
PHYSICAL REVIEW C VOLUME 47, NUMBER 5 MAY 1993

Consistent dynamical and statistical description of fission of hot nuclei
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The modified approaches for a dynamical (Langevin) and a statistical description of fission of hot nu-
clei (based on entropy as the crucial quantity) proposed in a forthcoming publication are shown to give
consistent values for fission rates in the framework of the liquid drop model for a wide range of excita-
tion energies, angular momenta, and fissilities. An approximate formula for the statistical fission rate is
derived which is more suitable for applications than the exact one. Contrary to the conventional ap-
proach the new statistical description takes into account the positions of the stationary points (ground
state and saddle points) of the entropy (not of the potential), and the position of the scission point. The
fission rate calculated with the approximate formula deviates in all cases of interest by less than 25%
from the long-time limit of the dynamical (Langevin) fission rate. This is a clear improvement over the
conventional model, where these deviations can be orders of magnitude.

PACS number(s): 25.70.Jj

I. INTRODUCTION

In Ref. [1] we calculated neutron multiplicities, fission
probabilities, and (HI, xn) cross sections by matching a
dynamical (overdamped) Langevin equation to the stan-
dard (Bohr-Wheeler with Kramers modification) statisti-
cal model after a certain delay time. Later, we found an
inconsistency in this description which we repair in a
forthcoming publication [2]. Note that this inconsistency
is not related to the long-time limit of the Langevin equa-
tion, which, of course, should agree with the Kramers
stationary limit of the corresponding Fokker-Planck
equation. The inconsistency we are dealing with has to
do with the thermal properties of the system and can be
made obvious by inspecting the equations of the previous
dynamical approach and of the standard statistical mod-
el.

The dynamical description [1] used the overdamped
Langevin equation, which reads

1/2
dq 1 dV T

(1)
dt MP dq MP

Here q is half the distance between the centers of mass of
the future fission fragments, V(q) is the potential energy,
M the mass, y the friction coefficient, and p=y/M the
reduced friction coefficient; P and M are treated as con-
stants in the present investigation. The temperature is
denoted by T, and I (t) is a fluctuating force with
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(1 (t) ) =0 and ( I (t)I (t') ) =25(t t'). —The fission rate
can be calculated from Eq. (1) as

dNf (t)
Rf(t) =

N„, Nf(t) d—t (2)

by counting the number of trajectories Nf(t) which have
reached the scission point at time t. N„, is the total num-
ber of trajectories.

When switching to the statistical branch of the model,
we used in previous work [1] the Kramers-modified
Bohr-Wheeler expression Rf for the fission rate (over-
damped case):

RKBW sd gs+BWCO 6)

f PT f
where

BW 1 tot f
Rf = pf(Etot Bf e)dE .2' cN o

(3)

Here Rf is the standard statistical Bohr-Wheeler fission
rate expression [3], pcN is the level density of the com-
pound nucleus at the ground state (characterized by the
level density parameter a„),pf is the level density at the
saddle point (characterized by the parameter af ), Bf is
the fission barrier, and E«, is the total excitation energy.
The quantities co,d and ~, are the frequencies at the sad-
dle point and at the ground state.

In the long-time limit, the rates calculated from Eqs.
(1) and (3) should approach each other. However, in Eq.
(1) any information on the level density parameters a„
and af is missing, whose ratio is often used as a fitting pa-
rameter when Eq. (3) is applied to describe data. On the
other hand, there is no information on the scission point
in Eq. (3). So one would expect agreement between the
results of Eqs. (1) and (3) in the long-time limit only if the
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level density parameter and the scission point do not play
any role, which is not generally the case.

In Ref. [2] we have removed this inconsistency and
proposed an improved version of both the dynamical and
statistical descriptions of the nuclear fission process and
demonstrated in some model examples the superiority of
the new approach as compared to the old one [1]. In or-
der to make the present paper self-contained, we repeat
in Sec. II how the inconsistency is removed. Whereas we
discussed in Ref. [2] only model examples, we proceed in
the present paper to the description of real nuclei. The
input for calculations for real nuclei concerning the po-
tential energy, the coordinate-dependent level density,
and a derivation of an approximate formula for the
modified statistical fission rate is the content of Sec. III.
In Sec. IV we show and discuss the results of the calcula-
tions and draw some conclusions in Sec. V.

II. CONSISTENT DYNAMICAL
AND STATISTICAL DESCRIPTION OF FISSION

In order to remove the inconsistency between the
dynamical and statistical approaches discussed above, we
have proposed [2] to modify the dynamical equation and
the expression for the statistical decay rate in the follow-
ing way.

Instead of Eq. (1) an equation of motion should be ap-
plied which is governed by the free energy F. The free
energy is related to the coordinate-dependent level densi-
ty parameter a (q) by a formula valid for the Fermi gas
model:

F(q, T)= V(q) —a (q)T

In this way information concerning the level density is in-
troduced into the equation of motion, which now reads

1/2
dq T+ r(t) .
dt TMP aq

' 1/2
dq T BS
dt MP aq

T
MP

(7)

We now turn to the modification of the statistical mod-
el. We have derived in Ref. [2], following Ref. [19], an
expression for the statistical decay rate as the inverse of a
mean first-passage time (MFPT), which not only includes
the coordinate-dependent level density parameter via the
entropy, but also contains, contrary to Eq. (3), the posi-
tion of the scission point q„. Using Eq. (7), we repeat

The driving force K = —(aF /aq ) ~
z. is given by the

derivative of the free energy with respect to the fission
coordinate at fixed temperature. We would like to stress
the fact that it does not matter which thermodynamical
quantities are used in the description. In the following
we prefer to discuss the situation in terms of the entropy
S(E,"„,q) which is a function of q alone because of the
fact that the total excitation energy E,*«(q,S), with its
natural variables S and q, is constant. Then, using
F=E,'„—TS, we obtain the force aF /aq

~
z. —

= T aS/aq, and the Langevin equation reads
tot

shortly the derivation of this formula for the fission decay
rate.

The overdamped Langevin equation (7) is (for constant
temperature) known to be strictly equivalent to the Smo-
luchowski equation for the distribution function d (q, t):

d(q, t)=L (q)d(q, t),a
at (8)

with the Fokker-Planck operator

a as 1 a'
Mp aq aq Mp aq2

(9)

I+= 1 TBS 8 + 1 T~
Mp aq aq Mp aq2

(12)

Acting with the adjoint operator L+ on Eq. (10) and us-
ing Eq. (11)yields

L+(q)t„(q) = —1

or, explicitly,

dS dtn(q) d tn(q) MP+
dq dq dq T

(13)

(14)

Introducing w(q)=dtn/dq, the solution of the homo-
geneous part of the equation is given by
w(q)=C(q)exp[ —S(q)]. The solution of the inhomo-
geneous equation is obtained by the method of variation
of the constant C(q), and applying the proper boundary
conditions for fission, the reciprocal of this solution is in-
terpreted as the fission rate R M„I,~..

RMppr= ' f "dy e '«'f dze
gS

(15)

The outer integration goes from the ground state q, to
the scission point q„position.

By introducing the entropy in the description of hot
nuclei instead of the bare potential, we have thus been
able to derive a dynamical equation containing the infor-
mation on the level density and a statistical decay rate

We obtain a rate formula from the inverse of a mean
first-passage time tn(q). The latter is calculated from the
conditional probability density Pn(y, t;q, t =0) for reach-
ing the point y E0 at t if the trajectory started at t =0 at
q EQ. Here Q is the domain of the potential before the
nucleus fissions. The probability density which defines
the mean first-passage time by

tn(q)= f dt f dy Pn(y, t;q) (10)
0 0

obeys the Smoluchowski equation (8) in the variable y for
the fission process. Because we are interested in the vari-
able q, we need the so-called backward equation which
acts on the second variable q. This equation is governed
by the adjoint Fokker-Planck operator I.+:

a
Pn(y, t;q) =L+(q)P(y, t;q),

Bt

with
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formula which includes the position of the scission point.
Thus the inconsistencies concerning formulas (1) and (3)
are removed by replacing them by the physically more
correct formulas (7) and (15).

-0.2

-0.1—

III. INPUT
FOR CALCULATIONS FOR REAL NUCLEI

In order to make calculations for real nuclei rather
than for model examples as in Ref. [2], we have to specify
the potential energy and the coordinate dependence of
the level density parameter.

a
0.0—

0.1
0.3 0.5 0.7 0.9 1.1

q, q.d
1.3 1.5 1.7

A. Potential energy surface

Because we are dealing with hot nuclei, where we think
that shell corrections are of minor importance, we have
chosen to use the liquid drop model in the version of
Myers and Swiatecki [4]. The potential energy is given
by

V(A, Z, L, q)

=a2(1 kI )A —(B,(q) —1)

Z2+c&, [B,(q) —1]+c„L A 8„(q) .
g 1/3 (16)

Here we have dropped terms which do not depend on the
deformation coordinate q. The parameters in Eq. (16) are
specified to be [5]

az =17.9439 MeV, c3 =0.7053 MeV,

k = 1.7826, c, =34.50 MeV .
(17)

f
Essp

0.2599—0.2151X—0. 1643X
—0.0673X if X (0.6,

0.7259 Y —0.3302Y +0.6387Y

+7.8727Y —12.0061 Y if X)0.6 .

(18)

We do not use finite-range corrections in the potential
because in constructing the entropy we have to use also a
formula for the level density parameter (Sec. II C), which
for consistency should be on the same degree of accuracy
as that for the potential, and we are not aware of level
density studies taking into account finite-range effects.

Our calculations are based on the c, h, and a parame-
trization [6] for the quantities B,(q), B,(q), and B„(q),
which depend on the deformation coordinate q. In the
present paper, we only deal with symmetric fission
(a=0). If one assumes (as we do in this paper) that the
motion is overdamped, the system follows the bottom of
the fission valley, which then. characterizes our one-
dimensional potential. It turns out that the bottom of the
fission valley is very close to the sequence of the saddle
points of different nuclei, as shown in Fig. 1. As long as
h,d is a single-valued function of q,d, we can parametrize
B, as a function of q in the form inserted in Fig. 2.

To find 8, we use an approximation [7] for the fission
barrier Bf as function of the fissility:

FIG. 1. Diagram shows the positions of the saddle points in
the (h, q) coordinates calculated in the framework of the liquid
drop model of Refs. [4,5] (open circles, from Ref. [20]). The
bottom of the Assion valleys and the scission lines are also
shown for "'U and Pb; see Ref. [21].

Here X is the fissility parameter, Y =1—X, and E„ is
the surface energy of a spherical nucleus with fissility X.
The dependence of the saddle point position q,„upon the
fissility parameter, which completes our single-coordinate
parametrization of the potential energy for zero angular
momentum, is shown in Fig. 3.

The quantity 8„(q) involved in Eq. (16) is proportional
to the inverse rigid body moment of inertia and reads, in
the (c,h) parametrization,

II
a d q )0.375,

B =Jy in all other cases

Ji=c [1+c +48,„[2c + 4, 8,„c 1]/35]/2, — (19)

1.4—

1.3—

1.2—
Bs=l

1.0—

0.9
0.0 0.3 0.6 0.9

q, q.d

FIG-. 2. Dimensionless coefficient of the surface energy for
the saddle points of the liquid drop model (open circles) and the
parametrization B,(q) (solid line and formulas) used in the
dynamical calculation are displayed.

J~~
=c {c +48,h[ —,', B,hc —I]/35] .

Detailed formulas for the shape function 8, ( hhc) and for
our collective coordinate q(c, h) as a function of c and h
can be found in Ref. [7]. To reduce the two-dimensional
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1.2
a(q)=a, A+a2A ~ B,(q) . (20)

1.0

0.8

Following Ref. [9], we select among the different possibil-
ities the weakest coordinate dependence which is con-
sistent with the data. This corresponds to [10]

0.6
a] =0.073 and a~ =0.095 . (21)

0 4 () exact—q~=0.375+0.875(1+exp(20(X-0.74)))-~
0.2

0.3 0.4 0.5 0.6 0.7 0.8
X—Zz/A/(51 0(1 1 78 Iz))

0.9 1 .0

problem to our one-dimensional one, we use as simple pa-
rametrization the ansatz inserted in Fig. 4.

Looking at Figs. 1, 3, and 4, one realizes that our one-
dimensional approach should break down for lighter nu-
clei because h,d(q, d), q,d(X), and h,d(c,d) in this case
cease to be single-valued functions. Therefore our one-
dimensional parametrization works only if X 0.55.
This, however, does not cause problems in the actual cal-
culations because such light nuclei fission mainly at high
angular momenta, which effectively shifts the fissility to
larger values.

The simple parametrizations above allow very quick
calculations for all nuclei.

B. Coordinate dependence
of the level density parameter

For an adequate description of the fission process, the
coordinate-dependent level density parameter is as im-
portant as the potential energy surface. Leaving out the
curvature corrections, the smooth part of the level densi-
ty parameter as a function of q has the form [8]

0.1

FIG. 3. Dependences of the distance between the centers of
mass of the future fragments at the saddle points q,d (open cir-
cles) on the fissility are shown; see Ref. [20]. Also shown is the
corresponding parametrization (formula and solid line) used to
construct B,.

For the demonstrative purpose of the present paper,
the specific choice of V(q) and a (q) does not matter, but
it will be certainly very important when we confront [11]
our results with experimental data concerning fission
probabilities, neutron multiplicities, and (HI, xn) cross
sections following the lines of Ref. [1].

With a given choice of the level density and the poten-
tial, the entropy S is now specified as a function of mass,
charge, angular momentum, coordinate, and total excita-
tion energy:

S(A, Z, L, q, T)=2+a (A, q)[E,*„—V(A, ZL, q)] .

(22)

There is no further free adjustable parameter in the sta-
tistical and dynamical parts of the model with the excep-
tion of the reduced friction parameter P, which enters in
both the statistical and dynamical approaches and which
we expect to be universal for all nuclei. Thus our model
goes beyond the standard macroscopic statistical model
approach, in which a„, af /a„, and the fission barrier Bf
are treated as adjustable parameters; for reviews, see, e.g. ,
Refs. [12,13]. Our approach should also have conse-
quences when comparing to former dynamical treat-
ments; see, e.g., Refs. [1,14—17].

C. Approximate formula for the statistical fission rate

In the case of combining dynamical calculations with
the statistical model, along the lines of Ref. [1], it is im-
possible (for reasons of computer time) to use Eq. (15) as
it stands, because one would have to calculate the double
integrals in Eq. (15) many times, when entering the sta-
tistical branch of the model. To avoid this we replace Eq.
(15) by an approximate expression which is derived by
quadratic expansions of the entropies in Eq. (15) after
having extended the inner integration to infinity (y ~ ac )

and setting in the outer integration q, ~—~. The re-
sulting approximate expression for the decay rate is

0.0—

-0.1 & saddle points—h = -0.07(c-1P

R, = exp[ —2[a(q, )(E,*„—V(qs, ))] '
]

2m

Xexp[2[a(q, d)(E,*„—V(q,d)}]' . ]

X2[1+erf[(q„—q,d)co,d&M/2T ]]
where

(23)

-0.2
0.9 1.3 1 .5 1 .7

c, csd
1.9 2.1 2.3

FIG. 4. (h,d, c,d) correlation of the saddle points (open cir-
cles, Ref. [20]) in the liquid drop model and the analytical an-
satz (formula and solid line) are shown, by which we reduce the
problem to a one-dimensional one.

erf(x) =2/&m jodt exp( t )—
is the error function. The saddle point and the ground
state positions are defined by the stationary points of the
entropy and not, as in the conventional approach,
by the potential energy. Also, the frequencies

~,.=V'l&" l,.T/M»d ~„=VS,'d T/M are now calcu-
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lated from the second derivative of the entropy at the sta-
tionary points. From this formula the inhuence of the
scission point is clear: If the scission point is far away
from the saddle point, the error function goes to unity
and the third line of Eq. (23) also goes to unity. If saddle
point and scission point coincide, the error function is
zero, which leads to an enhancement by a factor of 2 as
compared to the situation when the scission point is far
away from the saddle point. We should mention that in
the Langevin calculations we use a coordinate-dependent
temperature, whereas in the approximate formula the
temperature at the stationary points should be used.
There is, however, no significant change in the rates if we
use the temperature at the saddle or at the ground state.

The well-known expression of Kramers [18], Rx, for
the overdamped case is obtained from Eq. (23) if the level
density is independent of the coordinate and the scission
point is far away from the saddle point and
E,*„))V(q,d ):

RK = ' exp[ [
—V(e.d )+ V(e,.) ]/&], (24)

where cos, =+Vs, /M and co,d
=Q V"

~,d/M are now
related to the curvatures of the potential at the stationary
points.

IV. RESULTS AND DISCUSSION

We start with discussing results of the calculations by
inspecting Fig. 5. In the conventional theory [18,19], the
crucial quantity which determines the fission rate is the
difference of the potentials at saddle and ground state di-
vided by the temperature [see Eq. (24)], whereas in the
new approach this role is played by the difference in the
corresponding entropies such as in the more developed
statistical model [10]. Therefore we compare in Fig. 5(a)
the potential energy V(q) over the temperature with the
negative value of the entropy —S(q) (the entropy is nor-
malized to be zero for the ground state of nonrotating nu-
clei) as functions of the deformation coordinate q for the
example ' Ac. One observes not only a change in the
barrier heights, but also a shift of the stationary point (re-
lated to the saddle point configuration) of the entropy in
comparison to that of the potential due to the coordinate
dependence of the level density parameter. This explains
(in addition to the infiuence of the scission point [see Eqs.
(15) and (23)] ) the difference of the results of the modified
model [Eqs. (7) and (19) or (23)] as compared to the stan-
dard one [cf. Eq. (3)].

In Fig. 5(b) some Langevin trajectories are plotted as
functions of time. In all following examples, we use a re-
duced friction parameter P=15X 10 ' sec ', which cor-
responds to the overdamped case. One observes, for in-
stance, that a fissioning trajectory (dotted line) can cross
the saddle point position q,d several times (not only once)
before it decides to fission. Following Ref. [6], it turns
out that the scission takes place at essentially the same
position (q„=1.19) for all nuclei. This is the position
where the collective motion stops to stretch and the neck
shrinks. If, as is the case for lighter nuclei (such as Pb or
Os), the scission point is close to the saddle point, one can

I 1 I

&&9Ac, L=30,

Etot = 108 MeV

0-

-10

160
(b)

120-

80—

'~ 40-

gS sd
I I I

2i9Ac, L=30,
Ef,t=108 MeV

0
0.0 0.3 0.6

q
1.2

FIG. 5. (a) Potential divided by the temperature, V/T (dot-
ted line), and the negative entropy —S (solid line, normalized to
be zero for the ground state of nonrotating nuclei) as a function
of the separation coordinate are plotted for ' Ac and angular
momentum L =30 and E„,= 108 MeV. (b) Three typical
Langevin trajectories for this case are shown. The vertical lines
characterize the positions of the ground state (gs) and saddle
(sd) of the entropy.

according to the above behavior of the Langevin trajecto-
ry understand the importance of the scission point in this
case. Whereas a trajectory (labeled 1 in the figure) for a
light nucleus, where q,d

——q„=1.19, now is counted as a
fissioning one (because it crosses q„), it is not counted as
fissioning in the standard statistical approach. This ex-
plains why in the improved approach [see Eq. (23)] the
fission rate is enhanced as compared to the conventional
model in cases where the scission point is close to the sad-
dle point.

We show as a further example the potential over the
temperature and the negative entropy as function of q in
Fig. 6(a) for the system Bi. The corresponding forces
governing the old ( —dV/dq) and modified (TdS/dq)
dynamical descriptions are also shown in Fig. 6(b). A
shift of the stationary position of the saddle point
configuration due to the coordinate dependence of the
level density is again clearly observed.

In Fig. 7(a) the superiority of the modified description
over the old one is demonstrated. In the old description,
the stationary value of the dynamical rate Rpdy calculat-
ed with Eq. (1) deviates an order of magnitude from the
Kramers-modified Bohr-Wheeler rate R& [Eq. (3)]. In
the modified description, the stationary value of the
dynamical rate Rd„„[from Eq. (7)] is close to the new sta-
tistical model rate RM„p~ [Eq. (15)]. In the present exam-
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— Rapp
~40—
P30
0

'm 20—
~ H

10-
—Rdyn

RMFpT
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O
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a
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0
0.0 0.3 0.6

2o9Bi,L=O,Etot——236MeV

0.9 1.2

pie, the approximate rate R, [Eq. (23)] even agrees with
the long-time limit of the Langevin calculation; this,
however, is accidental (see the discussion following Fig.
8).

The fact that in the example above the rate RM„pT is
slightly higher than the stationary value of the dynamical
rate Rd „ is somewhat surprising because we have ob-
served in another example in Ref. [2] that Rd~ & RMpTp
(see in this respect also Fig. 10). In order to understand
at least qualitatively that both these situations can occur,
let us discuss the average time of the fission process. This
is composed of three times: (i) the time during which the
equilibrium fluctuations around the ground state are es-
tablished r„, (ii) the average lifetime of the system in the
vicinity of the ground state, rq, and (iii) the average des-
cent time from saddle to scission, ~, . Not all fission
events reach all three times, because there is a certain
probability P& that a fission event occurs during ~„, thus
avoiding ~ . But all fission events come through ~, . The
average fission time then is of the form

«) =r„+(1 P, )r, +r, . — (25)

If we now identify ( t ) with the mean first-passage time
whose inverse is the rate RM„pr [Eq. (19)] and identify
the stationary value of the dynamical rate with
Rd„„=(rq+r, ) ', we find

FIG. 6. (a) Same as in Fig. 5(a) but for Bi at L =0 and
E,*„=236MeV. (b) The corresponding forces calculated from
the potential (

—dV/dq) and the entropy (TdS/dq~ ~ ) as
tot

function of the separation coordinate q.

FIG. 7. (a) Fission rates of the conventional model R vd„„[Eq.
(2)], Ri,pp [Eq. (3)] are compared to the results of the modified
model: Rd~„[Eq. (7)], RMFpr [Eq. (15)], and R,pp [Eq. (23)] for
the example of Fig. 6. (b) The distribution of particles from the
Langevin calculation after a long time (2 X 10 ' sec, open cir-
cles) are compared to the equilibrium distribution using the po-
tential (dotted line) and the entropy (solid line). The curves are
normalized to each other at the peak position.

RMFPT

R dyn

Vq +'TS

r„+(I P, )rq+r,—

1

1 —(Pi —r„/rq )[1/(1+r, /rq )]
(26)

Now it is obvious that if P, ( ( r„)/r one finds
R MFpT & R dye 7 or alternatively one has R MFpT ) dye
P, ) (r„)/rq From this q. ualitative discussion, it is clear
that both situations are possible (see the actual examples
in Fig. 10).

In order to compare the new with the old approach, it
is also instructive to look at the distribution of particles
in the vicinity of the ground state after a long time
(2X10 ' sec). In Fig. 7(b) we compare the distribution
of the dynamical calculation [Eq. (5)] with the equilibri-
um distributions using the potential energy and entropy,
respectively. Only the equilibrium distribution with the
entropy is close to the dynamical one. Now we discuss
the dependence of the rate of the dynamical long-time
limit on the excitation energy, angular momentum and
fissility. These results are compared with the "exact"
[Eq. (15)] and approximate [Eq. (23)] modified statistical
rate formulas.

In Fig. 8 we show the excitation energy dependence of
the quasistationary limit Rd» of the Langevin dynamics
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FIG. 8. Dynamically calculated fission rates Rdy (open cir-
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right axis) are shown for Bi (L =0) as function of the excita-
tion energy.
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which spans two orders of magnitude. We compare it to
the statistical model rates RM„PT and R,pp by plotting
the ratios RM„pT/Rd„„and R,pp/Rdy„. The deviations
of the statistical rates are of the order of less than 20%,
and also R M„PT and R,pp

deviate from each other by this
amount. From Fig. 8 we can also see that the perfect
agreement of R

pp
with Rdyn at the particular energy

E*=236 MeV [displayed in Fig. 7(a)] is purely acciden-
tal.

The same comparison for the different rate formulas is
made in Fig. 9 for the angular momentum dependence for

Bi at E*=108 MeV. Only at high angular momenta
does one have more than 25% deviations. In calculations
at high angular momenta along the line of Ref. [1], one
would use the dynamical model alone and not switch
over to the statistical branch.

In Fig. 10 we compare the different approaches as a
function of the fissility using I =0 and E*=288 MeV.
For smaller fissilities we find that RM„PT and R

pp
are

larger than Rd „, whereas the opposite is the case for
large fissilities. Again, the deviations from Rd „ for not
too small fissilities are less than 25%. At small fissilities
(X ~ 0.55), the model starts to be not very accurate, as al-
ready discussed in Sec. III A.

FIG. 10. Same as in Figs. 8 and 9 but as function of the fissil-

ity (L =0 and E,*„=288MeV).

V. CONCLUSIONS

In order to describe heavy-ion-induced fission of hot
nuclei, we propose a model that combines a dynamical
Langevin description with a statistical description which
is obtained as the quasistationary limit of the dynamical
treatment. The idea for such a treatment and prelimi-
nary calculations were published in Ref. [1]. In Ref. [2]
we removed some inconsistencies of Ref. [1] by introduc-
ing information on the level densities into the dynamical
equation and by including the scission point position in
the formula for the statistical decay rate. This consistent
description is possible by introducing the free energy or
alternatively the entropy, constructed from a coordinate-
dependent level density parameter, as the crucial quantity
into the theory. In Ref. [2] we showed the superiority of
the modified approach by some very schematic model ex-
amples.

In the present paper, we have performed a systematic
investigation of the new approach, which can be con-
sidered as a phenomenological attempt to include the lev-
el densities in the Langevin equation, by considering real
nuclei. Whereas in the conventional approach (Langevin
dynamics governed by a potential versus Kramers-
modified Bohr-Wheeler rate), the deviation between the
stationary limit of the dynamical rate and the statistical
rate can be an order of magnitude, we now find within
the new approach that this deviation in all cases of in-
terest (dependences on excitation energy, angular
momentum, and fissility) is less than 25%.

Therefore we propose to apply the model of the present
paper to calculations such as those in Refs. [14—17] and
to systematic investigations, along the lines of Ref. [1],of
fission probabilities, neutron multiplicities, and (HI, xn)
cross sections of hot fissioning nuclei produced in heavy-
ion collisions. Such investigations are in progress.
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