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The cross section for the electromagnetic production of different particles in heavy-ion collision is
derived within the external field approach. Introducing polarized photon-fusion cross sections, it is
possible to generalize the equivalent photon method to describe the impact-parameter dependence
of the particle production. The impact-parameter dependent production of scalar and pseudoscalar
(spin 0) bosons, charged (spin 0) boson pairs, and fermion pairs is discussed.
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I. INTRGDUCTION

Ultrarelativistic heavy-ion collisions provide the oppor-
tunity to investigate particle production via the strong
electromagnetic fields of heavy ions. A rough estimate of
the collision time t«i~ = R/p, where R denotes the nu-
clear radius and p = (1 —v /c ) ~2 is the Lorentz con-
traction factor, leads to a maximum frequency ~
1/t, ii = p/R contained in the electromagnetic field.
For the proposed LHC (Large Hadron Collider) with
Ei,„=3.5 TeV/nucleon (p 3500) and SSC (Supercon-
ducting Super Collider) with 8 TeV/nucleon (p 8000)
in a Pb+Pb collision this leads to a ~ = 100 GeV
(LHC) and w „=250 GeV (SSC). This mass regime
exceeds the one which can be reached at existing e+e
colliders and is compatible with the one at pp colliders.
As for an e+e collider the electromagnetic production
mechanism at a heavy-ion collider would be relatively
clean, being in contrast to the situation at pp collid-
ers, where the hadronic background is very large. An-
other advantage of heavy-ion collisions results from the
Z4 enhancement in the coherent production cross section
over e+e collisions, although the nuclear electrornag-
netic form factor suppresses this enhancement factor to
some extent. On the other hand, the expected luminosi-
ties for a heavy-ion collider are considerably smaller than
for an e+e or pp collider.

For the theoretical description of the electromagnetic
particle production in heavy-ion collisions the equivalent
photon method [1—3] has been widely used because of
its simplicity [4—17]. Within this method one replaces
the electromagnetic fields of the moving heavy ion by an
equivalent photon field, so that the production cross sec-
tion in a heavy-ion collision can be approximated by the
elementary two-photon fusion cross section folded with
the equivalent photon distributions of both heavy ions.
We are going to derive the equivalent photon method
from first principles, i.e. , directly from quantum electro-
dynamics (@ED).This is one major subject of this paper.
A subsequent publication [18] then is devoted to specific
examples, which have not been considered up to now,

such as the electromagnetic production and detectability
of the Higgs boson of the minimal supersymmetric ex-
tension of the standard model, several mesons, glueballs,
and supersymmetric particles.

Our paper is organized as follows. Using the external
classical field approximation and applying the approxi-
mation, that the transverse momenta of the virtual pho-
tons are suppressed by the Lorentz factor p with respect
to their longitudinal momenta, we are able to derive the
equivalent photon method from @ED directly. As a by-
product of this derivation we also obtain an expression
for the impact-parameter dependent equivalent photon
production cross section. This expression is convenient
to use to exclude the central collision region in the pro-
duction cross section, which allows one to circumvent the
large hadronic background in central collisions. It splits
up into two contributions: For the scalar part the po-
larization vectors of the equivalent photons have to be
parallel, whereas the polarization vectors have to be per-
pendicular for the pseudoscalar part. We also demon-
strate that the scalar and pseudoscalar contributions, re-
spectively, can be translated to the fact that the elec-
tromagnetic fields of the two colliding heavy ions have
to be parallel or perpendicular, respectively. This is the
subject of Sec. II. In Sec. III we discuss some immediate
consequences and generalities for the impact-parameter
dependent electromagnetic production of a scalar and
pseudoscalar (spin 0) boson, a charged (spin 0) boson
pair, and a fermion pair (spin 1/2). Conclusions will be
presented in Sec. IV.

II. IMPACT-PARAMETER DEPENDENT
EQUIVALENT PHOTON METHOD

A. The equivalent photon method

The electromagnetic field of a charged nucleus mov-
ing at high velocities becomes more and more transverse
with respect to the direction of propagation. As a conse-
quence, an observer in the laboratory frame cannot dis-
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The equivalent photon distribution can be derived explic-
itly by equating the energy fiux (Poynting vector) of the
transverse electromagnetic field of a nucleus through a
transverse plane and the energy of the equivalent photon
bunch; this yields [4]

n(~) = d2k~ 1'F(k~~+~2/p~))
(2&)' & ki+~'/~'

where o. is the fine structure constant, Z is the nuclear
charge number, p = (1 —v2/c~) i~2 is the Lorentz con-
traction factor, and F is the nuclear charge form factor.

With the equivalent photon cross section (1) it is rel-
atively easy to estimate the total production cross sec-
tion for the electromagnetic creation of particles. This
has been accomplished extensively in the past; for corre-
sponding results we refer to the literature [4—17]. Instead
we prefer to point out that the equivalent photon cross
section (1) does not provide any information about the
location of the particle production process. Tentatively
one would expect that light particles are produced at
large impact parameters whereas heavy particles should
be generated at smaller impact parameters.

In particular, for very heavy particles, for example,
Higgs bosons, supersymmetric, or technicolor particles,
it is extremely important to know the impact-parameter
dependence of the production cross section. Prom the
experimental point of view electromagnetically produced
particles should be discriminated from production mech-
anisms governed by strong interactions; therefore those
small impact parameters, for which the two nuclei over-
lap and thus strongly interact, have to be excluded.

In order to derive the desired impact-parameter depen-

tinguish between the electromagnetic field of a relativistic
nucleus and a bunch of equivalent photons; the electro-
magnetic field of a real photon is purely transverse.

For a relativistic heavy-ion collision this implies that
the total cross section for electromagnetic processes like
the electromagnetic creation of particles can be approxi-
mately described as a photon-photon fusion cross section
folded with the equivalent photon distributions of the two
nuclei:

dent cross section it suggests itself to start with Feyn-
man diagrams directly. But at the end this might be-
come quite involved numerically. On the other hand,
it would be nice to save some of the simplicity of
the equivalent photon approach. We will demonstrate
that some straightforward and reasonable approxima-
tions to the S-matrix elements lead to a feasible ex-
pression for the impact-parameter dependent cross sec-
tion, which upon integrating over the impact-parameter
yields the equivalent photon cross section (1). This is an
impact-parameter dependent generalization of the ordi-
nary equivalent photon method. In this section, we first
consider the general structure of the relevant S-matrix
elements and the corresponding cross sections.

B. General structure of the 8-matrix element
and of the cross section

We will treat the electromagnetic field of the two nuclei
classically: We assume both nuclei move with constant
velocity on straight lines being separated by the impact
parameter b; small deflections from the straight lines due
to the collision are neglected. Then the electromagnetic
potentials in the Lorentz gauge 0 A = 0 follow from
d'Alembert's equation, A" = j",where j" is the classi-
cal electromagnetic current of the moving nucleus. They
read

A~i(ki, b) = —2vrZiee'"' b(kiui )
~ u~i

1 lo

F —k~k
A2 (k2, 0) = —2~Z2e h'(k2 u~~) „„u2

2 20'

The b function assures the motion on a stra, ight line with
a constant velocity. The velocities of the two heavy
ions, which from now on we will assume to be identi-
cal, ui 2 ——p(1, 0, 0, +v), are taken in the collider system
characterized by the Lorentz contraction factor p (equal-
speed system). F(—k ) denotes the nuclear charge form
factor.

The amplitude for the creation of new particles via the
electromagnetic fields of the two nuclei is given by the
S-matrix element. In lowest order in the electromagnetic
potentials A~i, A2 of the two nuclei it exhibits the follow-
ing general structure [19]:

S(Pn, b) = d4A:
[A", (k&, b) I'„(k&kz, Po.) A (k, 0)] (2vr) 6 (k + k —P) (4)

Here P means the total momentum of the produced par-
ticles, o. their remaining phase-space coordinates, and b
the impact parameter. I'& indicates the vertex function;
its explicit structure depends on the nature of the created
particles.

For example, for the production of a scalar boson the
vertex function is given by

I'„(kikz, Pn) = g, [(k, kz ) g~ —ki kg„]

and the vertex function for the production of a pseu-
doscalar boson reads

1"„(kk; Pa)= g,e„, k, k, 2 (6)

For the production of a charged pair of bosons or fermions
the lowest- (second-) order vertex function can be found
in standard textbooks [19] and will not be given here.

The verte~ function multiplied with the 6 function can
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S(Pn, b) = d4k~

(2~)4 A", (kl, b) A2(k2, 0)
d'k2

x J„(klk2, Pn) . (8)

The transition current is conserved, i.e. ,

~1 Jp& k2 Jp,v —0

which follows quite generally from the gauge invariance
of the S-matrix element.

For our following considerations the explicit expression
for the transition current is irrelevant; it is only impor-
tant that it acts like a conserved current (9) and contains
a 6' function (7) for the four-momentum conservation.

Performing the integrals over the 6 functions, Eq. (8)
becomes, with Zl = Z2 = Z and Fl = F2 = F,

e2
S(Pn;b) = Z

272
d k~ F(—kl) F(—k22)

(27r) 2 —k2 —k2

xul„u2 I'" (klk2, n) e '

be interpreted as a transition current,

J„(k1k2,P ) = r (klk2, ) (27r) 6 (k +k2 P—)

(7)

so that the S-matrix element (4) may be written as

where the factor 1/(2p ) results from the integration over
the 6 functions appearing in the electromagnetic four-
potential (3); the photon momenta are

kl = (Cdl, k~, (dl/V), k2 = (~2, P~ —k~, —&2/v),
(11)

wl = 2(PO+ vP, ), w2 = 2(PO —vP, ).

Here the subscript J indicates the perpendicular plane,
i.e. , the plane perpendicular to the motion of the nuclei.

Given the S-matrix element as in Eq. (10), the total
cross section for the electromagnetic production of par-
ticles follows from the square of the S-matrix element
integrated over the phase space of the n outgoing cre-
ated particles dye dp„and integrated over the impact
parameter. We introduce the total momentum P in the
phase-space element explicitly:

d'P
dpi ' 'dp~

( )4
dn (12)

where do. means the phase-space element of the restricted
phase space

dn = dn i~ ——dpi . dp„(2vr) 6 (pl + +p„—P)

(10) For the cross section we then obtain

d 6

Z4e4

2+4
d 6

r~. (k, k, ; n) r~' '*(k', k,', n) dn
P=(4)1+&21k11 +k2& 1(~1 ~2)/V)

, d4P
iS(Pn; b)i2 dn

~1 ~2 d klJ- d k2J- d rtJ- F( k].) F( k2) F ( kl ) F ( k2 ) —ib g~
(2~)2 (2~)2 (27r)' —k' —k'

(14)

where we integrate over the new variables

k2J = PJ —ky

sion cross section. It is this quantity which has to be
extracted from expression (14).

I
qJ = kg@ —kgb

(15) C. The elementary photon-photon fusion
cross section

instead of P~ and k& ——k]~ ~ In the case of particles
with spin the integration over the restricted phase-space
element dn goes along with a summation over spin quan-
tum numbers. The photon momenta now are

kl (col~ klJ ~ Ml/V) ~ k2 (M2~ k2J ~

—W2/V),

kl ——(vl, klan —qz, vl/v),
k2 = (cu2, k2g+ qg, —u)2/v).

Before we turn our attention to the relevant approxima-
tions to be performed in order to derive from (14) the
equivalent photon cross section (1), we first have to con-
sider the general structure of the real photon-photon fu-

The elementary photon-photon fusion cross section is
governed by the invariant matrix element

M(klk2, Pn) = el„e2 I'" (~lcu2, n),

where I'+ (culcu2, 'n) again represents the vertex func-
tion as in the preceeding section. The two real pho-
tons are assumed to be collinear and have momenta
kl ——(w1, 0, 0, wl), k2 = (ur2, 0, 0, —w2). We choose their
polarization vectors to be in the perpendicular plane:
e„= (0, e~, 0) with e& ——l.

The polarized cross section is obtained by squaring the
matrix element M(klk2, Pn), integrating over the phase
space of the created particles, and dividing through a fIux
factor:



47 IMPACT-PARAMETER DEPENDENCE OF THE. . . 2311

4P
&(0Il, 0I2, &1J &2J ) =

8
61'cz '6] '62 ' I ' (~,i4I„il)r" "(0I 0I; n) (2'ir) b (k + k —P) dil, '

8u1u2 2vr 4

(Latin indices run only over the perpendicular plane). After performing the integral over the total momentum, the
total cross section for polarized photons reads

W(&1 ~
M2', el J ~ 62J ) 1&&2j61&&62j'

84)1422
I"j(cu cu; n)I" j '(w w; a) do.

P = (u)1+~g, O, O, ur1 —cup)

=—Eli 62j 6li' E2j' g (&1 ) M2)j (19)
~ ~ ~ I ~ I

The form of the tensor g'j' j can be deduced from the study of its transformation behavior. Since the total polarized
cross section is invariant under rotations in the perpendicular plane, we may choose one polarization vector to point
along the x direction whereas the other one may be characterized by an angle p: slJ = (1,0) and e2J = (cos p, sin p).
Inserting this into (19) and requiring additional invariance under reHection rp ~ —

&p, one finds the following form for
the cross section:

&(~1 ~2 &1J &2J ) cos P g (~1 ~2) +»n' V 1l""(~1 ~2)
= COS P Os (Wi, Cu2) + Sin P Ops(&1 Cl)2)

= (elJ s2J ) 6 (&1,M2) + (elJ X e2J ) 0p (Ql, &2)

The cross section consists of two parts o, and a.~, . The
subscripts s and ps stand for scalar and pseudoscalar,
respectively, because the polarizations of the two incom-
ing photons are either parallel or perpendicular to each
other. The average over the polarizations yields the total
unpolarized cross section

(21)

It is crucial to distinguish between the polarized scalar
and pseudoscalar cross sections. As we will see later only
the scalar cross section contributes to the scalar boson
production, whereas only the pseudoscalar cross section
contributes to the pseudoscalar boson production. On
the other hand, the cross section for the production of a
charged boson pair or a fermion pair is a mixture of the
scalar and pseudoscalar part.

With the introduction of the two-dimensional matrices

J" (klk2, Pn) =-
k2O

The nuclei move on straight trajectories and thus
k, /k0 = +1/v, confer Eq. (11). We obtain

kli kzj Jij 1 ~(k2g Jsj&1@&2v —p k k
+

10 20 V ( 20

J33
2V2

kl;
k'1O

(25)

of the colliding nuclei, and connect the cross section (14)
with the underlying two-photon cross section (19). Since
we deal with the conserved transition current J&', cf.
Eq. (9), its timelike coordinate may be expressed by its
spacelike components:

iv+ 3v
J (k kz, Pn) =-

k1O

(24)

~&
0

(—1 Op~

Precisely at this point we introduce the decisive approxi-
mations, which will lead to the equivalent photon result.
The term w/p, which corresponds to k0/p or k3/p, is
of the same order of magnitude as the term ~kJ ~, which
corresponds to k, :

~ ~ I ~ I
it is also possible to express the tensor q'j' ~ with respect
to o., and ops.

1 cd

y

(26)

~ I ~ I ~ ~ ~ I ~ I

g (~1~ ~2) —&s &s &s(~1~ 4 2) + &pswps &ps(~1& ~2) ~

(23)

D. Equivalent photon approach to the
impact-parameter dependent cross section

Now we introduce some reasonable approximations,
which take into account the equivalent photon charac-
ter of the virtual photons from the electromagnetic fields

This can be verified by considering those values of ~kJ ~,

which contribute most in the integrand of the equivalent
photon distribution (2). The same relation also holds, if
one compares the transverse component of the Poynting
vector to its longitudinal one.

For the scalar boson the dominant contribution in Eq.
(25) originates from the first term; the second and third
terms are suppressed by a factor of 1/p3 with respect
to the first one. The situation for the pseudoscalar bo-
son (6), the charged boson pair, and the fermion pair is
exactly the same.
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As a consequence of all these considerations, Eq. (25)
can now safely be approximated by

&lp]C2v~ (klk2i PcC) Y J (Cdl|d2I PC1)
(d]

(27)

or written only in terms of the vertex function,

On the right-hand side now appears the vertex function
for real photons as in (19). This identification is the heart
of the equivalent photon approach.

Introducing approximation (28) in the cross section
(14) leads to

Z4e4

2 27r

d kg~

(2]r)2

d k2~

(2]r) 2

d q~;b. kg, k2~ kg,' —q, k2~ + q~—1 Q~

(2]r) Cd] Cd2 Cd] Cd2

X%1(klJ ) Cd]) %2(k2J, Cd2) El (k]J —qJ, Cd]) E2 (k2J + qJ, Cd2)

I'" (cd]cd2, c])I"' *(cdlcd2, oc) dn
P= (cu1+cu2, 0,0,~1 —u) 2 )

(29)

with P(kJ, cd) = F(—k )/( —k2). Using Eqs. (19) and (23) the last integral can be identified with the polarized real
photon —photon fusion cross sections:

~ I ~ I ~ 1 ~ I ~ ~ ~ It J (CdlCd2', C],')I J (Cd]Cd2', Cl') dCt! = 8Cd]Cd2 K Ks 0's(Cdl, Cd2) + K K 0 ps(Cdl, Cd2)
P=(Cu1+Cu2]0, 0,u1 —W2)

so that the cross section (29) can be cast in the following form:

(30)

Z4e4

"(4]r)2
d(d2 d kgb

(2]r)2

d2k2J

(2]r)2

2d Q~ —ib.
(2]r)2

X&1(klJ ~ Cdl) +2(k2J ~ Cd2) +] (klJ 'qJ ~ Cdl) +2 (k2J + qJ ~ Cd2)

x((k]J k2J ) ((k]J —qJ ) (k2J + qJ )) cr, (cd], cd2)

+(klJ X k2J ) ((klJ —qJ ) x (k2J + qJ )) Crp, (cdl, Cd2)) . (31)

Now we prove that the total cross section (31) is indeed identical to the equivalent photon cross section (1). The
integration over the impact parameter b leads to a 6 function in the transverse momentum qJ, i.e. , b(qJ ), so that it
follows for (31):

g4e4

(4~)2

dCd1 dCd2 d kg~
, l&](k» ~])l'

2]r 2

d k2~ 2, l&2(k2J. , cd2)
27' 2

x (klJ 'k2J)'~. (», cd2) + l(klJ x k2J)l 0ps(~1)cd2)

dCd2 nl (Cdl) n2(id2) 0 (Cdl, Cd2) (32)

where we have used Eqs. (2) and (21) in the last step.
This is the equivalent photon cross section (1). One
should keep in mind that the only applied approxima-
tion to the exact result has been Eq. (28), which is based
on the suppression of the transverse photon momentum
lkJ

l

with respect to the photon energy or longitudinal
photon momentum by the Lorentz factor p. As a matter
of fact, one would expect the deviations of the equivalent
photon cross section (32) from the "exact" cross section,
where the external Beld approximation has also been ap-
plied, but no approximations about the transverse pho-
ton momentum k~ have been made, to be small; devia-
tions should be of the same order 1/p as the transverse
components are suppressed over the longitudinal compo-
nents. Numerical comparisons conBrm this supposition.

If the integration over the impact parameter is not per-

formed, expression (31) leads to an impact-parameter de-
pendent differential cross section. The equivalent photon
cross section (32) has been derived quite generally. The
presented derivation does not depend on the explicit na-
ture of the produced particle(s). An explicit derivation
for the production of a scalar or pseudoscalar (spin 0)
boson has been published previously [20j.

E. Further illustration and interpretation

For a deeper insight expression (31) may be cast in
a form being apparently closer to the equivalent photon
method by folding the elementary cross section cr, (cd], cd2)
and crp, (cd], cd2) with the two-photon distribution func-
tions n, and n~, :
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2 g
(k4)2 n (~1 ~2, b)~.(~i, ~2) +n,.(~i, ~2; b)~r»(~i, ~2) (33)

where

4 4 4)] GJ2
nsy»(cdi) Edge b) = Z e

~2
d2qx (X)

~ I ~ I ~

(34)

are the scalar and pseudoscalar two-photon distribution functions. The tensorial photon distribution function

K,,"., (q~, a) is defined by

sc.!,",'(q, ~) = E„(k~,~) E„*(kg —qg, u)) —'
(35)

and describes the number of photons with definite mutual polarization to each other.
With the use of Fourier transforms for K,,"., (q~, w) and the potential function E the two-photon distribution

functions can be rewritten in terms of the transverse components of the electromagnetic fields themselves, which
follows from the field strength tensor F" = —i[k"A"(k ) —k"2 (k )] using the electromagnetic potentials of Eq. (3);
we arrive at

1
n, (~i, (us, b) =

7l 4)y 4J2
d'» IE»(u)& x~ b) ' E2~((d»x~)l (36)

1
n»(~i, ~2, b) =

7T' (d] Cd2
d Zg !Eig(4Ji, xg —b) X E2g(4)2, xg) l

n(~;b) = !E~(b,~)l

4Z2O. d kg F(k~ gw /p )
(2vr)z k~~ + w'2/pz

(38)

and describes the number of photons with energy u ex-
isting in a distance lbl from the center of the nucleus.
n(~, b) is of course independent of the direction of b.

We realize that not only the absolute magnitude but also
the direction of the electromagnetic fields enter in the
two-photon distributions. If the electromagnetic fields of
the two nuclei are parallel to each other, they contribute
to the scalar photon distribution function; if on the other
side the electromagnetic fields are perpendicular to each
other, they contribute to the pseudoscalar photon distri-
bution.

With this in mind the illustration of the differential
cross section (33) becomes straightforward: It consists of
a scalar part, where the electromagnetic fields have to be
parallel, and of a pseudoscalar part, where the electro-
magnetic fields have to be perpendicular.

For numerical purposes it is convenient to reduce
the two-photon distributions to one-photon distribution
functions. The one-photon distribution functions can be
derived by equating the energy flux of the transverse elec-
tromagnetic fields of the moving nucleus, which is de-
scribed by the Poynting vector, through an infinitesimal
transverse plane element, which is characterized by its
distance b to the trajectory of the nucleus, with the cor-
responding energy fiux of a bunch of photons through the
same plane element. It reads [21]

Then the two-photon distribution functions (36) and (37)
can be expressed by two one-photon distribution func-
tions. In the scalar case it results

n, (~i, (ug, b) = d» n(cui,'xg —b) n(~g I xi)
2

x
l

((xg —b) .xg l
!( I» —bl lxil) (39)

and with a cross product in the pseudoscalar case,

n»(cui, ~2, b) = d XJ n(Cdi, xJ —b) n(ld2, xJ )

x!((xg —b) x xg l
(4o)

Z A td id&)
n(~;n) = —Z',

~2 ry2 p ) (41)

which for large values of ub/p leads asymptotically to

respectively. The two-photon distribution function essen-
tially contains a product of one-photon distribution func-
tions. The integration over x~ means that the photon-
photon interaction can take place over the whole perpen-
dicular plane resulting in a product of local one-photon
distribution functions. The expression in large brackets
appears due to the dependence on the polarizations of
the two photons.

The technical advantage of expressions (39) and (40) is
the calculation of the two-photon distribution function by
knowledge of the one-photon distribution function (38).
In the case of a pointlike particle the function is known
analytically [21]:
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Now we are able to study the dependence of the dif-
ferential cross section (33) on the mass of the produced
boson. It is convenient to use the normalized expres-
sion ~~ &~&, where o ~ is the tota, l equivalent photon
cross section (1) and

&&
——2abd~o/db2; here the fac-

tor 2s I'~ ~~ in (46) drops out and with that also the
model dependence of the cross sections (46), which only
enters in the two-photon decay width I'b». The only
dependence of ~ &&

on the boson mass stems from the
remaining 6 function, which gives rise to mass-dependent
interferences in the integrations over the transverse mo-
mentum q~, confer again Eq. (33). Figures 2(a) and 2(b)
show the results for the production of a scalar and pseu-
doscalar boson, respectively; masses of 100 MeV, 1 GeV,
10 GeV, and 100 GeV have been chosen. A Lorentz con-
traction factor of p = 3500 (LHC) has been used for a
Pb+Pb collision and the form factor (44) of a homoge-
neously charged sphere with radius R = 7.1 fm has been
applied.

Let us focus on the scalar boson first; i.e. , confer Fig.
2(a). With the increasing mass of the scalar boson,
smaller impact parameters become more and more im-
portant. This is obvious because the heavier the boson
becomes, the more it has to be produced in the vicin-
ity of the strongest electromagnetic field densities of the
two colliding heavy ions and that is near the nuclear sur-
faces, which corresponds to small impact parameters. In

addition a double hump structure also shows up more
pronounced as the mass of the scalar boson increases.
This structure is smeared out for small masses; the rea-
son for this is that the scalar boson has to be produced
in a small volume, which should roughly be proportional
to the cube of the Cornpton wavelength of the boson
and therefore also be proportional to the inverse of the
cube of the boson mass, so that for small boson masses
this volume becomes relatively large and smears out any
structure. The reason for the appearance of a double
hump structure is related to the fact that the electro-
magnetic fields of the two colliding heavy ions have to be
parallel in order to produce the scalar boson. The dip
then should lie in the interval between once and twice
the nuclear radius, so that the two nuclei overlap and
the strong electromagnetic fields prevailing at their sur-
faces become to a major part perpendicular. Figure 2(a)
shows the dip to lie at approximately 6 = 9 fm, which
is larger than the nuclear radius R = 7.1 fm for Pb and
smaller than 2B = 14.2 fm.

To support this suggestion further, i.e. , that the dip
is due to the orthogonality of the electromagnetic fields,
we now turn our attention to the production of a pseu-
doscalar boson. For such a particle the electromagnetic
fields have to be perpendicular. As a consequence, the
maximum of the corresponding impact-parameter depen-
dent cross section should approximately be at impact pa-
rameters, which correspond to the dip before.

The structure of the impact-parameter dependent
cross section for the production of a pseudoscalar boson
is not affected by the boson mass, so that always only one
maximum occurs; this is demonstrated in Fig. 2(b). The
double hump structure in case of a heavy scalar boson
smears out, if instead of a form factor of a homogeneously
charged sphere one of a Gaussian charge distribution is
used. Because the nuclear surfa, ce is smeared out in the
Gaussian case, the dip is no longer enhanced [20].

For a good experimental detectability of the elec-
tromagnetically produced particles two presuppositions
have to be fullfilled: relatively clean signals from the de-
cay channels of the produced particles and a trigger on
peripheral collisions of the heavy ions. Whereas the first
part will be the subject of a subsequent publication I18],
we now would like to concentrate on the second point.

Small impact parameters have to be excluded in order
to discard central collisions and the accompanying large
hadronic background for the particle detection; this moti-
vates the introduction of a sharp cutoff impact parameter
b~ = 2R, which leads to a reduced total cross section

0 10 20 30 40 50

b (fm)
red
A1A2 ~A1 A2b db ' ' ' ' O(b —2R)

db

FIG. 2. Normalized impact-parameter dependent equiva-
lent photon cross section for the production of (a) a scalar and
(b) pseudoscalar boson. Four different scalar boson masses
are considered: my = 100 MeV (solid line), 1 GeV (dotted
line), 10 GeV (dashed line), and 100 GeV (dash-dotted line).
A Lorentz contraction factor p = 3500 (LHC) has been used
for a Pb+Pb collision and the form factor (44) of a homo-
geneously charged sphere with radius R = 7.1 fm has been
applied.

(47)

R denotes the nuclear radius. In Figs. 3(a) and
3(b) we display this reduction factor ~z, z z z,&/

+A A A A b in dependence on the scalar and pseu-
doscalar boson mass for LHC (p = 3500, lower curve)
and SSC (p = 8000, upper curve) energies.

For small boson masses, i.e. , mb & 1 GeV, the reduced
cross section o" is practically identical to the total cross
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FIG. 3. Reduction factors o'" /cr in dependence on
(a) the scalar boson, (b) pseudoscalar boson, (c) charged bo-
son, and (d) fermion mass for LHC (p = 3500, solid line) and
SSC (p = 8000, dotted line) energies.

section; this statement holds true for both the scalar and
the pseudoscalar boson. This becomes clear in view of
Figs. 2(a) and 2(b); note that the area under each curve
of Figs. 2(a) and 2(b) is unity. For small boson masses
the dominant contribution to the total cross section re-
sults from large impact parameters and the contribution
from small impact parameters is negligible. For light
neutral bosons, such as, for example, the mesons, it has
the consequence that already the total equivalent photon
cross section o.~~ describes their electromagnetic pro-

duction and that o. is relevant for the experiments.
For bosons with a higher mass, the contribution from
small impact parameters becomes more and more impor-
tant. Their contribution will be cut off in the reduced
cross section (47); for an increasing boson mass the reduc-
tion factor o"'~/o~~ will deviate from 1 and decrease
more and more. For a scalar boson mass mb = 50 GeV
the reduction factor is o"' /cr = 0.6 (LHC) and 0.8
(SSC) and for mb = 200 GeV we found o "~/cr~ = 0.3
(LHC) and 0.5 (SSC). For a pseudoscalar boson the re-
duction factors are very similiar; for mb = 50 GeV we
obtained a" /o ~ = 0.7 (LHC) and 0.8 (SSC) and for
mb = 200 GeV we computed cr" /o = 0.3 (LHC)
and 0.5 (SSC).

Observe that the reduction factors do not depend on
the specific nature of the scalar and the pseudoscalar bo-
son. They only depend on the mass of the scalar or pseu-
doscalar boson and on the Lorentz contraction factor p,
which reHects the collision energy of the heavy ions. Con-
trary to the reduction factor o" /o. ~ a model depen-
dence for the scalar or pseudoscalar boson enters for the
absolute reduced cross section (47). The crucial quan-
tity is the two-photon decay width entering in the ele-
mentary scalar or pseudoscalar two-photon fusion cross
section (46); it strongly depends on the specific nature of
the particle.

B. Electromagnetic production of a charged
boson pair

For the scalar or pseudoscalar boson either the polar-
ized pseudoscalar or scalar elementary two-photon fusion
cross section vanishes. For the electromagnetic produc-
tion of a charged boson pair both polarized two-photon
fusion cross sections contribute; they are given in lowest
order in o, by

pp~b+ b~s
27t 0',

s ( s s ( s 2mb 4mb

and

—+b+ b
~ps

27TO!

(49)

mb represents the mass of one charged boson.
Again it is most convenient to consider the normalized

expression db, its mass dependence can be traced
back to the pola~rized cross sections Eqs. (48) and (49)
in combination with the interferences arising from the
integration over q~ in (34). Figure 4 depicts the nor-
malized differential cross section for four different boson
masses, namely mb = 100 MeV, 1 GeV, 10 GeV, and 100
GeV, for a Pb + Pb collision at the maximum LHC en-
ergy (p = 3500). Observe that the area under each curve
(solid line) of the normalized differential cross section is
unity, although some of them have been rescaled with an
indicated factor. The differential cross section consists of
a scalar contribution (dotted), where the electromagnetic

I

fields of the two colliding heavy ions have to be parallel
to produce the charged boson pair, and a pseudoscalar
contribution (dashed), where the electromagnetic fields
have to be perpendicular. As expected from our discus-
sions in the previous section a double hump structure
shows up for the scalar part and the maximum of the
pseudoscalar part falls into the dip of the scalar differen-
tial cross section. At the highest considered boson mass
the scalar contribution dominates tremendously over the
pseudoscalar contribution. This traces back to the domi-
nance of the polarized scalar elementary two-photon cross
section (48) over the pseudoscalar one (49) near thresh-
old production. Exactly at threshold (s = 4m2b) the
charged boson pair is created with no kinetic energy in
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I IG. 4. Impact-parameter dependent differential cross
section for the electromagnetic production of a charged bo-
son pair (solid line) with scalar (dotted line) and pseudoscalar
(dashed line) contribution and normalized to the total cross
section cr . The results for the boson masses mb = 100
MeV, 1 GeV, and 10 GeV have been multiplied with factors
of 10, 5, and 2.5, respectively. A Pb + Pb collision at the
maximum LHC energy (p = 3500) with the form factor (44)
has been considered.

the c.m. system of the two photons and therefore can
be understood as a composite scalar boson consisting
of either two scalar charged bosons or two pseudoscalar
charged bosons; for the electromagnetic production of a
neutral scalar boson the electromagnetic fields have to
be parallel, so that only a scalar contribution to the
cross section should be important. The dominance of
the scalar polarized two-photon fusion cross section over
the pseudoscalar one also leads to a double-hump-like,
i.e. , scalarlike, appearance of the impact-parameter de-
pendent differential cross section do. /db for large boson
masses. At lower boson masses the double hump struc-
ture of the scalar cross section is smeared out, because of
the increasing production volume of the charged boson
pair, which should roughly be proportional to the inverse
cube of the boson mass; confer also the discussions in
the last section. Also the pseudoscalar cross section be-
comes more and more important, so that in addition its
maximum, which falls into the dip of the scalar cross sec-
tion, again smears out the double hump structure of the
scalar part. As a consequence, the dip disappears com-
pletely for the impact-parameter dependent differential
cross section do /db at smail boson masses.

If the central impact parameter regime, i.e. , 6 & 2B,
where B is the nuclear radius of the heavy ion, is cut
off according to Eq. (47), then the reduction factor
o "~/ow should be approximately 1 for small boson
masses, because only a minor part in the differential cross

10

rn (Gev)

100

FIG. 5. Total (solid line) and reduced (dashed line) cross
sections for the production of (a) a charged boson and (b)
fermion pair in a Pb + Pb collision in dependence on the
mass of the charged boson and fermion, respectively.

C. Electromagnetic production of a fermion pair

For the electromagnetic production of a fermion pair
both the polarized scalar and pseudoscalar two-photon
fusion cross sections contribute. They read in lowest or-
der in o. [23]

section is cut off. But for large boson masses a major
part is cut off with the small impact parameters, so that
the reduction factors should deviate significantly from 1.
This situation is verified in Fig. 3(c). For a mass of the
charged boson of mb+ ——50 GeV the reduction factor is
o" /o. ww = (l.4 for LHC and o"' /o. w = 0.6 for SSC
for mb~ = 200 GeV it follows ore~/aww = 0.2 (LHC)
and o'ea/o. ww 0 3 (SSC)

The reduction factors only depend on the mass of
the charged boson and on the Lorentz contraction fac-
tor p. Figure 5(a) shows the absolute total cross sec-
tion o.~~ and the absolute reduced total cross section
0pbpb pbpb+g+ t

for the production of a charged boson
pair in lowest order in the fine structure constant o, .

For a charged boson mass of 50 GeV and 100 GeV
the reduced electromagnetic production cross section is
about 1 nb and 0.01 nb, respectively, for a Pb + Pb
collision at LHC energies (p = 3500). For an expected
LHC luminosity of 10 cm sec and a running time of
10 sec/yr (= s yr) about 100 charged bosons with mass
mb+ ——50 GeV and about 1 charged boson with mass
mb+ ——100 GeV could be produced electromagnetically
in a Pb + Pb collision.



2318 M. VIQOVIC, MARTIN GREINER, C. BEST, AND G. SOFF 47

(
I
1+

s
4mf 12m4~ )

~2ln + 2
—1 —

~

1+s2 ) (2m, 4m, ) ( s )
4m~

O(s —
4mf )S

(50)

and

~ww~f+f
ps

4mf4~a' 1+
S ( 8

4m', l ( ~s, ) t' 2m', l
21n l + 2

—1 — 1+ 1—
s2

~ (2mf 4mf ) ( s

4m2f
O(s —4m)) . (51)

S

fermion pair f-'
I ' I ' I -- ' I ' I ' I

0.08— mp = 100 MeV-- m&~ = 1 GeV—

0.06—

004

0.02

~ 000- I I

& 0.08
I ' I ' I

mt* = 100 GeV

006

z 0.04

0.02

0.00
0 20 40

I s I

60 0 20 40 60
b (fm)

Figure 6 depicts the normalized differential cross section
for four different fermion masses, namely, mf = 100
MeV, 1 GeV, 10 GeV, and 100 GeV, for a Pb + Pb
collision at the maximum LHC energy (p = 3500). The
difFerential cross section consists of a scalar (dotted) and
a pseudoscalar contribution (dashed). The maximum of
the pseudoscalar part falls into the dip of the double
hump structure of the scalar differential cross section, as
expected. With increasing fermion mass the pseudoscalar
contribution dominates more and more over the scalar
contribution, which is contrary to the production of a
charged boson pair. This traces back to the dominance of
the polarized pseudoscalar elementary two-photon cross
section (51) over the scalar one (50) near threshold pro-
duction. Exactly at threshold (s = 4m2) the fermion
pair is created with no kinetic energy in tie c.m. system
of the two photons and therefore can be understood as
a composite boson with spin 0; a spin-1 boson cannot
be created by two photons [24]. This composite spin-0

boson resembles a fermionium, which has negative parity
in its ground state [24]. Therefore it is a pseudoscalar
composite boson consisting of a fermion pair. The dom-
inance of the pseudoscalar polarized two-photon fusion
cross section over the scalar one leads to a pseudoscalar-
like appearance, i.e. , only one maximum, of the impact-
parameter dependent differential cross section do /db for
large fermion masses. For lower fermion masses the sit-
uation is similiar; the scalar contribution increases, but
also the double hump structure smears out, so that again
do /db is a simple curve with one maximum.

If the central impact-parameter regime, i.e. , b & 2B, is
cut off according to Eq. (47), then the reduction factor
o' /o~~ should be approximately 1 for small fermion
masses, because only a very small part in the differential
cross section is cut off. But for large fermion masses a
major part is cut off with the small impact parameters,
so that the reduction factors should decrease significantly
from 1. This situation is exemplified in Fig. 3(d). For
a mass of the fermion of mf ——50 GeV the reduction
factor is o."d/o~~ = 0.4 for LHC and rr"' /o ~ = 0.6
for SSC; for mf = 200 GeV we obtained o"' /cr = 0.1
(LHC) and a" /cr = 0.3 (SSC).

Figure 5(b) shows the absolute total cross section
o.~~ and the absolute reduced total cross section
0pbpb pbpb+ f+f for the production of a fermion pair
in lowest order in the fine structure constant o, . For very
light fermions, such as leptons (e+, p+, ~+) and quarks
(u, d, s, c) in the 1 MeV to 1 GeV mass regime, the elec-
tromagnetic production cross sections are very high; but
here higher-order corrections in o, have to be taken into
account. For fermion pairs with a much higher mass,
higher-order effects should be again of minor importance.
For a fermion mass of 50 GeV and 100 GeV the reduced
electromagnetic production cross section is about 4 nb
and 0.03 nb, respectively, for a Pb + Pb collision at LHC
energies (p = 3500). This corresponds to 400 and 3,
respectively, electromagnetically produced fermion pairs
with mass mf = 50 GeV and 100 GeV, respectively, per
yr in a Pb + Pb collision.

FIG, 6. Impact-parameter dependent differential cross
section (solid line) for the electromagnetic production of
a fermion pair with scalar (dotted line) and pseudoscalar
(dashed line) contribution and normalized to the total cross
section o. . The results for the fermion masses mf ——100
MeV, 1 GeV, and 10 GeV have been multiplied with factors
of 10, 5 and 2.5, respectively. A Pb + Pb collision at the
maximum LHC energy (p = 3500) with the form factor (44)
has been considered.

IV. CONCLUSIONS

We presented a general derivation of the equivalent
photon method from @ED, which treats the electro-
magnetic production of scalar and pseudoscalar (spin 0)
bosons, charged (spin 0) boson, fermion pairs, charged
(spin 1) bosons, etc. , on the same footing. The external
field approximation has been employed, which assumes
the two colliding heavy ions move on straight trajectories
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with constant velocity and are characterized by their clas-
sical electromagnetic fields. The crucial approximation
results from the observation that the transverse momen-
tum components of the virtual photons are suppressed by
the Lorentz contraction factor p over their longitudinal
components and their energy. Deviations of the equiva-
lent photon cross sections from exact cross sections are
of order I/p; for LHC (SSC) energies we have p = 3500
(8000) .

As a by-product an expression for the impact-
parameter dependent differential cross section could also
be derived; it maintains some of the simplicity of the
equivalent photon approach and its integration over the
impact parameter yields the total equivalent photon cross
section. As the impact-parameter dependence is con-
cerned, it is not the elementary two-photon fusion cross
section averaged over the photon polarizations which en-
ters in the equivalent photon cross section, but rather the
two polarized elementary two-photon fusion cross sec-
tions. For the scalar polarized cross section the polar-
ization vectors of the two photons are parallel, whereas
for the pseudoscalar cross section they are perpendicu-
lar. This has as consequences for the impact-parameter
dependent differential cross section that for the scalar
contribution the electromagnetic fields of the two col-
liding heavy ions have to be parallel and that for the
pseudoscalar contribution have to be perpendicular.

For the electromagnetic production of a scalar (spin 0)
boson only the scalar polarized two-photon fusion cross
section contributes to the impact-parameter dependent
cross section. For a pseudoscalar (spin 0) boson it is the
other way around, only the pseudoscalar polarized two-
photon fusion cross section contributes. For the electro-

magnetic production of a charged (spin 0) boson pair and
a fermion pair the scalar as well as the pseudoscalar po-
larized two-photon fusion cross sections contribute. In
the limit of very large masses of charged bosons it is the
scalar part which dominates over the pseudoscalar part,
so that the electromagnetic fields have to be parallel. If
the fermion mass becomes very large it is then the pseu-
doscalar part which dominates over the scalar part, so
that the electromagnetic fields are mainly perpendicular.

In order to provide a clean experimental trigger on the
two heavy ions or its fission products, the central impact
parameter regime has to be excluded. A simple cutoff of
this regime leads to reduction factors of the total equiv-
alent photon cross section depending on the mass and
nature (i.e. , scalar or pseudoscalar boson, charged boson
pair, fermion pair) of the produced particle or particles
and on the beam energy. This reduction factor remains
about j. up to masses of approximately 1 GeV and can
decrease to approximately 1/10 for masses of about 200
GeV. This decrease for heavy masses is not crucial; with
an expected LHC luminosity of 102s cm sec i and a
running time of I/O yr still about 100 (I) charged boson
pairs with mass mb~ = 50 GeV (100 GeV) and about
400 (3) fermion pairs with mass mI+ = 50 GeV (100
GeV) can be produced. In conclusion, at LHC energies
exotic particles with masses up to 200 GeV could be pro-
duced electromagnetically in ultrarelativistic heavy-ion
collisions.

One of us (M.G.) wants to thank the Alexander von
Humboldt Stiftung for its support with the Feodor Lynen
Foundation.

[1] E. Fermi, Z. Phys. 29, 315 (1924).
[2] E. J. Williams, Proc. R. Soc. London A 139, 163 (1933).
[3] C. Weizsacker, Z. Phys. 88, 612 (1934).
[4] M. Grabiak, B.Miiller, W. Greiner, G. Soff, and P. Koch,

J. Phys. G 15, L25 (1989).
[5] G. Soff, J. Rau, M. Grabiak, B. Miiller, and W. Greiner,

in The Nuclear Equation of State, edited by W. Greiner
and H. Stocker (Plenum, New York, 1989), Part B, p.
579.

[6] M. Drees, J. Ellis, and D. Zeppenfeld, Phys. Lett. B 223,
454 (1989).

[7] R. N. Cahn and J. D. Jackson, Phys. Rev. D 42, 3690
(1990).

8 E. Papageorgiu, Phys. Lett. B 250, 155 (1990).
[9] G. Baur and L.G. Ferreira Filho, Nucl. Phys. A518, 786

(1990).
[10] J. S. Wu, C. Bottcher, M. R. Strayer, and A. K. Kerman,

Ann. Phys. (N.Y'.) 210, 402 (1991).
[ll] B. Miiller and A. J. Schramm, Phys. Rev. D 42, 3699

(1990).
[12] K. J. Abraham, R. Laterveer, J. A. M. Vermaseren, and

D. Zeppenfeld, Phys. Lett. B 251, 186 (1990).
[13] J. W. Norbury, Phys. Rev. D 42, 3696 (1990).

[14) Ch. Hofmann, G. Soff, A. Schafer, and W. Greiner, Phys.
Lett. B 262, 210 (1991).

15] J. Eichler, Phys. Rep. 193, 165 (1990).
[16] C. A. Bertulani and G. Baur, Phys. Rep. 161, 299 (1988).
[17] K. J. Abraham, M. Drees, R. Laterveer, E. Papageorgiu,

A. Schafer, G. Soft, J. Vermaseren, and D. Zeppenfeld,
in Proceedings of the Coherent Processes in Heavy Ion
Collisions at the LHC, Large Hadron Collider Workshop,
Aachen, 1990, edited by G. Jarlskog and D. Rein (CERN
Report No. 90-10, ECFA 90-133, 1990), Vol. II, p. 1224.

[18] M. Greiner, M. Vidovic, and G. Soff, Phys. Rev. C 47,
2288 (1993), this issue.

[19] J. D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw —Hill, New York, 1964).

[20] M. Greiner, M. Vidovic, J. Rau, and G. Soff, J. Phys. G
17, L45 (1991).

[21] J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1975).

[22 G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
[23 V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G.

Serbo, Phys. Rep. 15, 181 (1975).
[24] T. D. Lee, Particle Physics and Introduction to Field

Theory (Harwood Academic, Chur1981), .


