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Isospin efFects in elastic proton-nucleus scattering
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Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy
of the Kerman-McManus- Thaler isospin averaging procedure is found to be very good for nuclei larger
than He. Studies of Ca and Pb suggest that the surface neutrons may be pulled in somewhat
relative to the protons, although uncertainties in the detailed applicability of the present truncation
of the multiple scattering treatment render firm conclusions premature.
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I. INTRODUCTION

Despite the recent progress that has been made in the
multiple scattering theory (MST) treatment of nucleon-
nucleus elastic scattering (for example the full folding of
the off-shell nuclear density matrix [1—3] and the treat-
ment of the Coulomb interaction in momentum space [4]),
there remain unresolved questions even within the first-
order MST. These questions especially concern the as-
sumptions in the process through which the free nucleon-
nucleon (NN) t matrix is introduced into the theory. A
consistent development of the isovector degrees of free-
dom may help clarify some of the unresolved issues;
for example, the complete folding of the fully off-shell
free NN t matrix and the fully off-shell density matrix
clearly involves isovector degrees of freedom. The re-
newed interest in neutron degrees of freedom has been in
part inspired by recent measurements of the total elastic
neutron-nucleus cross section for a variety of nuclei [5] as
well as recent theoretical calculations in the construction
of Dirac neutron-nucleus optical potentials [6, 7].

In this paper the isovector degrees of freedom are dis-
cussed from two different points of view. First, isovector
effects intrinsic to the multiple scattering expansion are
laid out within the framework of the Watson multiple
scattering expansion [8]. The inclusion of isovector ef-
fects in the Kerman-McManus-Thaler (KMT) formalism
is somewhat tedious [9],whereas in the first-order Watson
multiple scattering form the neutrons and protons can be
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treated explicitly without any difficulty. This treatment
is discussed and the resulting effects with identical neu-
tron and proton distributions are shown in Sec. II. Sec-
ond, difFerences in the matter distribution of protons and
neutrons may also be interpreted as isovector effects. In
Sec. III, the formalism presented in the previous section
is used to look at the impact of differences in the neutron
density on elastic proton scattering. Although the proton
density distribution is very well determined from electron
scattering data [10], this is certainly not the case for the
neutron distribution. It has been recently suggested that
a better determination of the neutron density would be
very interesting for the case of atomic parity noncon-
serving analysis of the standard electroweak model [11].
With the advent of more precise neutron scattering ex-
periments, the uncertainties resulting from the lack of
understanding of the neutron densities are also becoming
important questions in elastic neutron scattering. Here,
we examine the extent of these ambiguities by looking
at how changes in the neutron density distributions are
rejected in the elastic proton-nucleus observables.

II. ISOVECTOR DEGREES
OF FREEDOM IN THE MST

The two most familiar approaches for the construc-
tion of a first-order optical potential for nucleon-nucleus
elastic scattering are those of Watson [8] and Kerman-
McManus-Thaler (KMT) [12]. The Watson first-order
multiple scattering series requires us first to solve a pre-
liminary integral equation to obtain the optical potential,
which is then taken as input to a Lippmann-Schwinger-
type integral equation. The KMT formalism assumes
that the NN t-matrix interactions are identical for all
projectile-target nucleon situations. This allows us to
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combine the preliminary integral equation for the opti-
cal potential with the Lippmann-Schwinger equation into
a single integral equation with the familiar (A —1)/A
scaling factors. The assumption of identical interactions
in the KMT derivation makes it awkward to treat the
isovector differences in the nucleon-nucleon interaction.
An estimate of the isovector corrections within the KMT
formalism has been given in Ref. [9]. Since the Wat-
son formalism does not assume identical proton-proton
and neutron-proton interactions, the treatment of the
isovector degrees of freedom is particularly straightfor-
ward within this framework. Throughout this article any
reference to a KMT optical potential implies the use of
an isospin averaged NN t matrix.

To demonstrate the treatment of the isovector degrees
of freedom, the Watson multiple scattering series is sum-
marized briefiy. The input into the Lippmann-Schwinger
equation is defined to be the Watson optical potential:

A

U = ) r~+r Gpg)
i=1 jgi
A

=) (2)

where

~i = ti —ti PG'p7;,

where

(4)

= Vp + Vp Gp t .

ri = vpi+ vpa Gp Qr,

The first-order or single scattering approximation is de-
fined in Eq. (2). The nucleon-nucleon interaction is given
by the two-body potentials vp, . The projector Q is given
by Q= 1 —P, where P = [@~)(@~~ projects onto the
nuclear ground state. The free propagator in the nuclear
medium is defined as Gp ——E —hp —H~. After some
algebraic manipulation an alternative expression for the
"Watson" 7; is easily seen to be

= Z ~„+N ~„. (8)
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As is obvious from Eq. (8), the isovector character
of w„and w„as well as their corresponding convolution
with the proton and neutron distributions is taken into
account in a completely consistent fashion.

In Figs. 1 and 2 the effects of various treatments of the
isovector character of the optical potential are shown for
elastic proton scattering from 4He at 200 MeV laboratory
energy T.he solid line in Fig. 1 represents a consistent
calculation of the Watson optical potential according to
Eq. (8), whereas the calculation given by the dotted line
omits the step of solving the integral equation [Eq. (4)]
for the Watson optical potential. In short, the dotted
line represents setting r, = t, = t, in Eq. (4) or equiv-
alently setting (A —1)/A = 1 in the KMT formalism.
For scattering from a light nucleus like He this approx-
imation is quite drastic, as is seen in the first minima in
the spin observables A„and Q. The inadequacy of this
approximation was long ago pointed out in Ref. [13].
In Fig. 2 a calculation with the Watson optical poten-
tial [Eq. (8), solid line) is compared with a calculation
within the KMT formalism employing an isospin aver-

aged NN interaction. Though for small scattering angles
the isospin averaged NN interaction seems to be quite
a good approximation, for scattering angles larger than
60' this is certainly not the case. A similar observation of
the shortcoming of the KMT isospin averaging was made

The operator t, does not contain the projector Q and is
usually taken to be the free NN t matrix, t, , which is
obtained as a solution of the integral equation

ti —Vpi + Vpi gp ti

The free two-nucleon propagator gp is given by

gp
——E' —hp —h, .

The preliminary integral equation mentioned earlier
for obtaining the Watson optical potential is given by
Eq. (4), and is straightforward to solve. Since the r, 's

are expressed separately for each i, no assumption about
the isospin character of the NN interaction is made at
this stage. The proton-proton and proton-neutron inter-
actions are treated independently in Eq. (4). Therefore,
the subsequent optical potential is the sum of two differ-
ent contributions:

0.0
0.5
1.0

0 20 40 60 80 100
0, (deg)

FIG. 1. The angular distribution of the differential cross
section (cr), analyzing power (A„), and spin rotation function

(Q) for elastic proton scattering from He at 200 MeV labora-
tory energy. The calculations are performed with a first-order
optical potential obtained from the full Bonn interaction [20]
in the optimum factorized form. The solid curve represents
the calculation within the Watson formulation, whereas the
dotted line omits the solution of the integral equation for the
Watson optical potential.
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FIG. 2. Same as Fig. 1. The solid curve represents the cal-
culation within the Watson formulation, whereas the dashed
line employs a first-order KMT optical potential.

in Ref. [14], where the scattering of pions from 4He was
investigated.

For the clarity of our argument, we have assumed the
proton and neutron distributions to be equal in the above
described calculations. Thus, Figs. 1 and 2 display the
accuracy of two diferent approximations to the Watson
first-order optical potential, namely assuming ~,
(Fig. 1) and the KMT isospin average of the NN inter-
action (Fig. 2). In both calculations the proton density
distribution is taken from a microscopic Hartree-Fock-
Bogoliubov (HFB) calculation of Ref. [15], which uses
the Gogny D1S finite range effective interaction [16]. The
neutron distribution is taken to be equal to the proton
distribution.

To calculate the elastic scattering observables, we use
the optimum factorized or "oK-shell tp" approximation
[17], which has been found to be a good approximation
to the full-folding integral in the energy regime between
200 and 800 MeV [1, 3]. As shown in Eq. (7) the free
NN t matrix has to be evaluated at an appropriate en-

ergy E'. In principle, this energy should be the beam
energy minus the kinetic energy of the center of mass of
the interacting pair less the binding energy of the struck
particle [18]. Since in practice the relevant-matrix ele-
ments do not depend strongly on this variable [19], E'
is set to the two-body energy corresponding to free NN
scattering at the beam energy. It is to be understood
that all spin sums are performed under the usual as-
sumption of a spin saturated target, thus reducing the
required NN t-matrix elements to the spin-independent
component (corresponding to Wolfenstein amplitude A)
and the spin-orbit component (corresponding to Wolfen-
stein amplitude C). All scattering calculations presented
here contain an additional factor in the optical potential
to account for the transformation of the NN t matrix
from the two-nucleon c.m. frame to the nucleon-nucleus
c.m. frame. This Mufller factor is obtained in a manner
discussed in Ref. [17]. At 200 MeV we employ the NN t

FIG. 3. &he observables cr, A„, and Q for elastic proton
scattering from He at 500 MeV laboratory energy. The solid
line represents a calculation with a Watson first-order optical
potential, whereas the dashed line is obtained with a KMT
first-order optical potential.
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FIG. 4. &he observables o, A„, and Q for elastic proton
scattering from C at 200 MeV laboratory energy. The solid
curve corresponds to the first-order Watson calculation. The
dashed curve corresponds to the KMT calculation, which av-
erages over the isovector degrees of freedom.

matrix from the full Bonn interaction [20]. The Coulomb
interaction is included in all three calculations using the
method described in Ref. [4].

For our scattering calculation at 500 MeV we start
from an extension of the Bonn meson exchange interac-
tion above pion production threshold, which is described
in more detail in Ref. [21]. The elastic scattering ob-
servables for proton scattering from He at 500 MeV are
displayed in Fig. 3, just as in Fig. 2. Again, the solid line
represents a calculation of the Watson optical potential
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FIG. 6. Neutron density distributions in coordinate space
for Ca as a function of the nuclear radius. The solid curve is
from a microscopic HFB calculation [16], whereas the short-
dashed, dash-dotted, and long-dashed curves are volume con-
serving modifications thereof, and define cases (a), (b), and
(c), respectively. The dotted line represents the proton distri-
bution as given by a Sum-of-Gaussians fit [10] to the experi-
mentally determined proton distribution.

FIG. 5. The observables cr, A„, and Q for elastic proton
scattering from C at 500 MeV laboratory energy. The no-
tation corresponds to that in Fig. 4.

according to Eq. (8), whereas the dashed line shows the
KMT isospin averaged optical potential. After the first
minimum, at angles larger than 40', the KMT approx-
imation begins to deviate from the Watson result.

Studying larger nuclei, we find that the isovector effects
discussed here become smaller. In Figs. 4 and 5 we show
elastic scattering observables for proton scattering from

C at 200 and. 500 MeV. The isovector effects due to the
KMT approximation (dashed line) to the Watson optical
potential (solid line) are small and the KMT average is
quite accurate even for larger scattering angles. Beyond
i2C in the periodic table, our calculations indicate that
for energies larger than 200 MeV there are no differences
which would be visible in graphs similar to Figs. 4 and 5.
For investigations at energies less than 200 MeV, it may
be necessary to consider these isovector effects even for
heavier nuclei.

data [10,22]. We show results for the neutron distribution
set to be equal to the proton distribution, a neutron dis-
tribution obtained from a microscopic HFB calculation
[16] along with several difFerent ad hoc neutron densities.
These comparisons represent an indication of the sensi-
tivity of the elastic scattering observables to the neutron
densities employed. The corresponding modified neutron
distributions are shown in Fig. 6 for Ca and Figs. 7 and
8 for 2osPb. It must be strongly emphasized that these
calculations do not pretend to be a study whereby we
hope to pin down the neutron distribution from proton
elastic scattering. In this work we are exploring the sen-
sitivity of the observables due to changes in the neutron
distribution. These studies are an essential preliminary
to the proper inclusion of higher-order efFects (including
medium modifications in the propagator) in elastic scat-
tering.

We note that all the figures indicate a lack of sensitivity
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III. ELASTIC NEUTRON
AND PROTON SCATTERING

In the previous section we took care to make the neu-
tron and proton densities identical in order to isolate the
effect due to the difference between the isospin 0 and 1
parts of the NN interactions. The isospin differences be-
tween the Watson and KMT formulation of the MST due
to the NN interaction are negligible in heavy nuclei, even
if the neutron and proton distributions are not identical.
We now wish to look at effects arising from possible dif-
ferences between the neutron and proton distributions.
We present the results of this study as a series of plots
of scattering observables, Figs. 9 through 12. In these
figures we show the differential cross section o., the po-
larization A&, and the spin rotation parameter Q for pro-
ton elastic scattering from Ca and Pb as calculated
with various densities. The proton density is taken to be
a 24 parameter Sum-of-Gaussian fit to electron scattering

0. 10 -'
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FIG. 7. Neutron density distributions for Pb as a func-
tion of the nuclear radius. The solid curve is from a micro-
scopic HFB calculation [16], whereas the short-dashed, dash-
dotted, and long-dashed curves are volume conserving modifi-
cations thereof, and define cases (a), (b), and (c), respectively.
The dotted line represents the proton distribution as given by
a Sum-of-Gaussians fit to the experimentally determined pro-
ton distribution [22]. The dash-dot-dotted line represents the
neutron distribution obtained by scaling the proton distribu-
tion by the factor N/Z.



2246 C. R. CHINN, CH. ELSTER, AND R. M. THALER 47

2, 0 .— i

ZDB pb

I
'

I also displayed in Fig. 6 and the corresponding scattering
observables are compared in the (b) panels. The sepa-
ration into (a) and (b) parts is solely because otherwise
our figures became too crowded. In Figs. 9(b) and 10(b),
we see the sensitivity to the changes in the neutron den-
sity. Comparison of these results with the distributions
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to the density in the central region of the target nucleus.
This inability of the proton to probe the interior of the
nucleus in the regime under discussion has been known
for a very long time and is not meant to be a new result
of the present investigation. If we define the exterior
region by r ) Rz = 1.1A ~ (where R4o ——3.4 fm and

2ps = 6.5 fm), we observe that in that region the HFB
neutron and proton distributions (appropriately scaled)
are nearly identical for both nuclei under consideration.
The observables are likewise indistinguishable for these
two cases.

The overall impression one obtains from looking at the
p = p& curves (the dotted lines in Figs. 9 through 12)
is that they correspond to a diffraction pattern which is
somewhat more compact, or squeezed together, than the
data suggest. Such a general trend tends to mean that
the diffracting object has been taken to be too large. Ad-
justed neutron distributions which yield somewhat better
agreement with the data are in the direction to pull in the
outer neutrons. This does indeed spread the diffraction
patterns so that they become more like the observed pat-
terns. En the adjusted Ca neutron distributions there
are approximately 20% fewer neutrons in the region be-
yond R~. In the adjusted Pb neutron distributions
this percentage is similar.

For 208or Pb, where N ) Z, a compression of the neu-
tron density in the region beyond R~ does not necessar-
ily mean that there are fewer neutrons than protons any-
where. In order to illustrate this point, we show the ratio
R = p„/p„ in Fig. 8. The straight line at R = 1.537 indi-
cates the ratio N/Z=126/82, and wherever R is greater
than unity, there is an excess of neutrons at that radius.
The solid line represents the HFB result, in which the
distribution of neutrons follows closely that of the pro-
tons. The dash-dotted curve is greater than unity until
r = 7.3 fm, showing that here the neutrons though de-
pleted compared to the HFB case are still in excess of
the protons, except at very large radii, where there are
essentially no particles present.

2
Elastic scattering observables for protons C tns on a at

00 and 500 Mev are shown in Figs. 9 and 10. The data
appear in Figs. 9(a) and 10(a). The solid curves in these
figures represent the calculations with the HFB neutron

istributions. The dash-dotted line is our "best" ad'
ment of the neutron distribution in Ca. This distribu-
tion is shown in Fig. 6. Other neutron distributions are
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FIG. 9. (a) The observables cr, A„, and Q for elastic pro-
ton scattering from Ca at 200 MeV laboratory energy. The
calculations are performed with a fi "- da rs~-or er optical poten-
tial in the Watson formulation obtained from the full Bonn
interaction in the optimum factorized form. The solid curve
represents the calculation with a neutron density obtained
from an HFB calculation the dash-d tt d- o e curve employs the
neutron density of case (b) in Fig. 6. The proton density is
taken from a 24 parameter Sum-of-G fit-o — aussian t to e ectron
scattering data [10). The experimental dat f R

( ) Same as for (a). The solid curve employs a neu-
tron density from a microscopic HFB calculation, whereas the
s ort-dashed, dash-dotted, and long-dashed cur~es represent
calculations with the neutron densities defined as cases a |
b), and (c) in Fig. 6. The dotted line represents a calculation
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panels. We note that the dotted curve in Fig. 7 repre-
sents the proton distribution (normalized to Z protons),
whereas the dash-dot-dotted line represents the same dis-
tribution multiplied by N/Z (normalized to N neutrons).
Of course, it is a distribution so rescaled, to which we re-
fer, when we say p„= p„. In Figs. 11(b) and 12(b) we see
the sensitivity to changes in the neutron density. Once
again we observe the insensitivity to the interior region.
We note that for the long-dashed curve in Fig. 11(b)
the compression of the diffraction pattern is somewhat
greater than the data call for. This is the only case in
Fig. 8, where R falls below unity. This suggests that al-
though the neutrons are pulled in relative to the protons
there is nevertheless always an excess of neutrons at all

TABLE I. The rms radii in fm for the neutron and pro-
ton distributions of Ca and Pb. The different cases are
discussed in the text.

Case

(a)
(b)
(c)

rms n
3.479
3.379
3.050
3.033
3,044

40C

rms (p)
3.479

208Pb

rms n
5.503
5.572
5.438
5.238
5.015

rms (p)
5.503

radii in Pb. Neutron rms radii for these distributions
are displayed in Table I.

There still remain many unresolved issues before pro-
ton elastic scattering can be used accurately to determine
target neutron distributions. The present analysis does
suggest that the surface neutrons are pulled in somewhat
relative to the protons. This is in sharp contradiction to
the HFB predictions, in which the neutrons and protons
are distributed similarly.

A further indication of the relative compression of the
surface neutrons may lie in the variational calculations of
the ground state of ~sO by Pieper et al. [23j, who obtain
a smaller rms radius for ~sO than the electron scattering
measurements indicate. Since this calculation does not
distinguish neutrons from protons, it may suggest that
their radius is closer to the neutron radius, and that the
inclusion of the Coulomb repulsion would indeed lead
to a separation such as we see here. Without further
study of the neglected effects implicit in the first-order
multiple scattering calculations presented here, no firm
conclusions regarding the neutron distributions can be
drawn.

'] Q

tQ
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b tp
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IV. SUMMARY AND CONCLUSION

The treatment of the isovector degrees of freedom is
included in the framework of the correct first-order Wat-
son multiple scattering series. The construction of the
steps required are presented and discussed. Results com-
paring elastic proton scattering from Ca and Pb are
shown to refiect sensitivities to isovector degrees of free-
dom. Adjustments to the neutron density distribution
emphasize such sensitivities. Changes to the neutron
density may be indicated by comparisons of theoretical
predictions with elastic proton scattering angular distri-
bution data, which favor a smaller neutron rms radius
and a thinner surface. It remains unrealistic to expect
to be able to extract detailed quantitative information
about the target nucleus from elastic proton-nucleus re-
actions.

FIG. 12. (a) The observables o, A„, and q for elastic
proton scattering from Pb at 500 MeV laboratory energy.
The meaning of the curves is the same as in Fig. 11(a). The
experimental data are from Ref. [25]. (b) Same as for (a).
The curves have the same meaning as in Fig. 11(b).
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