

n = = (dN/dy) 6y,
Nby
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frame) isotropically has a width of at least one unit of
rapidity, so I take by = l. In this case, if hot spots occur
in 10% of the bins (about one hot spot per event), they
must produce 75 excess charged pions to be clearly useful
as a trigger. If they occur in 1% of the bins (about one
per 10 events), they must produce 100 excess pions.

One possible mechanism for visible hot spots is the
production of bubbles of disordered chiral condensate [4].
These bubbles were proposed as an explanation for the
so-called Centauro events observed in cosmic ray studies,
in which many charged pions were produced with very
few neutral particles, in contrast to typical nuclear and
high-energy processes that produce equal numbers of sr+,

, and vr mesons. A chirally disordered bubble that
produces N+ charged pions, with no vr mesons, yields
N+/3 excess charged pions within one unit of rapidity of
the bubble. If these bubbles are produced in less than
10% of the bins, they will be clearly visible if N+ ) 225,
but this is unlikely as the expected value is N+ = 20
[4]. Thus, hot spot searches at RHIC and LHC probably
will not yield evidence for bubbles of disordered chiral
condensate.

Quark-gluon plasma (QGP) droplets are typically too
small to be hot spot candidates in high-multiplicity
events. A typical mean radius for a QGP droplet is 1
fm, at which size the droplet should produce about 18
charged pions. There is no proposed mechanism that
would produce hot spots large enough to be clearly ob-
servable at RHIC or I HC; however, if they are seen, the
lack of theoretical prediction will make them even more
interesting than if they were expected.

III. TWO-PARTICLE RAPIDITY
CORRELATIONS

In this section, I discuss measurements of two rapidity
correlation functions: the standard two-particle correla-
tion function, R2, and the simplest split-bin correlation
function, Sz. The standard two-particle rapidity correla-
tion function is [5, 6]

R2(y; Y) —
( )

where AY is some large rapidity separation that is used
as a reference. I assume at first that p is flat, and discuss
the effect of corrections for nonHat distributions after-
wards.

Suppose that I take some arbitrary model of particle
production and analyze a single event. Consider events
with N particles in a rapidity window of width AY,
where the rapidity distribution for any given particle is

p(y) = 1/AY. Let there be N, correlated pairs, where
typically N, (( N(N —1), and the rapidity distribution
for correlated pairs is q(yq —y2)/AY, where q is some
arbitrary function. For simplicity, I consider only events
with exactly N particles in the rapidity window; general-
ization to events with differing multiplicities is straight-
forward [7].

I do not assume that all correlations are pairwise, but I
neglect higher-order correlations for the moment. For ex-

ample, it is possible that the pairwise correlations result
from interactions of large numbers of particles. Even in
this case, however, correlation functions are dominated
by pairwise correlations unless the interactions involve
almost all of the particles. I discuss this in more detail
in Sec. V.

Finally, I assume that a superposition of a indepen-
dent events with n particles each is equivalent to a single
event with an particles. This is equivalent to assum-
ing independent nucleon collisions, or independent par-
ton collisions. In this case I must have N, = kN, where
k is some unknown proportionality constant. (For exam-
ple, if I combine two events I double both N and N„as
pairs of particles from different events are clearly uncor-
related. )

I can immediately write down the two-particle density,

(y~ yz) =(q) [N(N —1) —N, ] + N, AY q(yg —y2)

(6)

Using Eq. (6), I obtain the two-particle correlation func-
tion,

R2(y; AY) = 1+ [q(y) —q(AY)].dN dy
(7)

Here (and for the remainder of this paper) I drop cor-
rections of order 1/N and 1/AY unless otherwise speci-
fied, as I am primarily interested in the analysis of high-
multiplicity, high-energy events. If the mean separation
for a correlated pair is y*, then typically q(0) = 1/y',
while q(AY) —& 0 for large AY, so the maximum value
of B2 is roughly

pmax y + k

(dN/dy) y*
' (8)

Here n, (z) is the number of particles in the ith event with
rapidities between z —b' y/2 and z+ by/2 (by is thus the
experimental bin size), and N is the number of events
used in the measurement.

Assuming that by & y, so that the bins do not overlap,
and that there are no correlations,

(n'(o) n'(y)) = N(N —1) by

independent of y, so clearly (Rq) = 1. The standard
deviation is

I obtain a lower limit for the error in a measurement
of R2 by calculating the expected fluctuations in the ab-
sence of correlations. Consider an experimental measure-
ment:

&ev

) n, (0) n, (y)

Rg(y; AY) =

) n, (0) n, (AY)
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&ev

) n, (0) n, (y)
i=1
Nev

) n, (0) n, (y)
i=1

) n,'(0) n,'(z Y)
i=1

- 2 Nev

) n, (0) n, (~Y)

2

is produced with n, associated (correlated) particles, so
there are n, correlated pairs per particle. ] Finally, for
a passable measurement by ( y*, so the best possible
signal-to-noise ratio is

1/2n. (
' ((~&/dv) v')

4Sv
N, %by

1+0 by l
(13)

Thus, the error in the measurement is

eR = 2/QN, „(dN/dy) by, (14)

where dN/dy = N/AY is the rapidity density.
It is possible, if the fIuctuations in the system are large,

that the actual error is larger than given by (14). If the
measured standard deviation is smaller, however, then
the value of Eq. (14) is probably better to use, as this
represents the error in measuring uncorrelated events. If
the measured Huctuations are anomalously small, then
the system is probably strongly correlated, so if B2 —1 is
not significantly diferent from zero it is probably best to
look for another correlation function that reHects these
strong correlations.

Combining Eqs. (8) and (14), I obtain the signal-to-
noise ratio,

fN, b' y('j")"=2y [ dN/dy
(15)

If all particles are produced in clusters containing n, )) 1
particles, and all particles in a given cluster are pairwise
correlated, then k = n, . [This is trivial "very particle

In the absence of correlations, the standard deviation is

(—8N + 12)by2 + 4(N —2) AYby + 26Y
N, N(N —l)byz

(12)

For a good measurement, the experimental bin size
must be much smaller than the total rapidity window
used, so by (( AY. As the purpose of this paper is to
consider measurements in high-multiplicity events, I take
the limit N ~ oo, and obtain

I use Eq. (16) to estimate how many events I need in
order to measure A2 well, as a function of the cluster
size. For most clusters, y* ( 1.3, so to measure R2 (at
its peak) with better than 4o accuracy I need

i/2n, N,
2 1.3 dN/dy )

or

) 83 (dN/dy)/nz

Here I use y* = 1.3; this is obtained for the most energetic
clusters, and gives the most pessimistic estimates of s/n
The cluster size seen in nuclear collisions [8, 9] at 200
GeV is approximately ten charged particles [10]. If this
persists up to RHIC and LHC collision energies, where
the charged particle multiplicity dN, h/dy = 1000, then
approximately 830 events will be needed to obtain a good
measurement of the peak value of B2.

This is, of course, a naive theorist's estimate, leav-
ing out any possible experimental difficulties, and ap-
plies only to a measurement of the amplitude of B2. If
I want to measure the shape of B2 reasonably well, I
should really require that b'y ( y*/10, in which case I
find that I need 8300 events. However, Eq. (16) does il-
luminate the difficulty of measuring correlation functions
in high-multiplicity events: If cluster (or source) sizes are
independent of dN/dy, then sjn decreases with increas-
ing multiplicity, and accurate measurement becomes in-
creasingly difficult. Also, Eq. (16) justifies a posteriori
the neglect of correlations when calculating the measure-
ment error, as for one event the correlations (the signal)
are much smaller than the statistical fluctuations (the
noise

One could argue that the measurement I have outlined
for B2 does not eFiciently use the available statistics.
As a response, I construct split-bin correlation functions
(SHCFs) [ll] in order to use the available statistics with
maximal efficiency. The simplest second-order SBCF is

S2(by; AY) =

AY/by

ZY ) (j—1/2) by

dy1
j—1)by

AY/2

dyl

dy, p~'&(y„y, )
j—1/2) by

&y2 p"'(yi, yz)
Y/2

Here AY/by must be an integer; taking by = EY/2' for
i = 0, 1, 2, . . . uses all of the two-particle phase space
without reusing any pairs of particles.

Under the assumptions that I used to calculate B2,

S2(by; AY) = 1+ [g(by) —g(DY)],
d,Ãjdy

where

(2o)
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(z) =
z/2

dz z q(z) + dz (z —z) q(z)

For by ( y*, if q(z) is linear in z,

g(by) = q(by/2)

while for quadratic q(z),

g(by) = q(by/v'24/7)

(21)

(22)

(23)

Equation (23) is very close to Eq. (22), so these relations
are insensitive to the shape of q and are thus robust. For
LY » 2y*,

g(AY) = ~ 0,
4y*

(24)

so for LY && 2y* and by & y*,

S2(&y; &Y) = R~(by/2), (25)

S2 '"(AY) = 1+ 1—4y* k

AY~ (dN/dy) y*
'

I calculate the error in the same manner as before,
assuming that there are no correlations:

independent of AY. The maximum value of S2(AY) is
then

factors of 2. The previously discussed measurement of R2
gave points approximately 0.1 apart (spacing was y*/10).
Duplication of this measurement using S2 would involve
seven independent measurements of S2, requiring approx-
imately 800 events, as opposed to the 8300 required for
the B2 measurement. Thus, if the same number of events
are used in each case, a measurement of S2 has a bit less
than one-third of the statistical noise of the correspond-
ing measurement of A2.

If the single-particle distribution is not flat, the cor-
relation functions, R2 and S2, should be modified. The
most useful two-particle correlation function is

R (, ~Y) =""('")'(
p~2l(0, AY) p(y)

p"'(0 y) (N)'
p(o) p(y) (N(N —1))

(30)

(31)

These rapidity correlation functions are unity whenever
particles are distributed randomly in rapidity accord-
ing to the single-particle distribution, independent of the
multiplicity distribution. I outline the revised calcula-
tions for R2 below.

Suppose that the distribution of cluster centers is
or[(yi + y2)/2], instead of simply 1/AY as assumed so
far. If all particles come from clusters, then the shape of
the single-particle distribution is not flat. The probabil-
ity that a particle is found between y and y+ dy is then
p(y)dy, where

os= 1+0
l

4 (by&
(27)

„(„) p(y)
dy, 7r(y, ) q(2y, —2y) = vr(y), (32)

Thus, the error in the measurement is

e, = 2/gN, .(dN/dy) aY,

and the signal-to-noise ratio is

(28) if x(y) varies slowly compared to q [q(2y, —2y) occurs
because the second particle of a pair has rapidity y =
2y, —y]. I then obtain

(29)

for AY » 2y*. Setting k = 10, y* = 1.3, AY = 10, and
dN/dy = 1000 as previously, I need approximately 110
events to measure S2 to 4o. accuracy, as compared with
830 events to determine the peak value of R2.

The reader should note that this is an estimate of the
minimum requirements for a measurement of Sq. Apply-
ing Eq. (29) to a sample of 92 central 0+Em events at
200 GeV, with y' = l.3, dN/dy = 40, and AY = 4, I
obtain (s/n)s = 12. If I use Eq. (26) to estimate the cor-
rections for the finite value of AY, I obtain (s/n)s —7.
This is in reasonable agreement with the observed value

(sin)s = 2 —3 [12]. Most of the difFerence comes from
the crude approximation used for Rz ", as an exact cal-
culation [13] shows that Eq. (8) overestimates the signal
by a factor of 2. Thus, the estimate of s/n is within a
factor of 3, while the number of events needed for a good
measurement is a factor of about 10 more than estimated.

The measurement of S2 discussed above would give the
shape of B~ with points that are approximately 0.7 apart
on a logarithmic scale, as I keep changing the bin size by

p (yi y2) = [N(N —1) —Nc]p(yi)p(y2)

+Nc7r
I

(yi+ y~&

)I q(yi —y2),

and consequently

n, q(y)
2(y ) =

(33)

(34)

so

e„/p = 1/ N, „(dN/dy)„by,

so the error in B2 is naively

eR = g6/N, (dN/dy)b'y, (36)

assuming that dN/dy varies slowly
[dNI"ylo][dN/dyl ] = [dNldyl y2]

The only difference from Rz is that dN/dy is now taken
at rapidity y/2. The error will change slightly, as the
error in determining the correction factor should now be
added to the previous error. The error in determining

p(y) is
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assuming that the distribution is approximately Hat and
that the errors are uncorrelated. This will lower the pre-
vious values of (s/n)R, and raise the numbers of events
required for a good measurement by about 50%.

The most useful version of S2 has only a simple addi-

tive correction [12]:

S2(hy; AY) = S2(hy; AY) —Z2(6y; AY),

where

Z2(6y; AY) =
) . dyr p(yr)

j—l)by

b Y/2

-1/2) by
dy2 p(y2)

dyr p(yr)
Y/2

dy2 p(y2)

to
For the case where the particles are centered in the window, jo dy p(y) =

f&&&2 dy p(y), the correction simplifies
A Y/2

(j —1/2) by

Z2(6y; AY) = )
(i r)sw—

dyr 6f (y r )
jby

j—1/2) by
dy2 h f(y2)'

Here 6f = pAY —1 is the fractional difference from the
mean value. As 6y —+ 0, Z2 ~ 6f2 from below, so if the
furthest bins are within fraction f of the mean density
then Z2 ( f The err. or in the correction factor, Z2, is
approximately the same size as the error in S2, so the
experimental errors will be somewhat larger than for the
uncorrected case, just as for R2.

IV. QUANTUM INTERFEROMETRY

Experimenters are also very interested in using
Hanbury —Brown-Twiss interferometry to determine the

geometry of the collision region in high-multiplicity
events [14, 15], This technique uses species-dependent
momentum correlation functions, for which particle iden-
tification is required. I briefly discuss statistical aspects
of the two most common methods for identical particle
interferometry, neglecting any difficulties due to errors in
the identification of particles or other technical problems.

Both techniques usually use pions that are identified in
a spectrometer covering A4 rad of azimuthal angle and
LY units of pseudorapidity. For pions, pseudorapidity
and rapidity are almost identical, so I do not differentiate
between them in this paper. The correlation function
used is

f dpld$2 f, dyrdy~ f dpT, 1dpT, 2p;d 6(q' + (pr —p2) )
AY (2)f, d4rd4z j, dyrdy2 jdpT, ldpT2p c 6(q'+ (pr —p2)')

(40)

where 6 is the Dirac 6 function. Here p, dl is the distribu-

tion for two identical particles, and p„, is an uncorrelated
two-particle distribution; the two methods differ only in

the prescriptions used to construct p« . I use standard(2)

high-energy units with h = c = 1.
In the first method, referred to as event mixing, an

uncorrelated distribution is produced by combining par-
ticles (of the same species and charge as those used in

p,.d ) from different events. This is usually done by con-
structing simulated events using particles from measured
events, while ensuring that no two particles come from
the same events. This process is very computationally
intensive for high-multiplicity events, as it is necessary
to keep track of the event from which each particle is
taken and check all selections to ensure that they do not

come from an event that was used earlier.
Considerable computational difficulty is removed by

constructing p„c by convoluting the single-particle dis-
tribution obtained by averaging over all events. Using a
sample of N, events, each with N particles in the spec-
trometer, this second procedure yields

(2) (2)
p'"(pr p2) = ~ p(pr) p(p~) = p.')+

ev

(41)

for all pr P pq, where p„, is the value obtained by(2) ~

taking all convolutions with no two particles from the
same event. For N, v )) 1, the difference between the
proposed procedure and the usual one is small. This
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change in procedure is even more important for mea-
suring higher-order correlations, as the construction of
p„, by the usual event mixing quickly becomes computa-
tionally prohibitive, while the simple convolution of p is
almost always feasible.

In the second method, referred to as charge mixing,
p~,~ is constructed using particles that are identical ex-
cept for charge. For example,

)o.')(Pi, P2) = »+(Pi)» (»2) (42)

where p+ is the sr+ density, is often used for pion interfer-
ometry. As charge mixing does not require information
from more than one event, it is the preferred normaliza-
tion technique for analysis of single events.

Consider the analysis of a single event. The mean num-
ber of sr+ mesons seen in a spectrometer covering AY
units of rapidity and L4 rad of azimuthal angle is

(dN/dy) AY 64
4.

if particles are spread randomly in y and P with a uniform
distribution. I imagine an ideal spectrometer that detects
all pions passing through it, independent of transverse
momentum, p~. For simplicity, I assume a thermal-type
p~ distribution:

e 2rr—i/, in)
(»T)' (44)

where P(pT) d»)T is the probability that a given pion has
transverse momentum between p~ and p~ + dpi', and
(»)T) is the mean»iT.

For a spectrometer large enough that edge effects are
unimportant (AY, AC )) q/(pT)), the standard devia-
tion of c2(q) is

167(. (I2)
(dN/dy) EYAC' (I)2 q (dN/dy) qdq (I) )

(45)

in the high-multiplicity limit, where

(I") = dPT, 1 +(»/T, 1 )

dPT, 2 +(»)T,2) dpi'(q +2m +2pT, ipT, 2«sp —2 (»)T, +m )(»)T2+m )«shy)

(46)
I

Here (f o
dq2)" (I")/(GYNIC)" is the probability that n given particles each have momenta within q' of a particle

at y = p = 0, with transverse momentum distribution 'P(»/T i). The primary interest is in small q, and m (( (»)T),
so I evaluate (I") for q = m = 0, obtaining

and thus

Il'(1/4) j' W
2 m (»)T)

[I'(I/4)l'
m2 (PT)2

16~ 4 ~~ m (pT)
(dN/dy) EYE&& m (I'(1/4)]~ (dN/dy) qdq)

(47)

(48)

(49)

The first term of Eq. (49) dominates as long as

3~~ m (»)T)

[I'(1/4)]2 (dN/dy)
' (50)

where I have taken bq = q for the smallest bin. Using
dN/dy = 1000 and (»)T) = 500 MeV, I find that the
first term dominates as long as q &) 30 MeV2, which is
true for all practical measurements. Thus, the expected
measurement error is

signal is approximately unity for q = 0, a 4o. determina-
tion is possible with a single event for any spectrometer
with GYNIC' ) 256 (dN/dy)

Quantum interference also produces two-particle ra-
pidity correlations. These correlations are due to collec-
tive effects, so they have a different multiplicity depen-
dence than the two-particle correlations discussed in the
previous section. The momentum scale for quantum in-
terference q* = 1/r, where r is the size of the system, so
the rapidity scale is

4

Q(dN/dy) 6,Y AC

independent of the momentum or the bin size. As the

q* 0 4fm
'g (52)
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q' (I) (dN/dy)
4'

0.5 (dN/dy) fm
r2

while the number of correlated pairs per particle is

(53)

very dificult technically, requiring rapidity resolution to
y* —0.06.

For simplicity, I assume that pairs are correlated if the
momentum difference is less than q*, and uncorrelated
otherwise. Using Eqs. (20) and (24), I obtain

0.8 fmS '(6'y) = 1 + r3 by2
(54)

for AY )) 6y &) 1 fm/r, while Eq. (26) gives the maxi-
mum value,

be, max 1.25 fm

r (55)

The two-particle correlation due to clusters is visible
above S2b' as long as dN/dy ( 1.25 n, y' rs/fm . Single-
event measurements of S2' are in principle possible if
(dN/dy) AY & 40r /fm Rece. nt data [16] indicate that
r = 3 —4 fm for central Si collisions at 14.6 GeV/nucleon
(approximately the Si radius); using r = 7 fm for U+U
collisions at RHIC and LHC, a single-event measurement
of S2 may be possible. However, such a measurement is

V. HIGHER-ORDER CORRELATION
FUNCTIONS

It is also possible that higher-order correlation func-
tions might give better results (or more interesting re-
sults) than two-particle correlation functions. Higher-
order correlation functions can in principle be used to
determine three-body and higher-order interactions, and
many experimenters have tried to use them for this
purpose, although without much success [17, 18]. Al-
ternatively, measuring higher-order correlation functions
might provide a more accurate determination of the two-
particle correlation function than can be obtained from
a direct measurement.

To test these hypotheses, I construct scaled factorial
moments (SFMs) [19], that also use the data more effi-
ciently (although they reuse pairs of particles). For ped-
agogical purposes, I consider only the so-called exclusive
SFMs,

1 b.Y/6V

F(6y; AY) =
i )( b'

y

i —&)~v
dye dy*C

* (yi, , y')(i)

N . (N i+1)— (56)

i(i —1) k

2 (dN/dy) y"

+ i(i —1)(i —2) kg

6 [(dN/dy) y*]2 ' (57)

where kq
——Nq/N. For cluster decay, kq = n, for n, )) 1,

so

Just as for S2, AY/6y must be an integer; however, any
two values of by use some common phase space, so it
is impossible to construct SFMs without overusing the
available phase space.

To examine the feasibility of studying higher-order cor-
relations, I extend my previous approximations to include
three-body correlations, assuming Nt, correlated triplets
with the boost-invariant distribution qq(yq —yq, yq-
ys)/AY. For AY » y', the maximum value of F, is

F,(6y) = 1+ i(i —1)
dN/dy

[h(b' y) —h(AY)],

Given a distribution of values, corrections of order unity
are likely; however, it is still probable that the difBculty
of extracting the three-particle correlation increases very
fast as the two-particle correlation function decreases.
This is, in my opinion, the most likely reason for the fail-
ure of experimenters to extract significant three-particle
correlations [17, 18] from their data, as virtually all two-
particle correlations are approximately 10'%% or smaller.

The second hypothesis, that higher-order correlation
functions might provide a more accurate determination
of the two-particle correlations than direct measurement,
seems to be true. Under the assumptions that I use to
calculate R2,

i(i —1)(i —2)
6

k|, 2(i —2)

- [(dN/dy)y*]'

(58)
where

is the three-particle contribution to F, , while F, —1 is
the two-particle contribution.

The observed three-particle correlation decreases with
increasing multiplicity as (dN/dy) ~, even faster than
the two-particle correlation. Equation (58) is apparently
very general, as it holds for any values of n, and y*.

2
h(z) =— dx (z —x) q(x) = q(z/3). (60)

I calculate the error in the same manner as before, as-
suming that there are no correlations:
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~F, = I+0[iz (by 5
(61)

The statistical error in F, is proportional to i, while the
signal is proportional to i(i —1), so s/n is proportional to
i —1 and thus improves with increasing i. However, the
above arguments are valid only when (dN/dy) by )) i, in
which case most bins contain i particles, and even then
apply only to statistical noise. In most cases, there is also

noise from undesired correlations produced by the detec-
tor, and this systematic noise is proportional to i(i —1)/2.
It is thus possible that s/n is approximately independent
of i.

It appears that measuring higher-order correlation
functions is the most accurate way to determine two-
particle correlations. Because SFMs reuse data, the
cleanest approach is probably to use higher-order SBCFs

S,(by; AY) =

b Y/by
Yi—1 )

~ e I

n=l j—n/i i by

(62)

n=l —1)AY/i

Maximal use of the data without reuse is simple for Sq,
' but not easily achieved for high-order SBCFs. As a re-

sult, it may be preferable to use some different general-
ization of Sz for maximal efficiency. Higher-order correla-
tion functions might also give better results for quantum
interference measurements than the commonly used two-
particle correlation functions.

VI. CONCLUSIONS

I have discussed four types of correlation measure-
ments: hot spot searches, two-particle rapidity corre-
lations, two-particle momentum correlations (for quan-
tum interferometry), and higher-order correlation func-
tions. Hot spot searches are most likely to be prof-
itable in events of high energy but relatively low mul-

tiplicity. Two-particle rapidity correlations are most eas-

ily measured in events of relatively low multiplicity, if
high-multiplicity events are just superpositions of lower-

multiplicity events. A good measurement of S2 at RHIC
or LHC will require at least 800 events.

Single-event measurement of two-particle momentum
correlations due to quantum interference is possible

in high-multiplicity events with spectrometer coverage
GYNIC ) 256(dN/dy) ~, which should be easily at-
tainable at RHIC and LHC. Rapidity correlations due
to quantum interference are in principle measurable in
single events at RHIC and LHC, but such measurements
would be very diKcult technically. Measuring higher-
order correlation functions in high-multiplicity events
gives little information about three-body and higher-
order correlations. However, measuring higher-order cor-
relation functions can give a more accurate determination
of two-particle correlations than direct measurement of
two-particle correlation functions.
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