
PHYSICAL REVIEW C VOLUME 47, NUMBER 5 MAY 1993

Theoretical treatment of analog (p, n) cross sections for odd nuclei:
Application to measurements of ' Pd at 26 MeV
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Differential cross sections for the (p, n) reaction to the ground-state and excited-state analogs of ' 'Pd
have been measured at a proton bombarding energy of 26 MeV. Both the magnitude and the angular
distribution of the cross sections for the analog states are found to follow the same general trend ob-
served for the even-even palladium isotopes. Contributions to the analog transition on odd-A targets
from spin-Rip, higher multipoles, collective admixtures, and multistep processes are calculated and are
found to be of order 1/(N —Z) or smaller, as compared to the (N —Z) scaling expected for the Fermi
transition. This is in agreement with our experimental data which show that the analog cross section
scales as (N —Z) relative to the neighboring nuclei. Among the excited analog states within the first
MeV of excitation, the levels at 0.44 and 0.78 MeV were the most strongly populated. This is consistent
with a two-step mechanism involving inelastic scattering and charge exchange, since these two states are
also known to have the largest B(E2) values. Although the small predicted magnitude of the additional
contributions for nonzero spin targets agrees nicely with the present measurements for ' 'Pd, it leaves
the puzzle as to why cross sections for odd isotopes for titanium and molybdenum measured in previous
work were found to be larger than corresponding cross sections for adjacent even isotopes.

PACS number(s): 25.40.Kv, 21.10.Hw, 27.60.+j

I. INTRODUCTION

This paper reports measurements of the differential
cross sections for the (p, n) reaction to the ground- and
excited-state analogs of ' Pd. This work is a continua-
tion of our experimental program to investigate isobaric
analog states in the nuclear mass region near A =100.
Our previously reported analog cross sections (see, e.g. ,
Refs. [1—3]) have demonstrated a considerable departure
from the Lane-model prediction [4] of near proportionali-
ty to (N —Z). Coupled-channels calculations [1] indicat-
ed that this deviation can be explained by couplings to
the low-lying collective states and their analogs. The de-
viation can be explained in terms of three 3-step ampli-
tudes, all nearly in phase, each involving two collective
inelastic transitions and one charge-exchange transition.
These calculations con6rmed that the excitation of ana-
logs of strong collective states proceeds primarily by
two-step mechanisms, the effect of the one-step process
being negligibly small in most cases [1]. The variation of
o l(N —Z) from constancy was expected to be greatest
for nuclei with large deformation parameters. This was
demonstrated for the even-even isotopes of molybdenum,

Permanent address: Oregon State University, Corvallis, OR
97331.

zirconium, and palladium [1—3]. This effect has been
clearly explained by the coupled-channels model.

One aspect of the earlier studies which was not ex-
plained was the apparent enhancement [5—8] of some
( Ti, Ti, Mo) analog cross sections relative to the
neighboring even isotopes, while other odd isotopes ( 'Zr,

Mo) showed behavior consistent with adjacent even iso-
topes. An obvious possibility is that higher multipoles
contribute to the cross sections. An even-even target has
ground state and analog spin zero, allowing only mono-
pole contributions, but the isotopes with JAO could in
principle have multipoles up to order 2J contributing to
the cross sections. An attempt to explain the cross sec-
tions as due to spin Aip for the odd titanium isotopes
[9,10] gave non-negligible eff'ects, but did not yield contri-
butions as large as needed to match the- experimental
values. The purpose of the present study was to broaden
the database on odd-even differences in analog states by
measuring cross sections for ' Pd to compare with adja-
cent even isotopes [3]. At the same time, a careful exam-
ination of theoretical predictions is presented not just for
spin Aip, but also higher multipoles, collective admixtures
in the ground state, and higher-order (multistep) contri-
butions to the analog cross section.

Section II of this paper gives a description of our ex-
periment and the methods used for data reduction. Sec-
tion III contains the theoretical development, Sec. IV is a
discussion of our results, and Sec. V presents a summary
and our conclusions.
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II. EXPERIMENTAL METHOD
AND DATA REDUCTION 400 =

~ s. IAS

33

The experiment was carried out in two separate runs at
the Hamburg Isochronous Cyclotron Facility. The ener-

gy of the incident proton beam was 25.9+0. 1 MeV in the
first series of measurements, 26.1+0.1 MeV in the second
series. The beam impinged on a self-supporting target
foil of highly enriched ()93%) palladium (' Pd) with a
thickness of 5.0 mg/cm . A beam burst separation of 829
ns was obtained by effectively ( )99.8%) suppressing 15
out of 16 bursts with an external deflection system. The
resulting beam intensity of approximately 80 nA allowed
one set of measurements to be completed within 4 h with
a charge of typically 1 mC accumulated in the heavily
shielded Faraday cup. A schematic layout of the beam
line together with the target chamber and the neutron
time-of-fiight setup is shown in Ref. [3].

The standard Hamburg neutron time-of-ffight (TOF)
setup, consisting of eight detectors and three possible tar-
get positions, covers an angular range of 3 0&,b

~ 177
with 24 roughly equidistant positions. Details of this ex-
perimental setup and its performance in neutron spec-
troscopy have been described previously [11,12]. For the
present experiment, this setup was modified to improve
the neutron resolution for the angles t9&,b (60 . Details of
the modifications as well as the characteristics of the
time-of-flight detectors used in this experiment have been
presented in Ref. [3]. With these improvements eff'ective
n-y pulse-shape discrimination was obtained and an
overall neutron energy resolution ranging from 125 to
200 keV, depending on the individua1 detectors, was
achieved for the isobaric analog transitions (E„=12.5
MeV).

A representative TOF spectrum for a detector at the
flight path of approximately 20 m is shown in Fig. 2 of
Ref. [3]. The conversation into absolute energy spectra,
achieved by using time calibrations derived from the po-
sitions of the (strongly reduced) gamma peaks from two
subsequent beam bursts, and the detector efficiency calcu-
lations have been described previously [3]. The uncer-
tainties resulting from target inhomogeneities and impur-
ities ( & 5%), incomplete beam current integration
( & 3%), and detector efficiency ( & 4%) lead to a
minimum uncertainty b, cr /o =

7%%uo of the differential
cross sections. Additional contributions to the uncertain-
ty are due to counting statistics and peak integration (see
below).

The characteristic features of the neutron TOF spectra,
as seen in Fig. 1, are a number of neutron peaks superim-
posed on the neutron continuum. The —,

'+ ground state is
clearly identifiable in the spectra for all the 24 angles
measured. Kinematic calculations were used to locate
the low-lying excited analog states, two of which were
discernable in all but some of the backward angles. In or-
der to determine the counts of the respective peaks, the
peak-fitting program FITEK was used [13]. This program
is highly interactive and is used to fit the peaks as well as
the background underneath them. During the first pass,
when fitting the major features of the spectrum, in addi-
tion to the ground-state analog peak only two secondary
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FIG. 1. Representative TOF spectrum of the ground-state
analog peak and two excited-state analog peaks for the

Pd(p, n)' 'Ag reaction at 26 MeV proton energy. The solid
curve through the data points is an example of the fit generated
by the FITEK program. Note that the ordinate is a logarithmic
scale, while the abscissa is linear in channels and increasing
time is toward the left.

TABLE I. Levels in ' 'Pd observed by Coulomb excitation
by Bolotin and McClure [14]. [8(E2) values in parentheses are
additional values listed in the compilation by De Frenne et al.
[15]].

Energy of
excitation

(MeV)

0 (ground state)
0.280
0.306
0.319
0.344
0.442
0.561
0.651
0.673
0.727
0.782

Spin and
parity

5+
23+
27+
2
5 +
2
] +
2

(-'+)
2
5+
23+
2
] +
2
5+
29+
2

10 8 (E2)

110+10(20+10)
12+2(40+10)

81+10(80+20)
15+3(28+3 )

1650+130( 1800+400)
75+ 10(60+20)
66+ 13( 170+50)
57+11(50+30)
24+6( 100+30)

827+83( 1200+100)

peaks were found which corresponded to excited-state
analogs with excitation energies of approximately 0.44
and 0.78 MeV. These energies were known to corre-
spond to the excited states in ' Pd with the largest
8(E2) values obtained in Coulomb excitation [14,15] as
seen in Table I. No measurable signals were observed for
the other known excited states (within the first MeV of
excitation). Thus the energy values of the two dominant
excited-state peaks were adopted in the subsequent pass
of the fitting procedure. In this analysis, kinematics were
used to fix the positions of the two minor peaks, i.e., the
excited-state analogs at 0.44 and 0.78 MeV, with respect
to the major peak, i.e., the ground-state analog. An ex-
ample of a FITEK result is given in Fig. 1. The peak
shape for the ground-state analog was found to be a
skewed Gaussian with a small tail toward higher excita-



47 THEORETICAL TREATMENT OF ANALOG (p, n) CROSS. . . 2079

10o

0.

10 2=
0.78 MeV

10~
0 60

e, ~ (&eg)

I

120 180

FIG. 2. Angular distribution for the ' Pd(p, n)' 'Ag reaction
to the ground-state analog and two excited-state analogs. The
absolute cross sections are shown. The solid curves are provid-
ed as a guide to the eye.

tion. This same shape was also imposed on the excited-
state analogs during the final FITEK analysis. The in-
tegral under the curve determined the sum of the counts
in the respective peak. The uncertainty, as determined
by FITEK, includes the statistical error of the signal and
background as well as the error due to the deviation of
the individual data points from the skewed Gaussian
defined by the FITEK program. Thus the total calculated
error includes both the statistics and a measure of the
goodness of the fit of the Gaussian to the data. This total
error was combined with the systematic uncertainty of
7%%uo discussed above.

Using the counts in the respective peaks, together with
the previously determined detector efficiencies and
known target thickness, we calculated the differential
cross sections for the ground-state analog peak ( —,'), for
the excited state at 0.44 MeV ( —,'+), and for the excited
state at 0.78 MeV ( —,'+). For the other excited states
(within the first MeV of excitation), the cross sections
were found to be below the limit of our detectability; they
are estimated to be at least one order of magnitude less
than those for the 0.78 MeV excited state. Figure 2
shows the differential cross sections to the three states
which had measurable cross sections.

Each of the three measured angular distributions was
fitted with a series of Legendre polynomials in order to
determine the integrated cross section. Errors in the in-

TABLE II. Integrated ' 'Pd(p, n ) cross sections to the
ground-state analog and two excited-state analogs at a bom-
barding energy of 26 MeV.

Energy of excitation
of analog state

(MeV)

0 (ground state)
0.44
0.78

Spin and
parity

5+
2

( —'+)
2

(-'+)
2

(experimental results)
(mb)

3.75+0.27
0.40+0.035
0.18+0.06

tegrated cross sections were determined both from the
relative errors in the individual data points and from the
goodness of fit of the polynomial series of the data. The
results are presented in Table II.

III. THEORY

A. Introductory remarks

The contribution to analog states of odd-3 nuclei has
been treated for the Gamow-Teller operator [9,10] for
spin-Aip transitions in the odd isotopes of titanium by us-
ing MBZ (McCullen-Bayman-Zamick) purely f
configuration wave functions [16]. The result was that,
whereas for Fermi-like excitations (total angular momen-
tum transfer =0) of analog states the cross section is pro-
portional to (N —Z), the spin-fiip transitions go as
I/(X —Z). Thus only for nuclei with a very small neu-
tron excess would spin-Aip amplitudes contribute
significantly to the cross section.

The same dependence on (X —Z) holds for a transition
operator of any other multipolarity. The physical reason
for this effect is that ground states of odd nuclei consist
mostly of nucleons coupled to zero in pairs; the spectro-
scopic properties are then determined by the one un-
paired nucleon, as in the Schmidt model [17]. In the
seniority framework [18], this property is described by
saying that an odd- A nucleus is dominated by seniority 1

(only one unpaired nucleon) and that components of the
wave function with higher seniority are fairly small.
Operators of multiplicity I)0 operate primarily on the
last unpaired nucleon. The presence of the paired nu-
cleons gives a transition amplitude less than or equal to
that for a pure single-particle transition because of ex-
clusion principle effects.

In Sec. IIIB the charge-exchange matrix element is
converted into an isovector elastic scattering matrix ele-
ment. The matrix element for the I—= ~b,J~ =0 multipole
is then expressed in terms of number operators. In Sec.
III C and Appendix A, the analog matrix elements for
higher multipolarities are estimated on the basis of the
seniority model. Appendix B contains a derivation of the
nucleon pair commutation relations and normalization
constants for seniority wave functions. Section III D and
Appendix C contain a derivation of estimates of the
effects of virtual collective states induced in the even-even
core by the unpaired odd particle. These are made by re-
lating the charge-exchange matrix element to collective
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inelastic scattering cross sections in the neighboring
even-3 nuclei. In Sec. III E the possible effects of mul-
tistep processes, known to be important for analog transi-
tions, are examined on the basis of the collective
particle-core coupling model.

B. Analog matrix elements

exchange reaction can be written in terms of the elastic
transition

& JMT, T 1
I

—
VI JMTT &

=(2T) '
& JMTTI[T+, V]IJMTT & . (1)

Assuming the conservation of isospin, the transition
matrix element between analog states in a charge-

The central-tensor interaction V between projectile, la-
beled 0, and target particle, labeled 1, is

+I(Ls), N(0)+I—(Is)N(1 )+,—p(0)+ p( 1 )]( 1 ) +I(Ls)Ip(rp.
ISL A,~Xp

(2)

where

&I(xs)N(1) = [ I'((" )&s(1)]I(I.S)N

cr„, S =1
sp 1 5 =0 (4a)

I

spin angular momentum transfers to the nucleus, N =I„
r is the isospin transfer, and p=r, is —1 for a (p, n)-like
charge-exchange transition.

The essential part of the operator commutation rela-
tion in Eq. (1) is therefore

7p)

rp (4b)

g &I(IS)N(') +Tp(')I'I(I S) ("i ) 2 QIN(')'T p(')

and I' is a radial function. Our argument involves only
the operator on the nuclear coordinate. For conciseness
and to emphasize that the following development applies
to any nuclear one-body, charge-exchange multipole
operator, we substitute a generic one-body operator

[T+,r )(1)]=2 ' [r+(1),r (1)]=2+' r, (1) .

(
JMT, T —i g Qrr(()r &(() JMTT))

1/2
2 JMTT g Qr~(()r, (i) JMTT) .

N —Z
~ ~

l

(7)

The charge-exchange matrix element, Eq. (1), may then
be rewritten as an elastic matrix element of an isovector
operator

where I, A, , and 5, are, respectively, the total, orbital, and In second quantized notation, the operator in Eq. (7) is

2
N —Z

1/2

Jlm(J2m2
& j2mzalQIN(1)r, (1)Ij,m, a &u u

' 1/2

X ( 1) ' (2a&)Jz all QIII j)a&~[Ia~I,a]IN

where ~ is the irreducible tensor operator

a. =(1)I

and the brackets denote coupling of the operators. The
isospin factor 2u is +1 for the neutrons and protons, re-
spectively. The single-particle reduced matrix element
depends on the nucleon isospin only through the single
neutron or proton radial integral. For simplicity, we as-
sume that the operator QIN separates, as in Eq. (2), into a
product of a radial function and a spin spherical harmon-
ic [see Eq. (3)],

[ J~ I ]pp g &j jism(m2I00&
m&m2

&J1J1
j)ma~ j,ma

J1 m

&J1J2
JV (1 1)

J1
where A' is the J-level number operator for nucleons ofJ)a
type a. Since

& j(m)alQOOI j)m)a &

= J 1tJ, (r)g(r)(4~) ' 'PI (r)d'r

=(4m) 'I I IR (r)l g(r)r dr

QIN =g (r)&I(I.S)N . =(4m) '
p, (12)

Then we may write

where p. is the radial integral, the matrix element, Eq.Jia
(7), for I =K =0 is
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JMT, T —( x Qtl(ilw, (i) JMTT) = (4w)
~ ~

N —Z
E

1/2

1/2

g Pj ( JMTT
l J[jj l

JMTT )

2
N —Z X (PJ, [/2~j, 1/2 Pj, —1/2~j, —1/2)

J

(13)

To the extent that isospin is exact (neutron and proton orbitals the same), this is
1/2 1/2

1

2(N —Z) T+,g Qoo(i)r, (i) =(4') 2
N —Z XP (~;[/2 ~j,—1/2) .

J

(14)

Furthermore, to a fair approximation [exact for the allowed Fermi operator g (r) = 1],p 1/2 is independent of j, which
gives

(
JMT, T —( xQDD(i)~, (i) JMTT)=(4m) ' [2(N —Z)]' p(, g~ . (15)

The rate or cross section for a charge-exchange process is
then proportional to the squared matrix element, i.e., the
rate —(N —Z), the well-known (approximate) depen-
dence on neutron excess.

For odd nuclei, multipoles other than I =0, up to 2J,
may occur. These are nearly incoherent with each other,
and so they each add a positive contribution to the cross
section. We show in the following development that
higher multipoles and contributions to the cross section
vary approximately as (N —Z) ', that is, as (N —Z)
times the Fermi rate. These numerical factors bring the
possible I)0 contribution for the odd Ti isotopes [8]
down to the few percent level. For 46 Pd59 these contri-
butions should be of the order of 1%.

C. Seniority argument

As stated in the introductory remarks to this section,
our argument is based on the concept that, for an odd nu-

I

cleus, the wave function is dominated by seniority-1 com-
ponents. This is not always the case; for example, in the

f7/2 shell, the spin-parity of Ti is —,
' instead of —', , and

the —,
' ground state of Ti is nearly degenerate with —,

'

and —,
' states. Even in these cases, the validity of the

seniority concept does not break down. In the MBZ
wave function [16], the terms in the seniority expansion
of the wave function drop off rapidly with increasing
seniority. The concept of most nucleons being coupled in
zero angular momentum pairs remains valid.

In Appendix A, we show that the analog matrix ele-
ment for the one-body multipole operator Ql& between
seniority-l, (2p +1)-nucleon j-shell state vectors is close-
ly related in magnitude to the corresponding one-nucleon
matrix element. A seniority-1 state of (2p + 1) j-level nu-
cleons has the same diagonal matrix element of a one-
body operator of odd multipolarity I as the correspond-
ing one-body amplitude [see the text following Eq. (A7) in
Appendix A]. For all multipolarities (IWO), the result is

1 for odd I,
((j)' +', U =llQ»l(j)' ', U =1)=((j)',U =1 Q11vl(j)', U =1)x ' (16)

where 0 = (2j + 1)/2. The first factor on the right in Eq.
(16) is just the one-particle matrix element. The numeri-
cal (second) factor varies between + 1 for I odd, or p =0,
and —1 for I even, p =Q —1. Similar results hold for
transitions involving excitation from a seniority-1 state of
one j to a seniority-1 state of another j.

What these results tell us is that, in contrast to I =0,
there is no enhancement in the diagonal seniority-1 ma-
trix element as a result of increasing particle number.
The matrix element for many particles in the j level is
equal to or less than that for one particle. Applied to Eq.
(7), taking into account Eq. (16), this tells us that the
effect of higher multipole operators on the cross section
for analog transitions in odd-A nuclei is of the order of
(N —Z) ', that is, of the order of (N —Z) 2 relative to
analog transitions.

D. Collective state admixtures

A possible breakdown of the seniority argument could
come from consideration of collective admixtures. In
odd nuclei, the zero-order ground state is the seniority-1
state consisting of one odd nucleon in some single-
particle state and all other nucleons (the "core") coupled
to angular-momentum-zero pairs. For a strong collective
core in the presence of the extra particle, the physical
ground state consists of a mixture of the seniority-1 state
plus collective core states coupled with the single particle
(in various j states) to the ground-state angular momen-
tum. The strong admixtures are with one-phonon excita-
tions, seniority-2 states of the core, which along with the
odd particle give seniority-3 configurations of the nu-
cleus. These are, however, special seniority-3 states, in
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which two of the particles are in a constructively
coherent mixture of seniority 2. Thus these components
can have strong transitions which can overwhelm the
single-particle contribution to B(EA, ). As an example,
consider the simplest case of the nuclear ground state
made up of a mixture of a seniority-1 state of angular
momentum j and a collective quadrupole core coupled
with various single-particle states j ' to total angular
momentum j. The state vector is of the form

%=+ C„,[C&„(c)1/I,]
nj'

(17)

where 4„(c) and )/) are the collective and particle parts
of the wave function, respectively.

Using Eqs. (1), (2), (4), and (6), we can write the
charge-exchange nuclear matrix element, including pro-
jectile isospin, as

( ) )
~

(0)~ ) ) &(T)
—1/2 y ( 1)N+1+I—s Lcy —

( )

ISLN

+2 ('/M»
l +I(ks)N(r )FI(Ls)) )("o " ) ro(' ) I

JM» & (18)

r 2
p)V) N —z

T PoVo
(19)

where Po and P, are isoscalar and isovector deformation
parameters, which may be defined as

NP„+ZP~ NP„—ZP
N+Z N —Z (20)

We may write [19]the factor

p) N —z Np. —zp, N+z N —z
/3() A NP„+ZP N —Z

M —Mn p

Mn +M

(21)

where M„and M are multipole matrix elements for neu-
trons and protons. A typical value of M, /M is %/Z,
and so

M —Mn p

Mn +M (22)

In the case of single-closed-shell nuclei, M„/M can
dier substantially from N/Z. In Ca, for example,
Mn /Mp 37 and in Pb it is about 2 .5, which are quite
extreme values. For the typical proton valence single-

The projectile isospin matrix element is 1.
We next estimate the collective contribution to analog

charge exchange by first substituting Eq. (17) into Eq.
(18), thus arguing that the cross terms involving a virtual
collective transition between an unexcited core and a
one-phonon core excitation are the dominant terms. In
spite of the collectivity in the core states, the matrix ele-
ments are small because of the isovector nature of the
operator acting between isoscalarlike collective excita-
tions n in Eq. (17). Finally, we relate the cross section in
the distorted-wave approximation (DWA) to the corre-
sponding inelastic cross section for one-phonon excita-
tion in the neighboring even "core" nucleus. The details
of this procedure are carried out in Appendix C, with the
final estimate

closed-shell nucleus Zr, M„/M =0.85, and so the ratio
(M„Mz)/(M—„+M&)=0.2. For our example of 'o5Pd,

it should be closer to (N, —Z, )/g, =
—,",, =0.11.

A, =2 contribution to charge exchange would then be for
a typical ratio V, / Vo =

—,
' (see Ref. [20]) from Eq. (Cl 1),

o„(A.=2) ~
—,', ( —,

' X0. 11) o;„. (23)

Using o;„=30 mb (see Ref. [21]) gives us
o„(I=A,=2)=0.01 mb, only about 0.003 times the ex-
perimental value of 3.75 mb (see Table II).

E. Multistep processes

It is well known [1] that transitions between ground
states and their analogs in the low-energy (p, n) reaction
are substantially reduced by destructive interference from
three-step amplitudes involving two inelastic transitions
and one charge exchange. Two-step processes are sub-
stantially smaller, as they involve an isovector inelastic
transition, which we have seen in Sec. IIID to be very
weak. In addition, they are nearly incoherent with the
one-step process, and so their contribution enters approx-
imately as the square of the amplitude. Each three-step
amplitude involves two strong isoscalar inelastic steps
and one strong Fermi-like analog transition. The phases
of the two intermediate Green's functions are each ap-
proximately —i, and so their product has phase —1 rela-
tive to the one-step process. This subtraction has a direct
physical interpretation in terms of the loss of probability
to the inelastic channels.

The question we address here is whether the spreading
out of the intermediate collective states due to coupling
to the intermediate particle can affect (reduce) the (nega-
tive) three-step contribution. A typical three-step route
in the odd case is shown in Fig. 3, where the excited
states J (and their analogs) are due to the mixing of a par-
ticle state with a strong collective inelastic state in the
neighboring even nucleus.

The three-step processes, such as the one in Fig. 3, con-
tribute an amplitude
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(24)

where we have included only the collective part EVc of the inelastic interaction. To a good approximation, the small
differences in the energies of the inelastic states do not affect the intermediate projectile Green s function GJ, which
may then be factored out of the JJ' sums. Using Eq. (17), we may write the inelastic sums as

I
n j'' & & n j''I J & & J Inj & & nj I

=g nj & & nj I, (25)

where we have suppressed the projection quantum numbers. The sum over J and other quantum numbers gives 5„„.5 ',
leaving

(26)

and likewise the sum over J . Thus the three-step amplitude can be written, using again Eq. (1) and writing out the cou-
pled ground state,

(27)

Since we are including only the collective part of the
inelastic interaction, b, Vc, the j and j are restricted to be
equal to j, and j2, respectively. Furthermore, as we
showed in Sec. III D, an upper limit estimate of the I =2
contribution to the analog cross section is only about
0.3% of the I =0 contribution. Thus only the latter need
be included for our estimate, which forces n =n, ', j =j'.
Also, because the I =0 (Fermi-like) charge-exchange ma-
trix element is nearly model independent, we can equate
the terms for various core excitations to that for unexcit-
ed core states, n =n'=0 and j =J, the angular momen-
tum of the ground state. In addition, we now keep only
the dominant zero- and one-quadrupole-phonon core ex-
citations in the expansion. This leaves us with the two
types of terms. those in which n& =n2=0 and n =n'=1
quadrupole phonon and those in which n, =@2=1 and
n =n'=0 quadrupole phonon. These two types of collec-

J'analog

I

tive inelastic matrix elements are equal within a phase,
which cancels itself out between the two inelastic matrix
element factors. All these approximations and manipula-
tions leave us with the simple result

X & @ol
~ I @i, & & C'o4 l I: T+ ~ I'cz ) l @of &

X&4&& @lb Vcl@o&G(r, r')G(r', r"), (28)

where now j is taken to be the ground-state spin of the
odd nucleus. The two terms in the bracket sum approxi-
mately to 1, as a result of the normalization of the
ground-state wave function, leaving a result which is pre-
cisely that obtained for even nuclei. Thus, in these ap-
proximations, the three-step correction to analog transi-
tion strengths is expected to be the same as for even nu-
clei. It appears that there is no substantial reduction for
odd nuclei in the three-step amplitudes which would be
able to give rise to a large odd-even discrepancy in
cr /(X —Z).

1(

2+1 AN-1

Jo analog IV. DISCUSSION OF RESULTS

A. Ground-state analog transitions

A
N

Jo ground state

FIG. 3. Typical three-step route in an even-odd nucleus. The
excited states J (and their analogs) are due to the mixing of a
particle state with a strong collective inelastic state in the neigh-
boring even-even nucleus. A, Z, and N are the mass number,
proton number, and neutron number, respectively.

In Fig. 2 the upper curve shows the differential cross
section for the ' Pd(p, n) reaction to the ground-state
analog. The solid curves in Fig. 2 are not theoretical an-
gular distributions; rather, they are Legendre fits to the
angular distribution, used to determine total cross sec-
tions. In Fig. 4 the ratio o(p, n) for ' Pd to the corre-
sponding quantity of the two neighboring even isotopes
has been plotted as a function of center-of-mass angle.
(Note that the errors in Fig. 4 are smaller than those
shown in Fig. 2, since some of the systematic errors can-
cel when taking the ratio of the cross sections. ) The cross
sections for the even isotopes have been compared to the
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FIG. 4. Ratio of the ' 'Pd(p, n)' Ag ground-state analog
cross section to the ' Pd(p, n)' Ag ground-state analog cross
section (upper curve), and to the ' Pd(p, n)' Ag ground-state
analog cross section (lower curve).

B. Excited analog transitions

The cross sections for the (p, n) excited analog states
are also shown in Fig. 2. The nuclear structure in ' Pd is
somewhat complicated, following neither the vibrational
nor rotational models. The even isotopes have a nearly
perfect 0+,2+,4+ triplet above the first excited state, sug-
gesting a harmonic vibration, but at an energy greater
than double that of the first excited state, indicating a
tendency toward rotational structure. Our attempts to
reproduce this structure with an intermediate-coupling
particle-core vibrational model have not been successful.

In even nuclei it has been well established [22,23] that
at the projectile energies of our experiment, the 2+ excit-

coupled-channels Lane model in Ref. [3]. It is clear that
the angular distribution for the odd isotope is in good
agreement with those of the even isotopes over nearly the
whole angular range, failing only beyond 120, where the
analog differential cross section has already fallen by al-
most a factor of 100 from the value at 0'.

In the analysis of Sec. III, we have shown that, al-
though higher multipole transitions (I)0) than the dom-
inant Fermi-like (I =0) amplitude are possible for odd
nuclei, there seems to be no direct mechanism for which
these contributions are significant. This is in good agree-
ment with our experimental results. Contributions from
higher multipoles would not only increase the magnitude
for odd nuclei compared to its even neighbors, but would
also give different angular distributions, contrary to the
plots shown in Fig. 4.

ed analog states are reached primarily by the two-step
process involving (primarily) isoscalar collective inelastic
excitation before or following a Fermi-like analog
charge-exchange transition. The direct one-step excita-
tion, being a collective matrix element of an isovector
operator, is weak, as we have seen in Sec. III D, and typi-
cally negligible compared to the two-step process, in
which both the charge-exchange and inelastic steps are
strong. In medium and heavy nuclei, no analog states ap-
pear in the spectrum except those of collective states of
the parent.

In this paper we content ourselves to make a compar-
ison of.the (p, n) cross section with the B (E2) values for
inelastic excitation of the parent states. Only the —,'+ and
—', + states are clearly visible in the (p, n) spectrum of Fig.
1. For comparison, in Table I we display the B(E2)
values measured by Coulomb excitation [14,15]. The —', +

and —,
'+ states are by far the strongest electromagnetic

transitions, and the B (E2) values are approximately in
the ratio 2 to 1, in good agreement with the ratio of our
integrated cross sections given in Table II. The interpre-
tation of the excited analog excitation as taking place
through excitation of a collective inelastic state followed
by a Fermi charge-exchange transition to its analog (or
vice versa) appears to be well justified by our data.

V. SUMMARY AND CONCLUSION

We have measured the analog and excited analog
Pd(p, n) transitions at 26 MeV bombarding energy.

Because the analog transition in odd nuclei can involve
multipoles I of the interaction up to 2J, where J is the an-
gular momentum of the target ground state, we have
made a detailed theoretical analysis of the transitions of
higher multipolarity. We have shown that for a
seniority-1 state of an odd nucleus, the analog matrix ele-
ment falls off with increasing neutron excess as
I/(X —Z)'~ compared to (N —Z)'~ for the I =0 ampli-
tude. Since the cross section for different multipoles is
approximately incoherent, the I )0 contributions to the
cross section will be of the order of I/(X —Z) relative to
the I =0 contributions. We have also considered the
effects of mixing of an extra-core particle with the collec-
tive excitations of the neighboring even nucleus. In
shell-model terminology, these would be seniority-3 states
with various particle-hole configurations constructively
coherent for inelastic excitations. By writing the mul-
tipole of order I in terms of the collective amplitudes in
the neighboring even nuclei and comparing those for
charge exchange with those for inelastic scattering, we
have made estimates that the collective effects are also
negligible, primarily because the strong low-lying states
are isoscalar, whereas the interaction is isovector. Effects
of higher multipoles on the important three-step destruc-
tively coherent amplitudes were also studied; the result
again was that higher multipoles of the interaction should
not be significant. This theoretical conclusion is in good
agreement with our experimental results, which show
that not only the magnitude but also the differential cross
section for analog transitions divided by the neutron ex-
cess agree in odd and even nuclei over the whole angular
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range up to a center-of-mass angle of 120, where the
cross section has dropped off by two orders of magnitude
from that at 0'.

The present study has examined the possibility that
contributions from spin-flip, higher multipoles (I)0),
collective admixtures, or multistep processes might
enhance the analog cross sections for odd-A targets.
Each of these contributions was found to be small enough
that odd isotopes should follow the same systematics as a
function of the deformation parameter and (N —Z) as
the even-3 targets, although this may not be true for tar-
gets with (N —Z) ~2. This agrees with the present re-
sults for ' Pd and previous results [5,6] for Mo, but
does not resolve the discrepancies found for Mo, Ti,
and 9Ti. In some of these cases ( Ti and Mo), an ex-
cited analog state was not resolved from the ground state,
but this contribution was estimated to be small, based on
the strength of the other excited analogs and on the con-
sistency of the angular distribution with those of the even
isotopes. Moreover, for Ti all excited analogs are
resolved from the ground state and the discrepancy still is
observed.

Other interesting possibilities are the presence of non-
analog states very close to the analog in energy. Again,
the absence of other strong nonanalog transitions in the
vicinity of the analog argues against this explanation, but
the proximity of nonanalog strength to the analog might
vary somewhat irregularly with 3, since the excitation
energy of the analog in the residual nucleus varies consid-
erably between neighboring isotopes in some situations.

Complicating the picture somewhat is the fact that of
the even isotopes which have been studied at the most en-
ergies, those for titanium [8] and molybdenum [5,6] have
shown energy dependences which are not completely un-
derstood. Thus the resolution of the anomalous cross
sections for some odd-3 isotopes could be associated
with yet unexplained features of the energy dependence
of the analog transition. It has been pointed out [8] that
the energy dependence of the analog transition in this
mass region is very sensitive to the diffuseness of the
imaginary potential for nucleons in this energy range.
This is presumably due to the substantial effect single-
particle resonances can have on such transitions and the
resultant dependence on the damping of these resonances.
The effects of other giant resonances [5,6,8] in the com-
pound system need to be investigated, as do the possible
effects of the Fermi surface anomaly [24]. Finally, a more
careful look at possible preequilibrium contributions [25]
to the cross section should be taken, although these
would likely not have the resonancelike feature observed
in some of the cross sections.

Some details of the behavior of the (p, n) cross section
to analog states remain unclear. Additional theoretical
work on the topics previously listed would be useful, as
would more detailed experimental studies of the energy
dependence and possible even- 2, odd- 3 differences in the
30—60 MeV bombarding energy range.
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APPENDIX A: TRANSITION STRENGTHS
WITH SENIORITY WAUE FUNCTIONS

Our object is to try to calculate a transition amplitude
for a partially filled shell. Define the coupled two-particle
creation operator

A iN(ji, jz)= g (jij2mimz IN &a. a
mlm2

and the transition operator for angular momentum
transfer I,

Am(Ji J2)

m)m2
(jjm, —mzlI —N &(

—1) 'a a

(A2)

and let A = A oo(jj), where j is some principal filling lev-
el. We will consider a partially filled shell of seniority 1:

%=NA ~at 0&,jl m
&

(A3)

where lo& is a state of lower filled shells, the operator
creates an additional 2p particles coupled to p

angular-momentum-zero pairs, and N normalizes Eq.
(A3). First, consider the simpler case in which j,Wj and
j2&j. The transition matrix element is

N (0 a~ A Ai (j„j2)A a~ 0&

=x'(ola, A',„(j,j, )a,' o& (ol A&A'~lo&

= &0 a, A',„(j,j, )a,' lO& . (A4)

~'&0 a, , A&A', „A'&a,' lO& .

We may develop the operator product

(A5)

A Ai„At =A '[[A, Ax„]+Ax„A]A
= A~ 'I[A, [A-, A',„]]+[A,A',„]A

+[A, A',„]A+A',„A'] A'& .

(A6)

The double commutator is zero, as both A and [ A, A oz„]
contain only destruction operators [see Eq. (B7)]. Thus
Eq. (A6) becomes

Equation (A3) tells us that the transition matrix element
for 2p + 1 particles is precisely the same as for 1 particle.

Next, consider transition matrix elements of the non-
trivial type involving the operator A i„—= A i„(j,j) be-
tween states of 2p + 1 particles in a single shell,
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APAO~ AtP AP —
2I2[A Ao )A +AD A2I AtP

[2[A, A )A +[A A ]A

+ A',„A') A'&

2 —1"
A, „A~ 'A-'~+A', „A&A'&.

j
(A7)

For k odd, the operator Az„ in the first term is identi-
cally zero [see Eq. (Al)], leaving us with the simple result

X'&O~a. A~A „A ~a jo)
=N &O~a. A&„A~At~a ~0) . (AS)

This matrix element may be reduced by commuting A

past 3 p exactly as was done for the calculation of the
normalization coefficient N in Eq. (B12). The numerical
factors which come from such a procedure then exactly
cancel the N, giving us

N &O~a A~A& At~a ~0) =&0~a. Ai„a ~0) . (A9)

&O~a, , A, „A&-'A'A'&-'a, '
~O& . (A 10)

We may write

In other words, the transition matrix element for A, odd
for the 2p +1 particle seniority-1 state is exactly equal to
that for the corresponding one-particle (necessarily
seniority-1) state.

For even values of A, , the second term of Eq. (A7) may
now be treated exactly as the normalization matrix ele-
ment Eqs. (B9)—(B13),eventually giving back just the ma-
trix element for a single particle in the j level. The first
term of Eq. (A7), which we now concentrate on, is the
correction due to the additional p pairs in the nucleus. It
is a large correction for nearly filled levels.

Our next task is to move one 3 past Ap ', eventually
commuting it past the 3& „in the matrix element of the
first term of Eq. (A7),

A&-'A'= A&-'[A, A']+ A&-'A'A

P —2[A A $)+ AP —3[A At]A + AP —4[A At)A 2+. . . +[A At)AP —2+ A tAP —i

0
=—[A (Q N)+A — (Q N)A+ —+(Q N)A I—+AtA (A11)

where N is the number operator for j-level nucleons. Inserted into Eq. (Alo), this series (in curly brackets) will give

—A~ [(Q—2p+2 —1)+(Q—2p+4 —1)+ . +[Q—2p+2(p —1)—1])2 -2
Q

Thus Eq. (Alo) is

=—A~ [(p —1)(Q—2p —1)+(p —1)pj =—(p —1)(Q—p —1)A~0 0 (A12)

&0 aj Ai p
—(p —1)(Q—p —1)Ai' + AtAi' ' .+ Ati' 'at ~0) . (A13)

The second term is the type we want; the first is just like Eq. (Alo) with p replaced by (p —1). We may then continue
the process with the first term of Eq. (A13) to get

&O~a, A A Ai' 'A ti' '+ (p —1)(Q
——p ——1)A~ —'A t~ —2

jm' A, —p 0

+—(p —1)(Q—p —1)—(p —2)(Q —p)Ai' —
A &

— +2 2 —3 f —3

A 0

+ (p —1)(Q—p ——1)—(p —2)(Q —p) —(1)(Q—3) a ~0) .2 2 2
0 A Q

The general term in the curly brackets of Eq. (AI4) is then
m —1

gp —mgfp —m

A
'm —1

(p —1)(p —2) . . (p —m + 1)(Q—p —1)(Q—p) (Q —p +m —3)

(A14)

g p —
my 'tp —m

0
(p —1)! (Q —p +m —3)!
(p —m)! (Q —p —2)!

(A15)

The evaluation for the operators A A ~ is carried out in the same way as in the normalization constant (B12
The general term is
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p —m

Q —1 —p+m! (16)

Combining Eq. (A15) with Eq. (A16), we get, for the general term of Eq. (A14),

(0—1)!(p—1)!(0a Ai „A a 0&
Oa~, Ai „A AP A P 0 0 (0—p +m —l)(Q —p +m —2)(Q —p —2)!

(A17)

(Q —1)!(p —1)!
(0—p)!

As all terms of Eq. (A17) multiply a common matrix ele-
ment, we sum the terms m = 1 to m =p to give an overall
coefficient for Eq. (Alo),

p —1

2

In other words, the seniority 1 (2p + 1) j-shell nucleon di-
agonal matrix element for the even I&0 multipole transi-
tion operators is the numerical factor [1—2p/(0 —1)]
times the corresponding one-particle matrix element.
The spectroscopic amplitude [26], defined generally as

(0—p)(Q —p —1)
(0—p + m —1)(A—p +m —2)

p —1

2 (0—2)!p!
0 0—1

(A18) for Eq. (A20) is therefore

(A21)

2p
(o~a, A,'~a,t ~0& . (A20)

Now that we have a pair creation operator next to
Ai „in Eq. (A17), we anticommmute it,

Ai„„A =[Ai „,A ]+A Ai„
= ——(

—1)"A „+A A „.4.
(A19)j

Note that it is the vanishing of the first term of Eq. (83)
in the commutator of Eq. (A19) that distinguishes all the
higher multipoles from X=O. The second term gives zero
in the matrix element, and the first gives us our original
transition operator just to the right of the single-particle
destruction operator, multiplied by a sum of terms with
pair products.

All these results, Eqs. (A5), (A7), (Alo), (A14), (A15),
(Al 8), (A19), and (B12), together give

(q',

0 1 (0—1 —p)!
2 p! (0 1)!—

X(o~a APA „A Pa. ~0&

2pS(jjI;jjaa)=1—0 —1
(A22)

since, by definition, the spectroscopic amplitude for a
single-particle transition is 1. In Eqs. (A21) and (A22), a
is the single-particle isospin index.

For odd A, there are no correction terms, and so the net
numerical factor is trivially +1, correct result for a one-
hole state. The spectroscopic amplitude for even A, can
be written

2p pm 2p

0—1 pm
(A23)

where p =0—1 is the maximum number of pairs possi-
ble for a seniority-1 state. This factor varies between +1
for p =0 to —1 for p =p, vanishing for

p =
—,'p =

—,'(j —
—,
'

) (which can occur for j =2n +—,',
where n is an integer). As a check, the value —1 for
p =p is the correct result for a one-hole state.

Two other useful results can be obtained for transitions
from a seniority-1 state of one single particle to a
seniority-1 state of another. The first involves the
transfer of an odd particle to another j value,

Mf; = (O~a AP (j') AP(j ) A (jij') A tP (j ') A tP(j )at ~0&N (1,2p +1)N (0,2p)N'(0, 2p')N'(1, 2p'+ 1), (A24)

where N(U, 2p + 1) is the normalization factor for a state of seniority v of 2p +U particles.
The matrix element in Eq. (A24) may be written

(jj'm, —m2~A, —p&( —1) '(O~a' Ap(j')A (j)a~ a~ At(j)p A (j ) at ~0& .
mlm2

(A25)

Factoring the matrix element and commuting with A, we may write Eq. (A25) as
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Mf;= g &JJ'm& —m~l~ —p&( —1)' '&Ola, ' ~(j')'~ (j'«,' 10&&Ola, ~(j)~& (j«, IO&
m l Ply

=&jj'm —m'~A, —p&( —1) '0 (1,2p+1)O, (1,2p'+1), (A26)

where

P2, (0—u)!O. ( u, 2p +u) = —p!0 0—u —p! (A27)

is derived in Appendix B, Eq. (B12).
The spectroscopic amplitude is then

2
'

2 p!p'! ', ',
,
N)(0, 2p)N (1,2p+1)N (0,2p')N. ,(1,2p'+1)

(0—1)! (0' —1)!

(0—p)(Q' —p')
QA'

1/2

(A28)

As p (Q, this spectroscopic factor is always less than 1.
The other matrix element of interest uses the same initial state as Eq. (A24), but increases the number of j particles,

Mf;=&0~ A~ '(j)a A~ '(j')Az (j',jz)A ~(j ')A ~a 0&

XN(0, 2p +2)N(1, 2p' —1)N(0, 2p')N(1, 2p + 1) . (A29)

The matrix element in Eq. (A29) is

m&m&

& j&jism& mz~A, ——p&( —1) '&0~2 +'(j)a A '(j')aj a. A" (j')A (j)a 0&

mmmm&

—
& j&jism& mz~A, —p —

&(
—1) '&0~ 2~+'(j)a. A ~(j)a ~0&&O~a, A~ '(j')a A (j')~ ~0& . (A30)

Putting in the normalization factors from Eq. (A29) gives

~(JJ'~;JJ'~~) =( —1) + N(0, 2p')N(1, 2p + 1)N(0, 2p +2)N(1, 2p' —1)O(Q, 2p +2)O(Q 2p')jj'
1/2

—
( 1) J J+iL P P

O'0 (A31)

Since the number of pairs (p + 1 in the final state) is less than or equal to 0, this matrix element is also always less than
one in magnitude.

All these results, Eqs. (A4), (A22), (A28), and (A31), show that for seniority-1 state vectors there is no enhancement
due to numbers of particles for any multiparity transition greater than 0. The only departure from the single-particle
result of spectroscopic amplitude 1 is a reduction.

APPENDIX 8: COMMUTATORS AND NORMALIZATION

The most often used commutator of the operators defined in Eqs. (Al) and (A2) is [A, 3 ]. As we will also need
[Az, A ], we may calculate the latter first and then specialize to A, =@=0. First note that Az„—=0 for odd A, because
of the fermion commutation relations. Thus the odd-A, case of the commutator is trivial, and we need consider only
even values of k in deriving the commutator. Thus we have



47 THEORETICAL TREATMENT OF ANALOG (p, n) CROSS. . . 2089

[Aq„, A ]=
I

m, m2mlm2

I
m

1 m2m 1m 2

&jj m
', m 2 ~Ap) &jj m

& m2 ~00) [a a, a. , a. , ]

&gjm, m z ~Ap ) &gjm, mz ~00)[5,5,—5,5,—5,a. , a

—5,a. , a +5,at, a +5,at, a ] .
mmmm l gm2 Jm2 m2m l jmZ Jml mlm2 pm' Jm2 (81)

Gathering like terms, using Eq. (A2), the orthogonality of the Clebsch-Gordan coefficients, and the value of the
coe%cient,

&gjm, m, ~00) = „5( —1)
1' 2

(82)

give finally the result

2( —1)" o[Ag„, A ]=2 5go
— Ag

J
For A, =O, this is

(83)

2( —1)" o 2
[A, A ]=2 1 — A =2 1 — N .=2 1 —.

J J' '

where 0= (2j + 1)/2 and N is the j-level number operator, since

(84)

A —= Aoo= g & jjm, —m2~00)( —1) 'a. a. = g —5 a. a =—N .
mlm2

The other important commutation relation is

(85)

[A, A „]=
1

& jjm &m2100& & jjm'& m 21~ p &( 1) '[a~ aj a a. ]
I I

m
1 m2m lm 2

I I
m] m2m lm 2

Gathering like terms together gives finally the desired commutator

[A, A~„]=
2( —1)"

A& „, A even
J

0, A, odd.
(87)

Normalization of a seniority wave function

0 =%A~~%,

requires that

(89)

where p is the number of pairs of nucleons coupled to zero added to a maximum seniority state of v particles. Using Eq.
(84), we may write

&C, ~A&At&~e„)=&@,~A& '[[A, At]+AtA]At& '~e„)

=&q, ~A -'[[A A']A' -'+A'[A A']A' -'+A"[A A']A' -'
+. . . +A'&-'[A A']]~e, )

=—„&q.I» '(& —N)A'&-'+A~-'A'(n —N)A'&-'+ . +A~-'A"-'(n —N)l~. & .

The state vectors A t~ "%„are all eigenstates of the number operator, giving, for Eq. (810),
(810)
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&q'. IA'A "le.&=—[(0—v —2p+2)+(QJ —u —2p+4)+ . +(II—u))&e. lA' 'A" 'I+, &

=—(0—u —p+l)p(e, lA' 'At' 'le, ) . (B1 1)

Repeating the procedure with p —+p —1, . . . , gives
p

('P„l A A 0', ) = —p! ' =O(v, 2p+u),2 (0—u)!
0 (0—u —p)!

s

assuming that 4, is itself normalized. We therefore have

p 1/20 (0—v —p)!
2 (0—u)!p!

(B12)

(B13)

APPENDIX C: VIRTUAL EXCITATIONS OF COLLECTIVE STATES

In this appendix we use a collective model to estimate the effects of virtual excitations of collective states of the
neighboring even-core nucleus by interaction with the odd nucleon. The development starts with the substitution of the
coupled nuclear wave function into the charge-exchange matrix element, Eq. (18), giving

(JMT, T —1, —,', —,
'

I VI JMTT, ,', —
—,
' )—

=(T '
) g C„C*' g (

—1) +'+ P (ro)(JJM, MII N—)—
nj n 'j ' ISLN-

X( —() —J(n j (TT 2 Yr'is'sis(r; (Frissii("o " (ro J(aj (TT) .J (C 1)

As we are interested in collective contributions, we neglect the single-particle part of the operator in the nuclear ma-
trix element. To this approximation we have

= & J(n'j')TTIQI(xs)N, lo(c)IJ(nj)TT &

(2J +1)~(J.JJ.J' jI)& n'J'T. IIQs(~s~ i(c) lln. J.T. & (C2)

where Qz~zs~z, o(c) is the collective part of the isovector operator in the matrix element of Eq. (Cl). Equation (C2) ap-
plies in cases where the extra-core particle is a neutron. If it is a proton, there is an additional isospin Clebsch-Gordan
factor approximately equal to 1, which makes no difference for our purposes.

In Eq. (C2) there are two types of terms which we must consider: those with n,'=n, and those with n,'An, . Of the
latter the dominant terms are those with the phonon number changing by one unit. For the low-lying states in odd nu-
clei, because of the mixing coeKcients C„, the largest terms will be those involving one phonon of multipolarity I. The
strongest collective excitations are those of the electric type, particulary A, =2+,3, and so I(AS) =I(AO) =A(AO) for a
state J(jA, ) =j(jA), giving, for Eq. (Cl),

(jmT, T —1,—,', —,
'

I VjlmTT, '„——,
')—

=(T '~
) g Pz z(ro)(jjm, —mlA, N)( —1)j—

N

X
I C~ (j(jA) TTII Q~ io(c) IIj(jA) TT &+2Coj C~& & j(jA)T.T. II Q~ io(c) IIj(jO) TT ) )

=(2j+1)(T '
) g Pz ~(ro)(jj m, m'lA, —N)( —1)J

N

X[C~ W(AjAj; jA)(AT, T, IIQ& &o(c)IIAT, T, )

+2C, C, . ( —1)'W(OjAj;jA)(AT, T, IIQ»o(c)IIOT T )) . (C3)

In the collective model, neglecting the difference be-
tween the isoscalar deformation parameter Po and the
mass deformation parameter, we may write the isovector
operator as [27,28)

N —Z
Qxx, io(c) =

o A dr

where a» is the expansion parameter of the radius

(C4)
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R =RO 1++ai, Yi,(8,$) (C5)

PiVi N Z-
Qi N, 10 .~ V g QA. N, OO

IO O

(C6)

For a harmonic vibrator, the first term of Eq. (C3) is
zero. We can get an order of magnitude upper limit on
its contribution by taking the nonzero value of the first
term in the rotational model for which

(C7)

and V, is the isovector projectile-target interaction. Both
R and a» become dynamical operators when the surface
is quantized. The isovector deformation parameter P, is
allowed to be different from pO or, equivalently, p„Wp~,
to take into account shell effects on the isospin structure
of the excitation.

Within the collective model, we may relate the isoscal-
ar and isovector operators approximately by the relation

which is equal to —0.535 for A, =2, and 0 for A. =3. In
addition, the Racah co eScient and the coupling
coefficient for the first term of Eq. (C3) are typically
smaller than the second term. For an estimate of the
magnitude of the collective isovector contribution to ana-
log transitions, we may therefore confidently neglect the
diagonal (first) term of Eq. (C3) and consider only the
second term, whose nuclear matrix element involves the
transition from an unexcited core state to the one-photon
state of multipolarity X. This observation allows us to re-
late the collective contribution in charge exchange for an
odd nucleus to inelastic excitation of the same core state
in the neighboring even-core nucleus. The fact that
different total angular momentum transfers allowed in
the j~j ground-state transition are incoherent in the to-
tal cross section allows us to make the comparison of the
partial cross section to the cross section for excitation of
the A,-pole inelastic cross section in the neighboring core
nucleus.

The inelastic scattering matrix element for the neigh-
boring core nucleus for excitation of the one-photon state
of multipolarity A, is

& AMT, T, I
VIOOT, T, ) =g ( —1) Pi N(rO) AMT, T, g PiN(r; )Fi (r0, r, ) OOT, T,

N l

=( 1) Pi M(ro)(A) &AT T IIQi 0(c)IIOT T ) (C8)

In Eq. (C8) we have included only the dominant isoscalar part of the nuclear operator, thus neglecting terms of order
(N —Z)/A.

The cross section is obtained by taking the distorted wave (DW) matrix element of the nuclear matrix element Eq.
(C8) multiplying by (

—2m/4rriri ), squaring, and multiplying by k /k, the ratio of the final to initial wave numbers and
summing over final ones. The inelastic integrated cross section, neglecting spin-orbit effects, is therefore

o.;„=f d Q'(Zm /4irR ) (k'/k)(A, )

xg I&yf(ro)l( —1)~%AM(ro)&AT, T, IIQi 00(c)lloT, T, ) A';(ro)) (C9)

where k' is the final wave number.
The corresponding cross section for charge exchange from the dominant second term of Eq. (C3) is

o.„=fdQ"(2m/4M ) (k" /k)
1

2j+1
X $ $ &jjm, —m'lA, N)2C0 Cif(T—) ' j(A, )

m, m' N

x &Af(r0)l&i„N(ro)&AT, T, IIQi, )0(c)lloT, T, &Ix;(ro) & I'

= fdA" (2m /4miii ) (k" /k)4C0. Ci,.(T) '(A, )

&gf(rO)I &i, —N(r0)& AT, T, IIQi, io(c)IIoT. T, & ly;(rO) & I'
N

(C10)

Note that, aside from numerical constants and a different excitation Q value for charge exchange, leading to a
different final wave number k", the cross sections IEqs. (C9) and (C10)] are the same except that the operator in Eq.
(C9) is isoscalar and in Eq. (C10) is isovector. These matrix elements of different operators can be related using Eq.
(C6). The Q value will be more negative for charge exchange than inelastic scattering, which favors the latter, both be-
cause k' & k", and because the DW matrix element will suffer from a larger momentum mismatch.

Thus, by comparison of Eqs. (C10) and (C9), using Eq. (C6), we may infer that the cross section ratio satisfies the in-
equality

Oln

cr, PV PVe (, i & N —Z ), i i N —Z
POVO 2 POVO

'2

(Cl 1)

the last inequality following because the upper limit on the mixing coe%cient product Co C& is —,.
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