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~ C(n, p)~60 E2 cross section in a microscopic four-alpha model
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The C(a, p) 0 E2 cross section is calculated in the generator coordinate method where C
is described by three n particles located on the apexes of an equilateral triangle. Distortion effects
in the C wave functions are taken into account, and the 0 wave functions are defined by a
mixing of a+ C(0+, 2+) configurations. The good quantum numbers are restored through angular
momentum projection. VVe compute quadrupole transition probabilities between low-energy 0
states, and the C(n, p) 0 E2 cross sections to the ground and 2+i states. At 300 keV, we find an
S factor equal to 0.09 MeVb.

PACS number(s): 25.45.—z

I. INTRODUCTION

The 12C(n, p)isO reaction is a key process in stellar
evolution [1]. It sensitively influences the r2C/rsO abun-
dance ratio after helium burning. The determination of
the cross section at astrophysical energies (typically 300
keV) is made difficult by the occurrence of two weakly
bound states (li at 7.12 MeV and 2+i at 6.92 MeV) lo-
cated just below the a+i2C threshold in isO. These
states are responsible for an enhancement of the low-

energy S-factor and prevent one from a simple extrapo-
lation of the experimental data (see Refs. [2,3] and refer-
ences therein). The current data cover the energy range
from 1.0 to 3.0 MeV, where the cross section is strongly
affected by the broad 12 (9.55 MeV) resonance. The
situation is made even more complicated since the El
multipolarity, which is forbidden if one neglects isospin
mixing rates, is dominant near this resonance. Accord-
ingly, the contribution of other multipolarities at low en-

ergy cannot be directly evaluated from a extrapolation
of the data.

The E2 component of the C(n, p) isO cross section
was suggested first by Dyer and Barnes [4] to be non-
negligible at astrophysical energies. However, for the
reasons mentioned above, this contribution was, at that
time, evaluated in a very indirect way. A recent experi-
ment [2] aimed at measuring p-ray angular distributions
and confirmed that the E2 component cannot be ne-
glected. Owing to its importance in astrophysics, the
r2C(a, , p)rsO has been extensively investigated in the-
oretical models: R-matrix fits [5—7], K-matrix fits [8],
potential-model [2], semi-microscopic [9,10], and rnicro-
scopic [11,12] calculations (note that we are concerned
here by the E2 component only). All of these theoreti-
cal approaches support a significant E2 contribution at
stellar energies. However, the quoted values for S@2(300
keV) range from 0.0 to 0.18 MeVb, which represents a
rather large uncertainty, compared to the precision re-
quired in nucleosynthesis studies.

The i~C(a, p)rsO reaction is the topic of two previ-

ous microscopic investigations. In both studies, the i2C

nucleus is described by a one-center wave function with
four Qs and eight 1@3 harmonic oscillator orbitals. The
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former calculation [11] involves the n+ zC(0+) channel
only, whereas the n+ 2C(2+), p+isN, and n+isO config-
urations are introduced in the latter [12]. This extension
of the configuration space allowed us to provide a micro-
scopic description of the El component. Although the
results obtained in Refs. [11,12] certainly provide a good
estimate of the S factor [S@z (300 keV) = 0.09 MeV b and
0.07 MeVb, respectively], their reliability can be partly
questioned by the poor description of C internal wave
functions. The most striking evidence is that, with stan-
dard nucleon-nucleon forces, the difFerence between the
isO and 2C binding energies is much larger than exper-
imentally observed.

The C wave functions can be significantly improved
by a triple-a. description [13]. In Ref. [14] (hereafter de-
noted as I), we have used such antisymmetric wave func-
tions to investigate the n+ 2C system in a four-a micro-
scopic model. In I, the C nucleus is described by Slater
determinants defined by three n particles located on the
apexes of an equilateral triangle of side R+. These ba-
sis wave functions are projected out on the 0+ and 2+
states of izC, and the spin and parity of n+r2C wave
functions are restored through angular momentum pro-
jection. In I, attention was paid on clustering eKects in
i2C and isO, with the investigation of isO spectroscopic
properties and n+i C phase shifts. We used different rzC

descriptions, corresponding to a given R+ value (0.4, 1.6,
2.8, or 4.0 fm), and showed that clustering effects in i2C

can be rather important in 60 wave functions. Simi-
lar conclusions have been drawn recently by Fukatsu and
Kato [15], who investigate the 0+ partial wave of the
a+ C system in a semi-microscopic multicluster model.

In the present paper, we first construct n+ C wave
functions by mixing the four C configurations men-

tioned above. In this case, the ~C nucleus is not frozen
but is allowed to be distorted during the collision. Like
in I, the a+ zC(0+, 2+) channels are taken into account.
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In a further step, we use these wave functions to compute
the r2C(a, p)rsO cross section. Of course, only the E2
component is accessible to such a model, since the isospin
one admixtures are missing. However, the present model
is expected to provide a realistic description of the E2
cross section which, as stated above, is still controver-
sial. In Sec. II, we briefiy present the four-n microscopic
model. Section III is devoted to sO spectroscopic prop-
erties, and more especially to E2 transition probabilities.
Capture cross sections are presented, and compared with
other theoretical approaches is Sec. IV. Concluding re-
marks are given in Sec. V.

II. THE FOUR-o. MODEL

The four-n description of the o.+ C system is detailed
in I. Here, we only recall the main characteristics of the
model and give its extension to the E2 multipolarity,
which is not considered in I. The GCM wave function of
the 16-nucleon system reads, in the partial wave J7r,

I.I i j
where I is the 2C spin (0+ or 2+ in the present study)
and l the relative angular momentum between o. and

I

rzC. In (1), 4&~rM (R, , R+) is a projected Slater deter-
minant corresponding to a rzC nucleus described by an
equilateral triangle of side R+ and to an additional n par-
ticle located at distance R from the ~2C center of mass.
The generator function fag~(R, , R+) must be determined
from the Schrodinger equation. fn I, the sum over the
R+ generator coordinate was restricted to a single value,
and different wave functions (1), each corresponding to a
given R+ value (0.4, 1.6, 2.8, or 4.0 fm), were used to in-
vestigate clustering efFects in the o,+~~C system. In other
words, the C wave functions were frozen since there was
no mixing between the B+ values. In the present case,
the sum over j in (1) runs over the four R+ values given
above. As in I, the n+ 2C generator coordinates R, are
selected from 1.1 to 8.8 fm with a step of 1.1 fm, and the
oscillator parameter is taken as 5 = 1.36 fm. This choice
maximizes the o. binding energy with the Volkov force
V2.

In I, details are given regarding the numerical compu-
tation of matrix elements between projected Slater de-
terminants C&~rM (R, , R+). These matrix elements are
shown to require seven-dimensional integrals, owing to
the C and 0 angular momentum projections. In this
paper, we focus on the rzC(n, p) rsO E2 cross section and
therefore need the matrix elements of the E2 quadrupole
operator. According to I, we have for the M@& multipole

(e~F (R, , R, ) llwFII eI'.,'I", '(R,', R, , )) = 8~' ) (J'w~ —vi I
J~)(eio~l J~)(e'i'~ —~' —v~'I J'~ —

v&
VV P

&i'(0 o) D.',o(~) &g' "*(0 o) &' ",o(~')

x(e4 (R, , R, n) ~Mp„~ C4 (R,', R, n'))dcose dn dn'.

In (2), 44~ is a four-o, unprojected Slater determinant,
where the C wave function is de6ned by an equilateral
triangle with side R+ and Euler angles A. The vector
R, is orientated along the z axis, whereas R, makes an
angle 8 with respect to R; and is located in the zz plane.
As for the Hamiltonian, whose matrix elements are given
in I, the EA matrix elements involve seven-dimensional
integrals. However, computer times are lower than for
the Harniltonian since the EA multipole depends on one-
body operators only.

The calculation of the capture cross section is per-
formed in two steps. First, we determine the generator
functions f~, with special attention to the asymptotic
part of the wave function (1). Owing to the harmonic-
oscillator description of the individual orbitals, the ra-
dial part of the wave function has a Gaussian asymptotic
behavior. This well-known problem is solved with the
microscopic R-matrix method (MRM) [16]. The second
step is the calculation of the E2 matrix elements between
the 0+ ground state of ~ 0 and the 2+ scattering wave
of the a+ C system. The definition of the capture cross
section is given in Ref. [16]. The accuracy of the model
can be tested through the calculation of 0 spectro-
scopic properties, which are experimentally well known.
Since the GCM provides a unified description of bound,

resonant, and scattering states of a system, the reliabil-
ity of spectroscopic properties, such as energy spectrum,
resonance widths, or electromagnetic transitions, is an
indirect test of the capture cross section.

III. SPECTROSCOPIC PROPERTIES OF 80

A. Energy spectrum

In Fig. 1, we present the GCM ~60 spectrum, and com-
pare it to experiment [17]. We are here concerned with
positive-parity states only, since negative-parity partial
waves do not contribute to the E2 component of the
capture cross section. In addition, they were shown in
Ref. [18] to be significantly affected by isospin mixing
rates. The Majorana parameter of the Volkov force V2
is M = 0.6305, which reproduces the binding energy of
the 2+& subthreshold state with respect to the a,+~ C
channel. Figure 1 shows that the 0 ground state is
overbound by about 12 MeV, if one fits the Majorana
parameter to the 2+i state. Although still rather large,
this overbinding is however much lower than in "con-
ventional" two-cluster models [11,12]. It is interesting
to compare the absolute binding energy of 0, with its
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E, (M eV) TABLE I. B(E2) in ~sO (expressed in W.n.).
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FIG. 1. GCM positive parity states, labeled by J, com-
pared with experiment. The n+ C threshold is presented as
dashed lines.

counterpart obtained in the shell model. Being a closed-
shell nucleus, the 0 wave function is expected to be
accurately described by full Os and lp shells. After min-
imization on the oscillator parameter b, one gets in the
shell model: E(~sO)= —118.2 MeV for b = 1.54 fm, and
with the V2 force mentioned above. The present four-
n model gives, with the same Hamiltonian, E(~sO)=
—129.0 MeV, which represents an improvement of about
10.8 MeV. This shows that, in the widely accepted shell-
model description of 60, the binding energy is under-
estimated by at least 10 MeV, with respect to the exact
solution of the Schrodinger equation.

Figure 1 shows that, with a nucleon-nucleon interac-
tion common to all positive-parity partial waves, we have
a satisfactory agreement with experiment. In the 0+ par-
tial wave, the GCM energies are too low, but the 2+ and
4+ experimentally known resonances are well reproduced.
For non-natural-parity states, the binding energies are
very close to the data.

B. K2 transition probabilities

As explained in Sec. I, the reliability of the model can
be tested through E2 transition probabilities which are
experimentally well known in the low-energy part of the
60 spectrum. In addition, the E2 component of the
C(n, p) sO cross section is very sensitive to the B(E2,

2z ~ 0+~) value. Owing to the overestimation of the
ground-state binding energy, we have readjusted the 0+
Majorana parameter in order to get the experimental
value —7.16 MeV. This problem is common to all "ab ini-
tio" models, but the value obtained here (M = 0.6666) is
less diff'erent from the starting value than in two-center
descriptions of the n+~2C system [11,12]. The rms ra-
dius of the ~ 0 ground state is then 2.64 fm in the GCM,
which is in reasonable agreement with experiment [17]
(2.71 + 0.02 fm).

In Table I, we give the E2 transition probabilities in
~sO. At this stage, there is no effective charge in the
model. Table I indicates that E2 transitions to the
ground state are very close to experiment, but the B(E2)
values involving the 02+ state are underestimated. This is
partly due to the too large binding energy of this state.
Obviously, the energy difference between the 02+ and 2+&

states, which are considered as belonging to the same
o,+ C rotational band, remains a problem in the present
model. The weak clustering in the band is also supported
by the slight underestimation of the 4z —+ 2+~ transition
probability.

IV. THE C(n p) 0 E2 CAPTURE REACTION

A. Clustering efFects

Before discussing the cross section obtained with the
full set of generator coordinates R+, we first investigate
clustering effects in the C(n, p) sO reaction by select-
ing a single R+ value. For each calculation, two Majo-
rana parameters are adjusted to reproduce the binding
energies of the 0 ground state and the 2+& subthresh-
old state respectively. Table II gives the conditions of the
calculation, and 0 spectroscopic properties relevant for
E2 capture. It shows that the difference between the 0+
and 2+ Majorana parameters decreases when clustering
effects are introduced in C. As already mentioned in
I, n+~2C clustering increases with deformation of ~2C,

which was interpreted as a consequence of the Pauli prin-
ciple. Accordingly, the reduced o, width of the 2+ state
significantly increases with B

The ~~C(n, p)~sO S factors corresponding to the dif-
ferent B+ values are given in Fig. 2, where we do not use
any effective charge. We also present in dashed lines the
GCM results obtained in the n+~~C(0+) single-channel
model. As is well known, the n+~2C(2+) configuration
is of great importance, even at low energies. The single-
channel 8 factors are almost proportional to each other
and increase according to C clustering. They however
do not present a bump near 2 MeV which is due to the 2&+

resonance in ~sO. This state has a dominant n+~2C(2+)
structure and, consequently, is not reproduced in a single-
channel approximation. In the n+~~C(0+, 2+) approach,
the low-energy S factors also depend on C clustering.
The values at the typical energy of 300 keV are given
in Table II. For each theoretical B(E2 2z —+ 0& ), we
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TABLE II. Majorana parameters, 2+i reduced widths and B(E2) in 0, and effective charges
in n+ C(0+, 2+) models with a single R value.

M(0+)
M(2+)
0-'(2+) (%%u)

B(E2, 2+ ~ Oi+) (W.u. )
6e/e
S@2(300keV) (MeVb)
S~2(300 keV) (MeV b)'

R = 0.4 fm
0.7650
0.6767

6.8
3.9

—0.11
0.023
0.018

R = 1.6 fm
0.7387
0.6625

12.1
5.1

—0.22
0.059
0.036

R = 2.8fm
0.6809
0.6339
30.8
4.2

—0.14
0.19
0.095

R = 4.0 fm
0.6499
0.6296

25.7
6.6

—0.32
0.230
0.108

Calculated at 5.4 fm.
Without effective charge.

'With the given effective charge.

B. The X2 crass sectian

The 0 spectrum displayed in Fig. 1 shows that, al-
though most of the experimentally known states are fairly
well reproduced by the model, the GCM energies are
not accurate enough for a realistic description of the

C(n, p)i 0 capture cross section. Furthermore, the n
widths ean be slightly different from experiment. Accord-
ingly, we have used the formalism described in Ref. [12]
to modify the energy and n-width of some low-energy
resonances. This ean be done consistently within the R-
matrix theory, and provides a more accurate description
of scattering wave functions at low energy. I et us brieBy

10 "C(n, q)"O

determine an effective charge which is intended to pro-
vide the experimental value 3.1 W.u. This is necessary
for a meaningful comparison of the low-energy S factors.
However, even after correction by the effective charge,
the dependence with respect to the R remains rather
important. With B+ lower than 2.8 fm, the S~~ values
at 300 keV are much smaller than currently adopted (see
Sec. IVC).

summarize this procedure which is detailed in Ref. [12].
The microscopic version of the B-matrix theory provides
in each partial wave a large number of poles, the first ones
being associated to physical 0 states and the other ones
simulating the background contribution. The theoretical
number of poles is equal to the number of basis functions
(here 64 for J~ = 0+ and 128 for J = 2+ and 4+). En-
ergies and reduced widths associated to these poles are
obtained from GCM matrix elements and do not result
from a fitting procedure. It is however easy to replace
the energy or the reduced width of a pole by the experi-
mental value if theory does not exactly agree with exper-
iment. Of course, this procedure can be applied only if
the theoretical properties of a state are close enough to
experiment. Then, the correction is a consistent mixing
of microscopic information with well-known experimental
data. We give in Table III the GCM properties of mod-
ified poles for the R+ = 2.8 fm calculation and for the
full-set calculation. Notice that in the n+i2C(2+) chan-
nel, the GCM reduced widths are unchanged. For the
0+ and 2+ partial waves, we adopt for the pole energies
the experimental resonance energies. This is of course a
shortcoming since a shift is known to exist between the
pole and resonance energies [7], but this shift turns out
to be small for the narrow 0+ and 2+ resonances. In
the 4+ partial wave, a slight difference between pole and

10

10

TABLE III. Pole energies E and reduced n-widths p (at
7.7 fm) in the 0+, 2+, and 4+ partial waves. The two first
columns give the GCM results and the third one gives the
adopted values. The indexes refer to the pole number.

10

10

1.0
E, (MeV)

2.0 3.0

FIG. 2. E'2 S-factors obtained with a single R value.
Labels 1 to 4 correspond to R = 0.4, 1.6, 2.8, and 4.0 fm
respectively. The dashed lines show the 8-factors obtained in
the n+' C(0+) single-channel approach.

E2(o+)
E.(0+)
»(0+)
E2(2+)

g(2+)
E3(2+)

3(2+)
Ei(4+)
Eg(4+)
»(4+)

R = 2.8 fm
—2.20
1.52

—0.223
1.81

0.106
3.53
0.285
2.15
3.69

—0.281

mixed
—3.65
0.59

—0.153
1.94

0.078
3.17
0.307
2.17
3.63

—0.208

adopted
—0.11
4.89

—0.012
2.68
0.025
4.36
0.174
3.94
3.00

—0.121
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S~2 (300 keV) = 0.09 MeVb (3)

for both C descriptions. This value is cis consistent with
ic calculations (0.09 MeVb [11]our previous microscopic ca c ' . ll

MeVb [12]) where stronger corrections a oand 0.07 e
on the effectivebema eon eed the energy spectrum an on the
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h other theoretical studies. The concomparison wit o er
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Fi . 3 with the experimental data of P gin Fig. , wi
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the 2+ subthreshold state. At the astrophysical energy1
of 300 keV, we have
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TABLE IV. Ss2(300 keV) given in the literature.

Ref.
[19]
[11]
[10]
[9)
[2)

[2]
[6]
[5)

[12]
[8)
[7]

present

Sa2 (MeV b)
0.18
0.09
0.10
0.10

0 096+0.024—0.030
0.080 + 0.025

0.05
0.089 + 0.030

0.03+—0.03
0.07

0.007+'024—0.005
0.05 - 0.18

0.09

Method
Breit-Wigner plus direct-capture models
Single-channel GCM
Single-channel orthogonality condition model
Multichannel orthogonality condition model
Three-level R-matrix fit
Hybrid R-matrix fit
Single-channel orthogonality condition model
R-matrix fit
R-matrix fit
Multichannel GCM
K-matrix fit
R-matrix fit, constrained by cascade transitions
Multichannel four-o, GCM

which is supported by the present calculation. Fitting
procedures of course sensitively depend on the availabil-
ity and accuracy of experimental data. In addition, the
B-matrix theory which is widely used for such fits also
depends on a channel radius which cannot be determined
easily. A possible constraint would be the fit of cas-
cade transitions, as pointed out by Barker and Kajino
[7]. Consequently, the S~s values obtained in R-matrix
fits are in general given with rather large uncertainty. In
the K-matrix approach of Filippone et al. [8], S@s is one
order of magnitude lower than in the other models. We
refer the reader to Ref. [7] for a detailed comparison of
the R-matrix and K-matrix theories.

V. CONCLUSION

introduction of T = l admixtures in the wave functions.
In Ref. [18], we have shown that the sN+p and isO+n
configurations give a satisfactory description of isospin
mixing rates and El transitions in O. However, one
should keep in mind that a four-cluster model requires
the numerical evaluation of seven-dimensional integrals
[14] for the computation of GCM matrix elements. Here,
the occurrence of s orbitals only makes the vectorization
of the codes very eKcient and keeps computer times in
reasonable limits. The introduction of N+p and 50+@,
channels would require either p orbitals if isN and isO
are defined in the one-center model, or the introduction
of an additional s-shell cluster. This latter possibility is
convenient for the simplicity of the codes, but necessi-
tates computer times which are currently prohibitive.

The present E2 S factor at 300 keV (0.09 MeVb) sup-
ports most of other ab initio values. The different tests on

C and &6Q wave functions leaves us fairly confident with
our result. Of course, it only concerns the E2 component
of the i C(n, p) sO cross section. The present calculation
might be extended to El capture, but should require the
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