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Pauli blocking effects for nucleon-nucleus scattering
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Theoretical predictions for nucleon-nucleus scattering are customarily based on multiple-scattering
formalisms in which the projectile-nucleon —struck-target-nucleon two-body subsystem is antisym-
metrized and in which the target wave function is antisymmetric with respect to the nucleon constitu-
ents. Although formalisms exist for nucleon-nucleus scattering which account for full ( 3 + 1)-body an-

tisymmetrization, these theories have not been adequately implemented in numerical applications. Pauli
blocking of the struck target nucleon in intermediate scattering states is implicitly included in standard
optical potential calculations which consistently include terms through second-order in the projectile-
target nucleon scattering t matrix. In this work the multiple scattering expansion of the fully antisym-
metrized nucleon-nucleus optical potential is organized so as to make explicit corrections to the standard
optical potential due to Pauli blocking of the projectile nucleon in intermediate scattering states. Nu-
merical calculations are presented for the resulting density dependent, projectile-target nucleon effective
interaction and comparison with a previous density dependent model is given. It is shown that density
dependent effective interaction t matrices for nucleon-nucleus scattering calculations should include
Pauli blocking of just the projectile nucleon and binding potential corrections for just the target nucleon.

PACS number(s): 24.10.—i, 24.10.Cn, 25.40.Cm, 25.40.Ve

I. INTRODUCTION

In the nonrelativistic multiple-scattering formalisms of
Watson [1] and Kerman, McManus, and Thaler (KMT)
[2] it is assumed that the projectile particle is distinguish-
able from the nucleon constituents of the target nucleus.
The identity of the A target nucleons is incorporated in
the theory by projecting antisymmetric target nucleus
states in all intermediate scattering states in the formal
definition of the projectile-nucleus scattering t matrix
[2,3]. Expansions of the optical potential for elastic
scattering in terms of quasi-two-body t matrices result in
a linear term which is summed over the 3 target nu-
cleons and a second-order term which is proportional to
two-body correlations in the target nucleus wave function
[2,3] plus higher-order terms. The quasi-two-body t ma-
trices are in reality ( A + 1)-body operators, but for the
leading Born term only depend on the coordinates of the
projectile and one active target nucleon. Intermediate
scattering states of the active target nucleon used in con-
structing these quasi-two-body t matrices are not restrict-
ed with respect to the states occupied by the other
( A —1) target nucleons, i.e., the quasi-two-body t ma-
trices are not Pauli blocked. Even so, this formalism ac-
counts for Pauli blocking of the target nucleons in inter-
mediate scattering states by construction. Explicit Pauli
blocking corrections do not appear in the final expression
for the optical potential due to certain cancellations
which occur among the second-order terms [3].

Application of the Watson or KMT formalisms to the
case of nucleon-nucleus scattering is usually carried out
by way of the Takeda and Watson (TW) [4] prescription.
According to this procedure the unsymmetrized,
nucleon-nucleon (XN) quasi-two-body t matrices in the
Watson or KMT formalisms are everywhere replaced

with operators which are antisymmetric with respect to
the projectile nucleon and struck target nucleon labels.
Takeda and Watson argue that the leading correction to
this prescription involves a three-body exchange potential
which should be small, and indeed calculations [5] show
that this term is negligible at medium energies.

Intuitively, however, one would not expect the simple
TW prescription to adequately account for all of the
effects arising in nucleon-nucleus scattering due to the
imposition of full (A +1)-body antisymmetrization. In
particular, Pauli blocking of the projectile nucleon in in-
termediate scattering states is not accounted for by sim-

ply invoking the TW procedure. Experience with Pauli
blocking effects in nucleon-nucleon g-matrix calculations
[6] for infinite nuclear matter and for density dependent,
effective interaction t matrices [7,8] shows that such
effects can be quite important.

In this work the formalism of Picklesimer and Thaler
[9], which incorporates full ( A +1)-body antisymmetri-
zation, is used to study Pauli blocking corrections to the
standard nucleon-nucleus optical potential. The addi-
tional Pauli blocking corrections explicitly obtained here
are a consequence of the identity of the projectile and the
nucleon constituents of the target.

The fully antisymmetrized optical potential is expand-
ed to second order in free, antisymmetrized two-body t
matrices. Cancellations occur among the second-order
terms analogous to that in Appendix A of Ref. [3] such
that target nucleon Pauli blocking corrections are again
implicit in the final optical potential. The leading correc-
tions to the lowest order "tp" optical potential are then
shown to be due to Pauli blocking of the projectile nu-
cleon, the action of the nuclear binding potential on the
struck target nucleon in intermediate states (included in
standard optical potential formalisms [2,3]), three-body
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exchange effects [5], and two-body correlations in the tar-
get nucleus wave function.

In Sec. II the full ( A +1)-body antisymmetrized opti-
cal potential formalism of Ref. [9] is considered. Practi-
cal implementation of this formalism is discussed in Sec.
III, followed by a brief presentation of numerical results
in Sec. IV. Conclusions are given in Sec. V.

(3 —I)/A is the usual KMT scaling factor [2], and P
projects the unsymmetrized elastic channel [2]. Using
Eqs. (1) and (4)—(6) and eliminating the transition opera-
tors, the following expression for U' is obtained:

0'= g up, A+ O'6 g vp,
l

II. ANTISYMMETRIZED
OPTICAL POTENTIAL FORMALISM

O''6 Pg up, A .

Reference [9] presents a nonrelativistic (2 +1)-body
antisymmetrized optical potential formalism for describ-
ing nucleon-nucleus elastic scattering. The optical poten-
tial and the resulting nucleon-nucleus t matrix are as-
sumed to operate on unsymmetrized (A +1)-body states
where the wave functions describing the (2+1)-body
system are not antisymmetrized with respect to the labels
of the projectile nucleon and target nucleon constituents
[10]. It is important to note that the unsymmetrized
(A +1)-body states referred to here and in Ref. [9] in-
clude fully antisymmetrized 3-body states of the target
nucleus. Dynamical effects due to projectile and target
nucleon identity are therefore included in the construc-
tion of the optical potential.

From Ref. [9] the ( A + 1)-body antisymmetrized tran-
sition operator appropriate for elastic scattering is given
by [11]

T= g vp, A(1+G T),

Using the definition

and introducing an auxiliary, quasi-two-body operator to;
given by

tp&
= up&A + up&A G&tp(

where

(9)

toi =
Uo,. +vo; 6 to;, (10)

tp;+ 0 G tp( 0 G~Pfp; 0; G~tp;

the two-body interactions in Eq. (7) can be eliminated re-
sulting in

where vo; represents the two-body interaction between
the projectile (0) and the ith target nucleon. Here, the
unsymmetrized channel corresponds to the projectile nu-
cleon label being (0) and the target constituent labels run-
ning from 1,2, . . . , A. In Eq. (1)A is the antisymmetriz-
er for the projectile nucleon and 3 target nucleon labels.
It is given by U'= toi.

Keeping terms through second order, the antisym-
metrized optical potential can be written as

A=1 —g Ep, , (2)

6 =(E Hp Hq —+ie)— (3)

where Ho is the projectile kinetic energy operator and
Hz is the nuclear Hamiltonian. In Eq. (1) T represents
the usual unsymmetrized scattering operator given by

where Ep; is the exchange operator for projectile (0) and
identical target nucleon (i). The unsymmetrized
( A + 1)-body propagator 6 is given by

A —1 A —1+ g tp; G~tpj — g rp(G~Prp~
&J

+ ~ ~ ~ (12)

to Uo;+ vo gto (13)

which is analogous to the expression for the unsym-
metrized optical potential in Ref. [3].

Introducing the free NX two-body t matrix to; where

T= g vp, (1+6 T) . (4)

The (A +1)-body antisymmetrized optical potential
which generates f'is defined by

and g is the free NX propagator, to, can be reexpressed as

T' = U'+ U'6 Pf", to. =to A+to AG to to gto (14)

where

3 —1T'=
Defining Ap:1 Ep and sp; = —g~&;Epj, where
A =A.o,-+c,o, , and expanding to second order in the free
AN t matrix toi becomes
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tp. tp.Ap + t p. Ep + tp.M G tp;

t—p;gtp;(A p;+ep; )+ (15)

panded as

tp; =tp;+tp;Ep; —tp, gtp, sp, +tp, (AG g—)t p, +

If vp, is chosen to vanish for nonantisymmetric NN states
then the antisymmetrizer Ap; becomes redundant and
t p;A p; can be written simply as t p;. Thus tp; can be ex-

(16)

Therefore, to second order in tpf; the ( A +1)-body an-
tisymmetrized optical potential is written as

3 —1U'= y [tQ;+tQ, Ep,
—tp;gtp;sp, +tp, (AG g)tp—, ]

i=1

+(A —1) g tpiEpiGatpJ 2 g tpiGaPtpJEpj 2 g tpispiGaPtpjf f f f f f
A A —1

1 g tp;Ep;G Ptp ep, + .
c4 tJ

(17)

In the limit A ~1, 0' in Eqs. (12) and (17) reduces to the
usual unsymmetrized optical potential. In the limit
cp,.—+0 for the above choice of vp, the optical potential in
Eqs. (12) and (17) reduces to the unsymmetrized optical
potential with the TW substitution for tp,. and t p, , respec-
tively.

The terms in the first set of brackets in Eq. (17) include
the usual "tp" term plus antisymmetrization and binding
potential corrections. The "tp" potential corresponds to
folding the free NN t matrix with the one-body ground-
state nuclear density matrix [2,3]. The second term in
the first set of brackets in Eq. (17) represents a three-body
antisymmetrization correction linear in tp;, which was
calculated in Ref. [5] and shown to be negligible for medi-
um energies. The third term inside the first set of brack-
ets in Eq. (17) represents a higher-order multiple-
scattering correction to the three-body term of Ref. [5].
The fourth term in the first set of brackets represents the
leading correction due to Pauli blocking of the projectile
nucleon (0) in intermediate scattering states (as a result of
the A antisymmetrizer) and binding potential effects on
the struck target nucleon (resulting from H„ in G ). This
fourth term is the one of primary interest here.

The terms in the first set of parentheses in Eq. (17) give
rise to two-body correlation contributions [2,3] while the
terms in the second set of parentheses represent antisym-
metrization corrections to the second-order optical po-
tential of Ref. [3]. The latter should be small and are not
evaluated here.

The antisymmetrized optical potential defined by

An expansion for 0' in terms of tp, . can be readily ob-
tained using Eqs. (17) and (19). Calculations [12] show,
however, that the second term on the right-hand side of
Eq. (19) is negligible for characteristic optical potentials
at medium energies for the moderate to heavy weight tar-
get nuclei considered here and in most analyses (e.g. ,
those in Ref. [13]). This term will not be considered fur-
ther here.

III. APPLICATION OF THE ANTISYMMETRIZED
OPTICAL POTENTIAL

The XX-isobar coupled channels model of Refs [8,14]
was used to calculate an approximation to the fourth
term in the first set of brackets in Eq. (17). In order to do
so the intractable ( A + 1)-body operators, A and G, in
this term were replaced by a projectile nucleon Pauli
blocking factor (Q „,) for infinite nuclear matter and a
modified two-nucleon energy denominator ( I/e) where
the energy of the target nucleon includes kinetic energy
and binding potential contributions appropriate for
infinite nuclear matter [8]. To the order which Eq. (17) is
expanded this resulting correction term,
t fp, ( Q „,/e g) t pf;, can be calcu—lated using the method
for solving the Bethe-Goldstone equation developed in
Ref. [8] where the projectile Pauli blocking factor and the
target nucleon binding potential are assumed to act in in-
termediate NN scattering states. Therefore the equation
to be solved is [subscripts (Oi) are suppressed]

T= U+ UG PT

is related to U' according to

U= O' — ' U'G. PO .

(18)

(19)

(20)

where P is a XX plane wave and v represents the XX-
isobar coupled-channel interaction of Ref. [14]. The re-
sulting t matrix obtained from
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tg=ug (21)

is related to the desired correction term by way of the fol-
lowing expansion:

(20) and (21) are given in Ref. [8].
The projectile Pauli blocking factor for infinite nuclear

matter for NN intermediate states is determined by the
requirements

t =tf+tf ' —g t
e

if Ik,'I &k~
NN

j o' ~' F () 'f ol—
(23)

=tf+tf P«J —g tf+
e

(22)

Thus to second order the difference, t —tf, provides an
approximation for the fourth term in Eq. (17). Technical
details pertaining to the partial-wave solutions of Eqs.

where ko and k', are the intermediate momenta in the lab-
oratory for the projectile and target nucleon, respectively,
and kF is the Fermi momentum of nuclear matter. The
angle averaged values for Q „,, assuming relativistic ki-
nematics, are straightforward to obtain as in Appendix A
of Ref. [8]. The result is

»f
I y &1 1&y—'~N y k&/4'I & kF

0 if Iy&1 —1/y'e~ +yk„'~I &k~ (24)

~NN, AV
ProJ

1 No1+ 1 — 1—
t2 2 2 2

kNN+(y 1)~N kF

y 2+2
~, otherwise,

where kNN is the magnitude of the NN center-of-
momentum (COM) system momentum in intermediate
states,

~N (kNN+ N

where mN is the projectile nucleon mass, and
0

100.0

0.0

/ /
—100.0

—1/2

4e +P
Np

(25)
200.0

320

where P was fixed equal to the incident nucleon laborato-
ry momentum.

For Nb, (1232 MeV) intermediate channels the blocking
effect computed in Eqs. (A7) —(A9) of Ref. [8] was divided
by 2 since in the present application Pauli blocking of the
NA channel occurs only when N is the projectile nucleon
which occurs half the time. Therefore, the angle aver-
aged projectile Pauli blocking factor for NA intermediate
states is assumed to be

100.0

0.0
/

—100.0

500 MeV

gNA, Av i(1+gx5 ) (26)
2 3

where Qg is given in Eq. (A8) of Ref. [8].

IV. RESULTS

Calculations of the medium modified t matrix in Eq.
(21) were done for incident laboratory kinetic energies of
320 and 500 MeV. For the calculations in Ref. [8] expli-
cit Pauli blocking of both the projectile and struck target
nucleon was assumed as well as target nucleon binding
potential corrections since in this previous work the in-

FICx. 1. Nucleon-nucleon —isobar coupled-channel model cal-
culations of the density dependent Re(tp) at 320 MeV (upper
half) and 500 MeV (lower half. On-momentum-shell t-matrix
elements are shown as a function of momentum transfer (q).
The dashed„dash-dotted, and solid curves represent the results
of calculations made with kF=O. O fm ', k+=1.4 fm ' with
Pauli blocking of the projectile and binding potentials acting on
the target nucleon as described in the text, and kF=1.4 fm
with, in addition, explicit Pauli blocking of the target nucleon
(from Ref. [8]), respectively.
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tent was to provide an approximation for the Watson-
type [1] NN effective interaction t matrix. The calcula-
tions presented here are the same as that done in Ref. [8]
except for the use of the projectile only Pauli blocking fac-
tors in Eqs. (24) and (26) rather than the projectile and
target nucleon Pauli blocking factors in Appendix A of
Ref. [8].

The results for the real and imaginary parts of the iso-
scalar spin-independent and spin-orbit NN t matrices
[dominant terms for nucleon —(spin zero) nucleus elastic
scattering] in the NN COM system are shown in Figs.
1 —4. The spin-independent and spin-orbit t matrices are
denoted in the figures by to and to, respectively. The t
matrices are evaluated "on-momentum-shell" where the
magnitudes of the initial and final NN COM momenta
correspond to the value of the incident beam laboratory
momentum in the NN COM system (target nucleon as-
sumed at rest in the laboratory) [8]. The values at zero
density (kF=O) are shown by the dashed lines. These
correspond to the free NN scattering values predicted by
the NN-isobar model [14]. The values corresponding to
k~=1.4 fm ' from Ref. [8] are shown by the solid lines
while the new results computed here for kF =1.4 fm
are indicated by the dash-dotted lines. Except for
Re(to ) the density dependence is weakened by not Pauli
blocking the target nucleon as would be expected. For
Re(to ) removing Pauli blocking on the struck target nu-
cleon actually results in somewhat stronger density
dependence. At energies above 500 MeV the binding po-
tential corrections dominate so that elimination of Pauli
blocking for the struck target nucleon will have minor
effect on the density dependence computed in Ref. [8].

The density dependent interaction developed here was
used to predict 500 MeV proton elastic scattering from

100.0

20.0

0.0

—20.0

~~ o o.o

320 MeV
I I

-20.0

—40.0

(fm ")

FIG. 3. Same as Fig. 1, except Re(t0 ).

V. CONCLUSIONS

The ( A + 1)-body antisymmetrized nucleon-nucleus
optical potential formalism of Ref. [9] was used as a basis

Ca as explained in Ref. [8]. The resulting predictions
for the differential cross section, analyzing power, and
spin rotation parameter [13] were negligibly different
from similar calculations shown in Refs. [8,13] in which
explicit Pauli blocking of both the projectile and the tar-
get nucleon and target nucleon binding potential correc-
tions were assumed. The antisymmetrization effects con-
sidered here should be more important at lower energies.
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FIG. 2. Same as Fig. 1, except Im(t0). FIG. 4. Same as Fig. 1, except Im(t0 ).
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for obtaining a practical estimate of the effects of projec-
tile particle and target constituent identity on the stan-
dard, unsymrnetrized optical potential and in predicted
nucleon-nucleus elastic scattering observables. The an-
tisymmetrized optical potential was expanded to second
order in terms of the free, antisymmetrized NX t matrix.
Struck-target-nucleon Pauli blocking corrections (impli-
cit), target-nucleon binding potential corrections, and
two-body target-nucleon correlation contributions were
obtained as in the usual unsymmetrized theory [2,3]. In
addition, the leading ( 2 + I)-body antisymmetrization
corrections were identified. One of these corresponds to
a three-body exchange correction which was calculated
previously [5] and shown to have negligible effects at
medium energies. Another results in additional medium
modifications to the standard, unsymmetrized optical po-
tential. This correction can be combined with the first-
order term, as in Eq. (22), to produce a new density
dependent NN effective interaction. This latter many-
body correction was estimated by computing 2VX scatter-
ing with a projectile nucleon Pauli blocking factor ap-

propriate for infinite nuclear matter [8].
Density dependent effects were computed at 320 and

500 MeV and were shown to be similar to, but somewhat
weaker than the density dependent effects calculated in
Ref. [8] where both nucleons were explicitly Pauli
blocked. It is recommended that density dependent
effective interactions, which are to be used for nucleon-
nucleus scattering calculations in the context of a nonre-
lativistic multiple-scattering optical potential formalism,
be computed as described here where only the projectile
nucleon is explicitly Pauli blocked in intermediate states
and only the struck target nucleon is acted on by the nu-
clear binding potential in intermediate scattering states.
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