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signer-Thomas spin precession in polarized coincidence electronuclear scattering
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The role of the Wigner-Thomas precession in nucleon recoil polarization measurements in coincidence
electron scattering processes is examined. The necessary formalism is developed within the framework
of the Jacob-Wick method, and then applied to two processes: the pseudoscalar electroproduction o6'a
nucleon and the deuteron two-body electrodisintegration.
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I. INTRODUCTION AND SUMMARY

The planning and construction of new electron scatter-
ing facilities has revived interest in coincidence electronu-
clear scattering, and in polarization measurements in par-
ticular. In recent years we have seen a number of
theoretical papers on this issue [1—5]. Most of the pa-
pers written so far employed the center-of-mass (c.m. )

frame because of the relative simplicity it offers to the
theorist. But experiments are done in the laboratory (lab)
frame. Hence, if one is to make contact between theory
and experiment, one needs explicit Lorentz boost trans-
formation laws for the observables. The transformation
properties of the unpolarized structure functions in coin-
cidence electronuclear scattering were worked out by
Walecka and Zucker [6] a long time ago, and were re-
cently brought back into the spotlight [1,2,5]. Analogous
transformation properties of the polarized structure func-
tions were mentioned in a paper by Dmitrasinovic and
Gross [2], but were neither derived nor spelled out in de-
tail. In this frankly pedagogical paper, we examine the
c.m. ~lab boost transformation properties of the coin-
cidence polarized inelastic electron scattering structure
functions; in that sense this paper is a followup to Ref.
[2].

The difference between the Lorentz boost transforma-
tion properties of the unpolarized and polarized structure
functions is due to the presence of an explicit
specification of the spin state of at least one of the parti-
cles. In all other regards the polarized and unpolarized
structure functions are identical. The spin state of a par-
ticle is specified by a spin density matrix, which in turn
can be decomposed into a sum over spherical, or Carte-
sian, spin-matrix tensors with definite rotational transfor-
mation properties. The expansion coefficients themselves
have the exactly opposite (inverse) transformation prop-
erties under rotations to the tensors multiplying them, re-
sulting in a scalar density matrix. Thus, for particles
with spin —,, three expansion coefficients, forming a polar-
ization pseudovector s, are sufficient for the complete
description of their polarization states. For higher spin
values one needs higher tensor coefficients. In this way
we have assigned another (pseudo)vector (tensor) besides
the three-momentum p, to the observed particle and,

hence, also to the polarized structure function. The spin
dependence of the Lorentz boost properties of the polar-
ized structure functions enters through the difference be-
tween the Lorentz boost transformation properties of the
spin three-vector (tensor) and the momentum three-
vector. So we must first determine the Lorentz boost
transformation properties of the spin vector (tensor) be-
fore we can look at the transformation properties of the
polarized structure functions.

In order to do that, we note that, in the rest frame of
the particle, the density matrix is normalized: trp= l. It
follows that the polarization vector (tensor) is also nor-
malized to unity (s =1), in that same frame. Then, one
uses the three-vector s with a vanishing zeroth (time)
component so =0 in the rest frame of the particle as the
definition of the covariant polarization four-
(pseudo)vector s". This normalized (s =s„s"=—1)
four-vector is clearly spacelike and orthogonal to the
four-momentum p of the particle: s.p =s~"=0. TheP
four-momentum p„ is manifestly a dimensional quantity
(p =m, where m is the mass of the particle). We intro-
duce the four-velocity v„=(l/m )p„ in order to have a
dirnensionless quantity whose transformation properties
can be compared with those of the spin four-vector s„.
Bemuse of the orthogonality between U„ad s„, and their
timelike and spacelike natures, respectively, we expect
that their Lorentz transformation properties will be very
different. So even if the three-vector parts of the two
happen to be parallel in some given frame of reference
(the c.m. frame in our case), they will not be parallel'
after a Lorentz boost along an axis different from the
direction of motion of the particles. We have thus estab-
lished that the simple physical reason for the different ro-
tation rates of the three-vector parts of the momentum
and the polarization four-vectors under a Lorentz boost
is their orthogonality and their timelike and spacelike na-
tures, respectively.

The contents of this paper are as follows. The observ-
able consequences of this so-called Wigner-Thomas pre-

The only known exceptions to this rule are the massless parti-
cles. We will not be concerned with them here.
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cession in coincidence electron scattering processes are
determined in Sec. II of this paper, for the polarized
(e, e'N ) reactions calculated in the c.m. frame and within
the Jacob-Wick [7] helicity formalism. Specifically, it is
shown that only the recoil polarization observables are
affected by the Wigner-Thomas precession due to the
c.m. ~lab boost. Then, in Sec. III, the spin precession
angle is calculated as a function of the boost parameters
involved in two diff'erent ways: first following Ref. [9]
and in agreement with Ritus [10],second, following Som-
merfeld [11],we show that the spin precession angle, with
respect to the rotated direction of particle motion, is just
the so-called hyperbolic defect of the triangle formed by
the three-vector parts of the four-velocities describing the
c.m. ~lab, c.m. —+rest, and the lab —+rest boosts. This re-
sult is used to show that the total spin rotation angle is
always smaller than the three-velocity rotation angle. Fi-
nally, in Sec. IV, these general results are applied to the
N(e, e'N )abreaction. and the numerical results of an illus-
trative example are shown to be non-negligible, in con-
trast to the d ( e, e'N ) reaction.

II. FORMALISM

In order to set the notational conventions, we review in
Sec. II A the basic results of the polarization observables
analysis in (e, e'N) worked out within the Jacob-Wick
formalism in Refs. [1,2]. Then, in Sec. II B we work out
the general Lorentz boost transformation properties of
two-body helicity amplitudes and of the polarization ob-
servables in coincidence electron scattering.

A. Review of the polarization observables
in coincidence electron scattering

The general form of the inelastic coincidence electron
scattering cross section for arbitrary polarization of the
target and jor ejectile, with two particles in the final state,
in the "mixed" frame, i.e., with electron variables in the
laboratory and the hadronic variables in the center-of-
mass frame, is [2]

2
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where p &
is the absolute value of the ejectile three-momentum in the c.m. frame and E& is the corresponding ejectile en-
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The kinematic variables entering this cross section are
the total c.m. energy of the system W=+(P+q) (here

P„ is the target nucleus four-momentum), the negative
four-momentum transfer squared Q = —

q =
qL

—v, the

Similar conclusions, up to phase factors, ought to hold in

nonrelativistic polarization formalisms defined in the "mixed
frame, " such as that of Arenhovel [5]. The formalisms
developed in Refs. [3,4] were constructed in the lab frame only,
and hence require no additional boosting.

absolute value of the momentum transfer three-vector in
the lab frame qI =

~qL ~, the energy loss v=E E', the in-—
itial state electron energy E and the final state electron
energy E' in the lab frame, the electron scattering angle 0
in the lab frame, the ejectile opening angle 0& in the c.m.
frame, and the azimuthal angle P (see Fig. 1). Here
a=1/137 is the fine structure constant. The only as-
sumptions entering this result are one-photon-exchange
approximation and a conserved hadron electromagnetic
(EM) current. Parity conservation has not been assumed.

The response functions R's are functions of W, Q, and
8&, but not of P, as long as the target polarization is
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FIG. 1. Geometry of the coincidence electrodisintegration or
electroproduction process showing the electron scattering
plane, the ejectile plane, and the two coordinate systems in the
ejectile plane: (x',y', z') defined by the virtual photon's three-
momentum qL which is parallel to the z, z' axes, and {x",y",z")
where z" is along the ejectile three-momentum p, . The axes
y', y" are perpendicular to the ejectile plane. The axis y is per-
pendicular to the electron scattering plane.

FIG. 2. Diagram representing the three frames of reference
discussed in the text connected by the three Lorentz boosts that
determine the Wick helicity angle m,' see text. The triangle is
not Euclidean, and so the sum of inner angles is different from

The angles a,P, y are not the Euler angles of the Wick-
Wigner precession.

ties of the two-body helicity states under the boost
c.m. ~lab (see Fig. 2).

1
p;/(j )= g g ~g~(j )rJM(j),j+ J M

(3)

where SJ is the spin value of the jth particle in the initial
or the final state, rJ~(j) is the Mth component of the
spherical ITO of rank J, and TzM(j ) are the correspond-
ing components of the polarization spherical ITO whose
Lorentz boost transformation properties we are seeking.
Note that particles No. 2 in their respective two-body
helicity states (the target particle in the initial state and
the "residual nucleus" in the final state) carry a tilde
above the polarization ITO in order to indicate this fact.

As pointed out in the Introduction, the spin density
matrices are normalized to unity (trp= 1) only in the rest
frame of the particle. The measurements are done in the
lab frame, while the theory is usually calculated in the
c.m. frame. Hence, we need the transformation proper-

For more about "particle No. 2" in the Jacob-Wick formal-
ism, see Sec. II C 1 of Ref. [2].

specified with respect to the coordinate system (x',y', z')
(Fig. 1) and recoil polarization is measured with respect
to the (x",y",z") (Fig. 1) coordinate system. The struc-
ture functions R are linear combinations of functions
R,&, which, in turn, are traces of products of helicity
transition matrices J„Jb [see Eq. (32) of Ref. [2]] and the
density matrices of the initial and final states:

R.b 41r'tr—IpIJ,p Jb I (2)

where lr=M, M2/4m W' and M, 2 are the masses of the
particles number 1 ("ejectile") and 2 ("residual nucleus" ),
in the final state, respectively. Here the a, b indices stand
for the helicities of the virtual photon. The density ma-
trices can be expanded in terms of irreducible tensor
operators (ITO's) [see Eqs. (37), (38), and (45) of Ref. [2]]:

B. Lorentz boost transformation properties
of polarization observables

It has been known for a long time [8,9] that the effect
of the three successive Lorentz boosts depicted in Fig. 2
on any one-particle-at-rest state [p i, A, & is equivalent to a
pure rotation:

U '[h(p, )]U '[l]U[h(p, )]~p", ;A, &=R[r]~p", ;k&, (4)

where p» ={m,o) is the four-vector p, in the rest frame,
h(p, ) is the rest~c. m. boost, l is the lab~c. rn. boost, and
h(p, ) is the rest~lab boost. Here, p„p, are the ejectile
three-momenta in the c.m. and lab frames, respectively.
Wick [8] has shown that the application of the three
boosts on the left-hand side of Eq. (4) on a one-particle-at
-rest state as seen from the c.m. frame leads to a one-
particle-at-rest state, as seen from the lab frame. Thus,
the relation between the one-body helicity states as
viewed from the lab and c.m. frames is a simple rotation:

and D~*,~[r] are Wigner rotation matrices' of dimension
(2s + 1)X (2s + 1) for a rotation about the r axis through
an angle co=r = ~r~, with respect to the coordinate frame
defined by the direction of motion of the particle. Here s
is the spin of the particle and summation over repeated
indices is understood. In other words, co is the precession
angle with respect to the rotated direction of motion.

4For a comprehensive review of Wigner matrices, with a de-
tailed comparison of various conventions present in the litera-
ture, see Ref. [12]. We keep the Jacob-Wick [7] conventions in
this regard (see footnote 11 in Ref. [7]).
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This is because, in general, the unit three-vectors p; and

pl that specify the direction of motion are not parallel in
two different frames of reference.

Wick [8], MacFarlane [9(b)], and Ritus [10] have writ-
ten down various formulas describing the angle co in
terms of three independent boost parameters, but only
Ritus' turned out to be useful for our application. In the
next section we will concern ourselves with deriving ex-
plicit expressions for the Euler angles that describe the
rotation vector r in terms of the boost parameters for
h(pi ), I and h(pi), and with proving some general prop-
erties of these angles. So we leave this topic for now and

I

turn to finding the consequence of this rotation on the po-
larization observables. First, we work out these conse-
quences for the two-body transition amplitudes, and then
use them in the derivation of the polarization observ-
ables' transformation properties.

In order to find the Lorentz transformation properties
of helicity two-body transition amplitudes
(A, 3A,4~T~A, ,X2), we note that these amplitudes are con-
structed from direct products of single-particle helicity
states sandwiching the Lorentz scalar transition operator
T. This uniquely determines the transformation law of
the amplitudes:

(A3A4~T" ~A, ,A2) =D,' [r4]D,' [r3](A@4~T' ~AiJ z)D, ' [r,]D,' [r2]
4 4 3 3 1 1 2 2

(s3)f ('4~~ c m (s2)
( A3A4~D

' [r ]3C3D
' [r4]T' D ' [r ]iD ' [rz]l&i&2) (6)

Here, the superscript label on the T matrix indicates the frame of reference in which the matrix element is evaluated.
Note that each Wigner D matrix has its own, in principle different from other, rotation vector r which depends on the
specifics of the reaction and the kinematics, such as the masses and momenta of the particles and the direction of the
boost.

To find the consequences of this transformation law on our observables [Eq. (2)], we remember that these two-body
At

helicity amplitudes form matrices J, and Jb that appear in the definition of the observables R,b [Eq. (2)]. Use Eqs. (2)
and (3) to find, for particle j = 3 or 4,

1R,b ( TJM (J ) )= tr [rJM (J )Mab ], (7)
J

where M,b
=J,p;Jb is the "eff'ective density matrix" for particles 1 (the virtual photon) and j= 3 or 4 (ejectile, or residu-

al nucleus). Similarly, for j=2,

Rab( JM(J)) tr[+JM(J)Mab ]J+ (8)

where M,'b =J bpf J, is the "eff'ective density matrix" for particles 1 and j =2 (target) and the tilde on T&M(2) denotes
the fact that this, just like particle 4 in the final state, is a particle No. 2 in a two-body helicity state. The j =4 version
of Eq. (7) should also have a tilde. These two-particle "effective density matrices" are just direct products of two one-
particle "effective density matrices, " whose irreducible components have well-defined transformation properties under
rotations. We could rely on the knowledge [12] of those transformation properties and simply write down the transfor-
mation properties of the observables, but we give an illustrative example instead. Write M, b out explicitly for j =3,

& ~31M.b ~3 &
= g g & ~3~41 T

I «2 & & ~2IP;1~2 & & b~31 T'I ~3J 4 & & ~4 Pf I
J 4 &,

A 414

and use Eq. (6), as well as the matrix identity 1 =DD (unitarity of D matrices), to find

& ~3~Mab ~~3 & Dbd [rl ]DR. p [ 3 ](P3~Mad ~P3 &D '3' [r3 ]D [ri l (9)

Analogous relations for j =2,4 are easily derived. Note that Eq. (9) is nothing but a similarity transformation of a ma-
trix with two different kinds of indices, i.e., a direct product of matrices, as advertised. This similarity transformation
has exactly the form of an inverse rotation [12]. The trace in Eqs. (7) and (8) projects out the Mth component of the J-
rank ITO R,'b (TJM(3)) from M, b for fixed indices ab The matrix M. ,b can now be written in the form of a sum over
products of these coefficients and their corresponding ITO s, just like Eq. (3). The irreducible tensor operators rJM(3)
have well-known [12] transformation properties under inverse rotations:

+JM(3) M'M[r3] JM'(

and, as pointed out in the Introduction, the expansion coefficients, in this case the quantities R,'b ( TJM(3) ), have exactly
the opposite (inverse) transformation properties. Now go back to Eq. (7) and insert Eq. (9) into it, to find the following
Lorentz boost transformation laws for R,b( T&M(3) ):

R,'b (T+M(3))=Dbd' [ri]D',' [r3]R'd™(TJM(3))D„'[ri] (10)
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and an analogous relation for R,b( TJM (4) ). In the initial state we have

R,'b (TJM(2)}=Dbd' [r, ]DM,'M[r2]R d™(TJ~.(2)}D,' [rl] .

In the special case when r& 2=0, as it will turn to be in
our electron scattering application, Eqs. (10) and (11)
simplify to

tation are as follows:

L(v)=exp( iv—K)=cosh( —,'v)+v tr sinh( —,'u), (13)

Rgb (TqM(3)) =DM'M [r3]Rgs '(TJM (3)),
(12)

R,'b ( T&M (4 ) ) =DM, '~ [r 4 )R;&™( TJ~ ( 4)),
due to the identity D"'.(a=O, P= Oy=O)=5, where
a, P, y are the Euler angles. Equations (10), (11), and (12)
are the principal results of this section.

III. GENERAL PROPERTIES
OF THE WIGNER ROTATION

We are left with the task of evaluating the Euler angles
a, P, y corresponding to r(l, p, ) for various values of l, p&

in Eqs. (4) and (5). We will proceed along two routes
leading to two different-looking, but equivalent, forms of
the final result.

where K=i/2o, v=~v~, v=v/u, and o are the Pauli
matrices. The rotation matrices, on the other hand, are

R ( r ) =exp( i r J—
) =cos( ,' r ) i—r—o sin( —,

' r ), (14)

where J= 2cr,—r= ~r~, and r=r/r.
Now insert the explicit two-dimensional representation

Eq. (13) of the three relevant boosts, denoting them
u&~h '(p, ), u2~l ', u3~h '(p, ), and of the rotation
[Eq. (14)] into Eq. (5}. It is readily shown [9(a)] that the
product of any two boosts v&, vz can be decomposed into
a boost v3 and a rotation r:

L(v, )L(v2)=R(r)L(v3) .

Multiply this by inverse of L(U, ) from the right and find

L(v, )L(vz)L '(v3)=R(r), (15)
A. Direct evaluation of the spin rotation angle

The first approach is based on the observation that we
need not use the defining representation of the Lorentz
group, which is four dimensional and cumbersome to
work with, to evaluate the rotation vector r in Eqs. (4)
and (5), but we may use a lower-dimensional one. The
simplest nontrivial representation is two dimensional
and it can be completely specified in terms of Pauli ma-
trices (see Ref. [9]). The boost matrices in this represen-

cosh( —,
' v, )cosh( —,

'
u2 ) + ( v

& v2 )sinh( —,
' v, )sinh( ,' u 2 )—

=cos( —,
' r )cosh( —,

' u 3 ) —i ( r v3 )sin( ,' r )sinh( —,
' u—3) (16)

which has exactly the same form as Eqs. (4) and (5}. By
explicit multiplication of these 2 X 2 matrices one obtains
eight real (four complex) equations satisfied by the boost
and the rotation parameters

v, sinh( —,
' u, )cosh( —,

' u 2 ) +v2cosh( —,
' u, )sinh( —,

' v z ) +i ( v, X vz )sinh( —,
' u, )sinh( —,

' v 2 )

v3cos( ~
1 )slnh(

p
u 3 ) l I sin( 2

r )cosh( T~v 3 ) + ( r X v3 )sin( —,
' r )sinh( —,

' u ~ ) (17)

There are no constraints between these equations, due to, e.g., unitarity or Hermiticity, because this representation of
the Lorentz group is neither unitary nor Hermitian. The imaginary part of the "scalar" equation (16),

(r.v3)sin( —,
' r )sinh( —,

' u 3 ) =0,
holds for arbitrary value of r, U3 and thus implies

r v3=0.
As v3 can point anywhere in the plane defined by v& and v2, we see that the rotation axis is perpendicular to this plane;
i.e., this yields the condition that the rotation be in the "reaction plane, " i.e., in the "ejectile plane, " of our electron
scattering application of Sec. II A. Now take the scalar product of the imaginary part of the "vector" equation (17)
with r and find

sinh( —,'u& )sinh( 2v2)siny& = —sin(T'r)cosh( —,'u3),

where cosy, =v, v2, siny, =r (v, X v2). Divide this Eq. (18) by the real part of the "scalar" equation (16) to find

This is the defining representation of the Lie group SL(2, C), which has the same Lie algebra as the Lorentz [9(bl] group SO(3, 1)

and hence the same algebraic properties of its group elements, but different global topological properties ("connectedness"). The way

in which these two groups are related to each other is very similar to the way SU(2) and the rotation group SO(3) are related.
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—sinh( —,
' v, )sinh( —,

' v 2 )siny,
tan( —,'r ) =

cosh( —,
' v i )cosh( z v2)+sl1111 z

v I )SII111( z v2)cosp 1

Note that taking the inverse of Eq. (15) yields

L(v3)L '(v2)L '(vi) =R '(r);

(19)

(20)

i.e., it substitutes v, by —v3 and v2 by —v2 on the left-hand side, and it changes the direction of the rotation on the
right-hand side of Eq. (15). Multiply both the numerator and the denominator of such an "inverted" Eq. (19) by
cosh( —,'v3)cosh( —,'v2) and then use the half-angle formulas for cosh and sinh. Upon taking into account the change of
sign of the rotation in Eq. (19) due to the "inversion" of boosts, we reconstruct Ritus' [10] expression for the spin pre-
cession angle ~= r:

CO sinhU2sinhv3sinO,
tan

2 (1+coshv2)( 1+coshvs )+sinhv2sinhv&cosHI
(21)

where the boost parameters u, , are specified below Eq.
(14). The relation between the rapidities v, and the more
conventional boost parameters P, , y, is

y =coshvj, y~PJ =sinhv (22)

sThis angle was called the Wigner angle Os, , in Ref. [2j; it is
also the "hyperbolic defect" (see the next subsection and the ex-
tended footnote 7) of the "velocity triangle" on a hyperboloid,
corresponding to the boosts depicted in Fig. 2.

Note that Eq. (21) implies that cv vanishes for O, =O, Ir, as
promised in Sec. II, which means that boosts parallel to
the direction of motion of a particle do not induce a finite
spin precession angle co. This is exactly the case for both
of the initial state particles (virtual photon and the tar-
get), for the c.m. ~lab boost. That means that neither of
them experiences a spin precession due to this boost, as
advertised in the previous section, and in Sec. II H of Ref.
[2].

Note, from Eqs. (4) and (5), that the rotation is defined
with respect to the coordinate system defined by the
three-momentum of the ejectile in the c.m. frame [in
coincidence electron scattering this is the (x",y",z")
coordinate system]. The angle rv is the precession angle
of the spin with respect to the coordinate system defined
by the direction of motion of the particle, and will be re-
ferred to as the Wick-Wigner helicity precession angle.
The total spin rotation angle y (Fig. 2) is clearly equal to
0&

—
0&

—co. Note that this angle y is not the Euler angle
of the Wick-Wigner presession vector r. Thus, an expli-
cit evaluation of r in Eqs. (4) and (5) in this representation
(i) confirms that it is a rotation; (ii) confirms that the rota-
tion is in the scattering plane determined by the three-
vectors pi, pi [ejectile (x",z") plane in Fig. 1, in coin-
cidence electron scattering], which is equivalent to setting
the corresponding Euler angles a=y =0; (iii) gives an ex-
plicit formula Eq. (21) for the Wick-Wigner precession
angle cv, due to Ritus [10], which confirms that there is
no Wick-Wigner precession of the target particle spin
direction due to the c.m. ~lab boost.

The formula Eq. (21) will be used to evaluate the
Wick-Wigner angle in coincidence electron scattering,
where U2 is the rapidity of the c.m. ~lab boost and U3

corresponds to the c.m. ~rest boost.

B. Sommerfeld's method

We now present another way of calculating the spin
precession angle co, which is useful for establishing gen-
eral properties of this angle, especially with respect to the
three-velocity rotation angle. The "trick" is to notice
that the three boosts involved in Eq. (5) define the addi-
tion of four-velocities in special relativity. Next we use
the observation of Sommerfeld [11] that the velocity ad-
dition theorem in special relativity corresponds to a
(non-Euclidean) triangle on a hyperboloid ("sphere of ra-
dius i").7 The Wick-Wigner angle is just the hyperbolic
defect (the difference between Ir and the sum of inner an-

gles of the triangle) of this velocity triangle. One can use
a wide variety of formulas from spherical trigonometry,
appropriately modified for hyperbolic trigonometry, to
express this angle in terms of any combination of three
independent kinematic variables (such as angles or rapidi-
ties) describing this velocity triangle.

Starting from the hyperbolic cosine theorem [8] for
each of the three angles of the "hyperbolic" triangle,

The meaning of this mysterious-sounding statement is the fol-

lowing: The four-velocity u~ =p„/m of a particle of mass m and
four-momentum p„and is normalized to unity by construction:
u„=p /m =1. But this holds for any four-velocity, and so if
one adds two four-velocities u& and u2, the sum u3 has to be nor-
malized too. This imposes strong constraints on the zeroth
component of the sum u3. The three-vector components v, and

v2 define a plane in the three-dimensional space in which v3 has
to lie too. This allows us to eliminate one (the "perpendicular" )

component of the three-vector v~, j= 1,2, 3 from the analysis by
defining a coordinate system in which the perpendicular com-
ponent of all three three-velocities is zero. We have thus re-
duced the full four-dimensional problem to a three-dimensional
one. Writing u,- =coshu, =cosiu, and v, =v, sinhu, .

= —iv, siniu, -, in this new coordinate system where v, is a two-
dimensional unit vector in the "velocity plane, " we find

=(iu, ) +(v, ) =(icosiu, ) +(iv, siniu, ), i.e., the equation for
a three-dimensional sphere of radius i. This is Sommerfeld s
"sphere of radius i" or the relativistic velocity hyperboloid.
Thus, in four-velocity space, Fig. 2 is not planar any more, but
has a negative curvature and the sum of all inner angles in the
triangle is less than ~.
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cosh(a) =cosh(b)cosh(c) —sinh(b)sinh(c)cos(a),

cosh(b) =cosh(a)cosh(c) —sinh(a)sinh(c)cos(P),

cosh(c) =cosh(b)cosh(a) —sinh(b)sinh(a)cos(y),

by simple algebraic manipulation we obtain
1/2 ' 1/2

(23)

A
sin

2

sin
2

sinh(s —b)sinh(s —c)
sinh(b)sinh(c)

sinh(s —a)sinh(s —c)
sinh(a)sinh(c)

' 1/2

CX
COS

2

2
COS

sinh(s)sinh(s —a )

sinh(b)sinh(c)

sinh(s)sinh(s b)—
sinh(a)sinh(c)

1/2

(24)

1/2
sinh(s —b)sinh(s —a )

sin
2 sinh(b)sinh(a)

cos
2

1/2
sinh(s)sinh(s —c)

sinh(b)sinh(a )

where s =
—,'(a +b+c ) and a =u i, b =uz, c = v3 are the hyperbolic arc lengths corresponding to the sides of the triangle

opposite the angles a=a.—8i, p=8i, and y, respectively (see Fig. 2). We emphasize once again that the latter are not
the Euler angles of the Wick-Wigner precession vector r, and y used here is the total spin rotation angle from Sec.
III B.

Putting these results into formulas for the sine and cosine of —,'e, where e=m. —(a+ p+y ), we find

E
sin

2

Ql +2coshu, coshv2coshv3 —cosh v, —cosh u2
—cosh ui

4cosh( —,' u, )cosh( —,' u2 )cosh( —,' u3 )

(25)
1+coshv, +coshv 2+ coshv 3

cos
2 4cosh( 2vi )cosli( 2v2)cosli( 2v3)

Equations (25) provide yet another formula for the spin precession angle ai: co=e. To see this, divide the first of Eqs.
(25) by the second one and find

tan
2

Q 1 +2coshu, coshu2coshv3 —cosh u, —cosh u2
—cosh u&

1+coshv, +coshv 2+ coshv 3

Then use the first of Eqs. (23),

coshv, =coshv2coshv 3+sinhv2sinhv3cos01

and insert it into the denominator to obtain the denominator of the Eq. (21). Then do the same to the numerator, to
find

Ql +2coshu, coshuzcoshu3 —cosh u, —cosh u2
—cosh v3

=Q(1—cosh uz)(1 —cosh v3) —sinh u2sinh v&cos 8i=sinhu2sinhu3sin8, ,

which leads immediately to Eq. (21) and thus confirms
that m=e.

Equations (25) are particularly useful in the investiga-
tion of the nonrelativistic limit; in this limit all
coshv, ~1, and so we find e—+0, i.e., y~O, —01. This is
equivalent to the statement that there is no spin rotation
relative to the momentum, i.e., no Wick-Wigner preces-
sion, in the nonrelativistic limit: The spin and the veloci-
ty three-vectors remain parallel in that limit.

Note that from Eqs. (25) e ~ 0, or, equivalently,
(a+p+ y ) ~ m follows. This is because both quantities
on the left-hand sides of Eqs. (25) are positive. That also
tells us that I9, —01 ~y, i.e., that, in general, the spin
three-vector rotates in the same direction, but more slow-
ly than the momentum three-vector as a consequence of
Lorentz boosts.

IV. APPLICATION
TO COINCIDENCE ELECTRON SCATTERING

In this section we apply the general results of Sec. III
to the two exclusive polarized inelastic electron scattering
processes treated in Refs. [1,2]: the pseudoscalar, or sca-
lar electroproduction off a spin —,

' target, and the deuteron
two-body electrodisintegration.

We have seen in Sec. III that the in-ejectile-plane (Fig.
1) components of the recoil polarization vector in a
(e,e'N) reaction experience a Wigner-Thomas precession
through angle ai about the axis y" (Fig. 1), while the tar-
get and photon spins remain unchanged. The com-
ponents of the recoil polarization of a spin —,

' particle
form a polarization vector. Hence they can be recast into
the form of a rank-1 ITO. Then Eq. (12) together
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with the property of the Wigner D matrices
D~,'M(a=0, P=co, y =0)=d~I'~(co) and the Ref. [12] rep-
resentation of dM', M(co) yield

R,'bb(I) =cos~R;b™(l)+sincoRI™(s),
R,'& b(s) =coscoR;b™(s) —sincoR;b™(l),
R lab( t) R c.m. (t)

(26)

where (s, t, l) are the (x",y",z") (Fig. 1) components of
the recoil polarization vector, respectively, in accord with
the notation introduced in Sec. IIE of Ref. [2], and a, b

are the virtual photon helicity indices. Now we
remember that the "true" response functions R appearing
in the cross section [Eq. (1)] are linear combinations of
these R,b's. It follows that the "true" structure functions
obey the same transformation law [Eq. (26)], but with ab
standing for the generic structure function indices [e.g. ,

LT, (I), etc.]. So the net eff'ect of the c.m. —+lab boost on
the polarized coincidence electron scattering cross sec-
tion [Eq. (1)] is the mixing of the "corresponding, " i.e., of
the same "generic type, " structure functions that depend
on the ejectile plane (s and I) components of the recoil
polarization vector, besides the changes already discussed
in Sec. IIH of Ref. [2]. This should not come as a
surprise; we have already seen in Tables X—XII of Ref.
[2] that all recoil polarization structure functions fall into
two classes: one with nonvanishing U (unpolarized) and
n (normal), and vanishing s (sideways) and I (longitudinal)
recoil polarization components, and the other class with
the role of the two groups interchanged. Now, we see
that the s and I components mix due to the c.m. ~lab
boost.

To determine the Wick-Wigner helicity precession an-
gle using Eq. (21), we need explicit formulas expressing
the boost parameters in Eqs. (4) and (22) in terms of the
appropriate kinematic variables.

A. Pion electroproduction

We start with pion electroproduction. The three
boosts appearing in Eqs. (4) and (5) can be associated with
the boosts in Eq. (15) in this way:
vI~h '(pI ), v2~l ', v3~h '(p&). The respective boost
parameters in this case are

2 1/2

where

p, = Q( W —M~ —m ) —(2M~m„)
1

E = (&+M —m ).1

28' N

(29)

The kinematics of electroproduction is fixed by two in-
dependent variables W and Q . One of them can be sub-
stituted by the Bjorken x, e.g. , the Q,

1 —x
(W —MT), (30)

where x is defined by

x ~~2
2P q

(31)

I I I I I I I I I I I I I I

for nucleon targets. Direct application of the above re-
sults in Eq. (21) leads to the result shown in Figs. 3 and 4.

We see in Figs. 3 and 4 that the spin precession angle ~
is very small for all values of O1 in both kinematical situa-
tions (x =0.5 and 0.75) used here. As expected, co van-
ishes in the forward and backward scattering kinematics,
and turns out to be substantially smaller than O1

—0, , in
accord with Sommerfeld's general argument, especially in
the backward scattering ( 0, = 180') region. In other
words, the Wigner-Thomas precession of the ejected nu-
cleon spin in the N(e, e'N) reaction is most important at
ejectile opening angle O1

——90'. A large Wick-Wigner pre-
cession angle co implies a substantial mixing of the s and l
recoil polarization components, or, put di6'erently, that
the coordinate axes with respect to which the recoil po-
larization is measured in the lab frame are not defined by
the direction of the ejectile momentum p1 in the lab
frame any more, but by a rotated direction. It is not the
purpose of this paper to make a systematic exploration of

E1
73

N

EL

(27)

where MN and m are the nucleon and the pion mass, re-
spectively. The relationship between the lab and c.rn.
frame opening angles is

2 1/2

50 100
e„(cfeg )

150

cotOL= 1+ qL
1 8'

qL
cotO1+

p, sin01

(28)

FIG. 3. Wick-Wigner precession angle co as a function of the
c.m. frame opening angle 0&, for pion electroproduction off the
nucleon at 8'=1232 MeV and Bjorken x =0.5 (solid curve),
x =0.75 (dashed curve).
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25 i i i r

20—

I I I I I I I I 8' —M~

(32)

CD

3 10—

0
0 50 100

e„(deg )

150

the size of co in various kinematic regions; this will have
to be done separately for every experiment.

FIG. 4. Wick-Wigner precession angle co (solid curve) and
the lab frame opening angle 0& (dashed curve), as functions of
the c.m. frame opening angle 0&, for pion electroproduction off
the nucleon at 8'= 1232 MeV and Bjorken x =0.5.

The use of Eqs. (32) and (27) in Eq. (21) leads to similar
results for co in deuteron electrodisintegration. We have
confined ourselves to the two-body final state deuteron
electrodisintegration. This limits the total c.m. energy of
the system to W~ (2M&+m ) and thus strongly limits
the size of y3 to y3 ~ 1.07. Hence, the final state nucleons
are nonrelativistic and we conclude from the results of
Sec. IIIB that the spin direction essentially rotates to-
gether with the nucleon momentum. The same com-
ments hold for heavier target nuclei and heavier ejectiles.

To summarize, we have determined the effects of the
c.m. —+lab Lorentz boost on the spin polarization observ-
ables in polarized coincidence inelastic electron scatter-
ing within the Jacob-Wick helicity formalism. The stated
Lorentz boost rotates the two in-ejectile-plane com-
ponents of the recoil polarization vector observables
through angle co about the axis perpendicular to the ejec-
tile plane. Two applications of Ritus' formula for co were
made, to N(e, e'N)7r and d(e, e'N)N, and it was found
that the relativistic spin rotation plays an important role
at large values of the c.m. frame ejectile opening angle in
~ electroproduction, but was negligible in deuteron elec-
trodisintegration below the ~ threshold.

B. Deuteron electrodisintegration

The only difference between the pion electroproduction
and deuteron electrodisintegration formulas for y; and P;
is in a different expression for p&, E, in Eq. (24). For
deuteron electrodisintegration the following holds:
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