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Coulomb instability of hot nuclei in quantum hadrodynamics
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Mean-field theory of quantum hadrodynamics is used to study the Coulomb instability of asymmetric
nuclear matter at finite temperature. The critical temperature for the liquid-gas phase transition in nu-
clear matter and its dependence on an asymmetry parameter are calculated. The limiting temperature
T~;, which reflects the Coulomb instability of hot nuclei is studied.

PACS number(s): 21.65.+f

I. INTRODUCTION

In spite of its simplicity, the mean-field theory (MFT)
of the quantum hadrodynamics I (QHD-I) model of the
quantum hadrodynamics is very successful in describing
the properties of both nuclear matter and finite nuclei [1].
In a recent paper, Su and Qian [2] investigated the
thermal fluctuation effects of meson fields on quantum
hadrodynamics, by means of a real-time Green's-function
method with pair cutoff approximation up to the second
order. It was found that the fluctuation effects on satura-
tion energy, effective mass of nucleon, and pressure are
remarkable in low baryon density regions and/or high-
temperature regions. On the other hand, however, the
MFT provides us with a good approximation of equation
of state in nuclear matter at low temperature ( ~25
MeV). As a result, one obtains reasonable critical tem-
perature T~=20. 56 MeV [2] for liquid-gas phase transi-
tion in symmetrical nuclear matter and Tc =9. 1 MeV [1]
for pure neutron matter. As pointed out by Levit and
Bonche [3], another temperature, namely, limiting tem-
perature T&;, is important for a finite nuclear system
with Coulomb interaction. Below the limiting tempera-
ture T&;, the nucleus can exist in equilibrium with the
surrounding vapor. But above T~;, the nucleus is unsta-
ble and shall fragment. This is the so-called Coulomb in-
stability of hot nuclei. Recently, much effort [4,5] has
been devoted to studying the Coulomb instability of
asymmetric nuclear matter. But most such studies are
based on the nonrelativistic treatment and the effective
nucleon-nucleon interactions. It is, therefore, of interest
to investigate such instability of hot nuclei in a relativis-
tic approach. It is the first purpose of this paper to study
the Coulomb instability of hot nuclei in QHD models.
We will calculate the limiting temperature, starting from
the MFT of the QHD models. It was noticed that the in-
teractions between nucleons and the effective nucleon
mass in the QHD-I model are all independent of isospin.
As a result, although the limiting temperature deter-
mined by using the QHD-I model has values similar to
those given by the nonrelativistic calculation with the SkI
nucleon-nucleon interaction, the asymmetry parameter in
the outside vapor phase is always negative. This fact is in

contrast with either the Hartree-Fock (HF) calculation
[15] or the previous nonrelativistic results [4,5]. In order
to overcome this difhculty we take the p meson degree of
freedom into account in the Lagrangian, i.e., we adopt
the QHD-II model with the contribution from Higgs
meson ignored. It was found that the mean-field theory
of the QHD-II model is more reasonable than that of the
QHD-I model for describing the properties of asym-
metric nuclear matter.

The second motivation is to study the asymmetry
dependence of the critical temperature T, for liquid-gas
phase transition. Most of the existing calculations of the
critical temperature for the liquid-gas phase transition in
nuclear matter are also based on nonrelativistic theories
starting from effective nucleon-nucleon interactions, such
as the Skyrme interaction [6—8], the Gogny interaction
[9,10], etc. [11,12]. In such studies, it was found that the
critical temperature for liquid-gas phase transition in nu-
clear matter decreases as asymmetry parameter o, in-
creases. We shall study the asymmetry dependence of the
critical temperature for the liquid-gas phase transition in
the QHD approach of nuclear matter and compare the
obtained result with that calculated by using nonrelativis-
tic theory and effective nucleon-nucleon interactions.

In Sec. II, we will briefly describe the MFT of QHD-I
for bulk nuclear matter. A two-phase model and the
coexistence equations are described in Sec. III. The nu-
merical results given by the QHD-I model and some dis-
cussions are presented in Sec. IV. In Sec. V, we study the
mean-field theory of the QHD-II model and apply it to
calculating the same properties of nuclear matter as in
the QHD-I model. We then give some conclusive re-
marks in Sec. VI.

II. BULK MATTER IN QHD-I

The degrees of freedom in QHD-I are baryons, scalar
mesons, and vector mesons. The Lagrangian density is

L =g[y„(i t)" g, V")—(M—g,P)]P-
+ —,'(B„P8"P m, P ) 'F„F"+——,'m„V„—V"—,

where
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F„.—=a„v.—a.v„, (2)

E*(k)=+k +M' (3)

where k and M* are, respectively, the momentum and
the effective mass of the nucleon. The effective mass M*
of the nucleon in nuclear matter is related to its bare
mass through the equation

2

, f d'k [n„(k)+n„(k)]
m (277)

[n (k)+n (k)] .
m (2') +k +M*

(4)

and P and V„are, respectively, the neutral scalar-meson
field and the neutral vector-meson field. In this model,
the vector mesons (co mesons) are coupled minimally to
the conserved baryon current, and the scalar mesons (cr

mesons) are coupled to baryons by a Yukawa coupling.
Since there is repulsion between two baryons at short dis-
tances by ~-meson exchange and attraction at large dis-
tances by o.-meson exchange, the dominant feature of nu-
clear force can be simulated by this model. In mean-field
approximation, the scalar and vector field operators are
replaced by their expectation values. Here, we will just
write down the main results of the MFT of QHD-I model
for nuclear matter, because the details can be found in
Refs. [1]and [2].

The single nucleon spectrum in nuclear matter is given
by

the thermodynamical potential 0 and then calculate all
other thermodynamical quantities of the system. For ex-
ample, the pressure is expressed as

2 2

p = p — (M —M*)
2ftZ 2fPl

+ — f d k [n„(k)+n„(k)]
3 (2~)3 k2+M+2

g2+ —,
' d k n k+n k' (2~)' k'+M"'

III. MODEL AND COEXISTENCE EQUATIONS

Since the main purpose of this paper is to investigate
the change in the Coulomb instability of hot nuclei when
the QHD-I approach is used to describe the bulk nuclear
matter instead of the usual nonrelativistic approach, we
will adopt the same model as used in the nonrelativistic
approach. Following Refs. [3]—[5], we consider the hot
nucleus as a uniformly charged drop of nuclear liquid at a
given temperature T and with a sharp edge, in both
thermal mechanical and chemical equilibrium with the
surrounding vapor. A set of two-phase coexistence equa-
tions is, therefore, obtained by requiring equality of tem-
perature T, pressure p, neutron chemical potential p„,
and proton chemical potential p of the liquid and vapor
phases:

p(T, ps, as )+pco 1(ps. )+p-.,(T,pL) =p(T,Pv av)

n (k)=(expI[E*(k) —v ]/k~TJ+I)

n~(k)=(exp[[E*(k)+v ]/kssT]+1)

(q =n,p),

(5a)

(Sb)

where v —=p —(g, /m, )p with p being the usual chemi-
cal potential. v or IM is determined by the subsidiary
conditions

pz= 3 fd k[n (k) —n (k)] (q=n, p) .

The neutron density p„and proton density p are related
to the total density p and asymmetry parameter u by re-
lations

p„=(1+a)p/2, p =(1—a)p/2 .

Equations (3)—(7) form a closed set of equations for cal-
culating the single nucleon spectrum E*(k), effective
mass M*, and chemical potentials p (q =n,p). Since
the nucleon-nucleon interaction in this model is indepen-
dent of isospin, the resultant single nucleon spectrum and
effective mass are also independent of nucleon charge.

Having obtained the single nucleon spectrum E*(k)
and the chemical potentials pq, one can easily calculate

Here y =y„=2 is the spin degeneracy. ng(k) and n~(k)
are the baryon and antibaryon thermal distribution func-
tions, respectively:

6 Ze
(12)

where Z and R are the charge number and radius of the
liquid droplet. The exchange term of the Coulomb in-
teraction has been neglected. When the Coulomb in-
teraction is switched on, the chemical potential of proton
has also an additional term pc,„&=VC,„,. The contribu-
tion of the Coulomb interaction to pressure is expressed
as

Z e
Pc ul(P)o~ gR P (13)

where A =N+Z is the number of nucleons in the liquid
droplet.

P ( Ps aL) P (TPvav)

P„(T,PL, aL)+@co i(PL)=@~(T,PV av)

where subscripts L and V stand for liquid and vapor, re-
spectively. In the liquid phase, the Coulomb and surface
effects have been included.

In the MFT of QHD-I model for infinite nuclear
matter, the Coulomb interaction is switched off and sur-
face effect is not considered. When Coulomb interaction
is added, the single nucleon spectrum given by Eq. (3)
should be added by an additional Coulomb potential en-
ergy. For simplicity, we will use an average Coulomb po-
tential per proton in a uniformly charged sphere:
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For the liquid droplet with a surface, we should also
consider the surface effect on pressure. Following Refs.
[4,5], the formula for the temperature dependence of the
pressure tension y(T) suggested by Goodman, Kapusta,
and Mekjian [13]is used:

y(T) =(1.14 MeV fm 2) 1+ 3T
2Tc C

3/2

(14)

where T, is the critical temperature for infinite sym-
metric nuclear matter. The additional pressure given by
the surface tension of the liquid droplet is then

p,„,r(T,p) = —2y(T)/R, (15)

where nuclear density p is related to nuclear radius R by
relation A =—', mR p for a given nucleon number A.

IV. RESULTS AND DISCUSSIONS

By using the formalism given in Secs. II and III, we
can discuss the properties of nuclear matter at finite tem-
perature. In the numerical calculation, we choose the
coupling parameters

C =(I /m )g =267. 1, C =(M /m )g =195 9

which have been taken in the QHD-I model to reproduce
the equilibrium properties of nuclear matter.

E"(k) in relativistic theories such as the QHD-I model,
the resultant chemical potential p has also included the
still nucleon mass M. For the convenience in the com-
parison between the results here and those given by the
nonrelativistic theories, we define a reduced chemical po-
tential p as p=p —M. We shall show p-p isotherms in-
stead of p-p isotherms. Since the difference between p
and p is only a constant M =938 MeV, the p-p isotherm
has the same behavior as the corresponding p-p isotherm.
Instead of p, we will discuss the reduced chemical poten-
tial p in the following. For convenience, we will just call
p a chemical potential. We show the p-p isotherms for
infinite symmetric nuclear matter (a=O) at various tem-
peratures in Fig. 1. One can see that each curve except
the one at T =20.2 MeV exhibits a typical form of two-
phase coexistence, with an unphysical region (say, be-
tween points A and B in the isotherm at T =6 MeV).
The unphysical region gets smaller as temperature T in-
creases. At a critical temperature T, =20.2 MeV, the un-
physical region disappears and there appears an inflection
point satisfying the condition Eq. (16b). In Fig. 2, we
present the p-p isotherms for infinite asymmetric nuclear
matter with asymmetry parameter +=0.4 and at various
temperatures. In the case of asymmetric nuclear matter,
the proton chemical potential p and the neutron chemi-
cal potential p„separate, with p„moving up and p~

A. Infinite nuclear matter

For infinite symmetric nuclear matter, the equation of
state (EOS) given by pressure-density (p-p) isotherms is
equivalent to the one given by chemical-density (p-p) iso-
therms, as pointed by Jaqaman, Mekjiam, and Zamick
[6]. Therefore, either of them can be used to calculate
the critical temperature T, for the liquid-gas phase tran-
sition. The critical temperature T, can be determined by
the condition of the inflection point ofp-p isotherms:

(fm ')
0.1

a = P.P

0.2

Bp =0 and
Bp

a2 0.
dp

(16a)

or by the condition of the inAection point of p-p iso-
therms:

Bp =0 and
Bp

a2p
Bp z-

(16b)

—20

In the case of asymmetric nuclear matter, the situation
changes. As mentioned by Jaqaman, Mekjian, and Zam-
ick [6] and Su and Lin [14], the proton and neutron are
not in chemical equilibrium although they may be in
thermal equilibrium. So their chemical potentials are not
related to each other. Since the proton and neutron have
different chemical potentials, they shall also appear to
have different critical temperatures T& and Tc, respec-
tively. But we cannot imagine that the kind of nucleons
with high critical temperature can stick together after all
the other kind of nucleons with lower critical tempera-
ture have boiled off. We, therefore, must choose the
lower of Tz~ and Tc as the correct critical temperature.

Due to the definition of the single-particle spectrum

—80

FIG. 1. P,-p isotherms of infinite symmetric nuclear matter at
various temperatures T (in MeV).
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moving down compared to the chemical potential for
symmetric nuclear matter (see Fig. 3). At lower tempera-
tures, both of the p„-p and p -p isotherms exhibit the
form of two-phase coexistence. When temperature T in-
creases, the unphysical regions in the two kinds of iso-
therms get smaller. We can then find a critical tempera-
ture T," for neutrons and a critical temperature T~ for
protons. The result for the asymmetry parameter a=0.4
is T,"=16.4 MeV and T~=23.3 MeV. As mentioned in
the beginning of this subsection, we should choose the
lower of the two critical temperatures, T," as the correct
critical temperature for asymmetric nuclear matter.

In Fig. 3, we present the p-p isotherms for infinite nu-
clear matter with various asymmetry parameters a and at
temperature T=10 MeV. For symmetric nuclear matter
(a=0), the chemical potential for protons is equal to the
one for neutrons, as expected. For asymmetric nuclear
matter (aAO), the proton chemical potential p, and neu-
tron chemical potential p„separate, forming a gap be-
tween two curves. When asymmetry parameter a in-
creases, the gap between these two curves also increases.
It can also be seen that for not too large asymmetry pa-
rameter a((0.92), the isotherms exhibit a typical two-
phase coexistence form, with an unphysical region.
When asymmetry parameter a increases, the unphysical

20

10

C)

—20

FIG. 3. p„-p and p~-p isotherms of infinite asymmetric nu-
clear matter with various asymmetry parameters and at a fixed
temperature T = 10 MeV.

0

—10

0.1 0.2

region becomes smaller for p„-p isotherms and becomes
larger for p, -p isotherms. At +=0.92, the unphysical re-
gion in the p„-p isotherm disappears and there appears
an inflection point. We may call this asymmetry parame-
ter a critical asymmetry for the liquid-gas phase transi-
tion in infinite nuclear matter at the fixed temperature T
[8]. We can obtain a critical asymmetry parameter for
each given temperature T. The resulting T,-e, diagram
is shown in Fig. 4 with a solid curve. The phase diagram

i I

20

16

——20

—30

0.0 0.2 04 0.6 0.8 1.0

—40

FIG. 2. p„-p and p~-p isotherms of infinite asymmetric nu-
clear matter with asymmetry parameter a=0.4 and at various
temperatures (in Me V).

FIG. 4. The phase diagram of the critical temperature T, vs

the critical asymmetry parameter o., for infinite nuclear matter
calculated with the QHD-I and QHD-II models and the Skl
nucleon-nucleon interaction. The solid curves are calculated by
using the P,-p isotherms, the chain curves by using the p-p iso-
therms and the dashed curve by using the p-p isotherms with
the SkI nucleon-nucleon interaction.
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separates the T-a space into two regions. In the exterior
region, nuclear matter can exist in gaseous phase only,
while in the interior region both liquid and gaseous
phases are allowed. For example, the critical asymmetry
at T= 10 MeV is a =0.92, above which only the gaseous
phase can exist in nuclear matter. We have also shown in
Fig. 4 by a dashed curve the T, -a, phase diagram calcu-
lated with the SkI interaction in Ref. [8], where p-p iso-
therms are used in determining the critical temperature.
As a comparison, we have also calculated the critical
points by using the same procedure as in Ref. [8] but in
the QHD-I model, resulting in a phase diagram
represented by the chain curve in Fig. 4. One can see
that although the two forces give almost same critical
temperature for symmetric nuclear matter (a=0), the
curve given by SkI interaction drops more quickly than
that given by the QHD-I model as asymmetry parameter
a increases. In other words, for large asymmetry param-
eter a, the temperatures predicted by the two models are
quite different. In the same model (QHD-I), the two
phase diagrams given by two methods deviate from each
other except at the two end points of the curves. And the
critical temperature given by p„-p isotherms is lower
than that given by p-p isotherms. The reason can be
found from Fig. 3. For asymmetric nuclear matter
(a&0), we have p„)p . And the unphysical region in

p„-p isotherms is smaller than that in p -p isotherms for
a fixed set of a and T. The EOS given by p-p isotherms is
equivalent to that given by the isotherm of average chem-
ical potential p versus density p, with

I
= (P.p. +P—,pp)ip .

The width of the unphysical region in p-p isotherms is al-
ways larger than in p„-p isotherms and smaller than that
in p -p isotherms. So, the critical temperature deter-
mined by p-p (or p-p) isotherms is higher than that deter-
mined by p„-p isotherms.

B. Finite nuclear rnatter

Now let us discuss the Coulomb instability of hot nu-
clei by calculating the limiting temperature Tj;, above
which the set of coexistence equations (9)—(11) has no
solution.

We show in Fig. 5 by a chain curve the mass number
dependence of the limiting temperature T]; for the nu-
clei along the P-stability line:

12M

10

8

rp 100 2()0

FIG. 5. The mass number dependence of limiting tempera-
ture Ti; calculated with the QHD-I (chain curve), QHD-II
(solid curve) and the SkI interaction (dashed curve).

been reAected in the calculated critical temperatures of
asymmetric nuclear matter (see Fig. 4), where the critical
temperature calculated with QHD-I is higher than that
given by the SkI interaction. We present the solution of
the coexistence equations (9)—(11) and the equilibrium
values of p„, p, and p at the limiting temperature in
Table I. A remarkable feature of the results is that the
neutron chemical potential p„ is always lower than the
proton chemical potential p, , which results in a negative
asymmetry parameter az of vapor. This feature is very
different from that of the results in the nonrelativistic
theories, where the asymmetry parameter of vapor is al-
ways positive. The result that p,„&p and av &0 comes
from the fact that the gap between p„and p calculated
with QHD-I (for example, about 30 MeV for a=0.4 and
at p=0. 17 fm ) is much smaller than that calculated
with the nonrelativistic theories from effective nucleon-
nucleon interaction (about 50 MeV in the same condition
as in QHD-I). After adding the contribution from the
Coulomb interaction, we then have the opposite results:
p„(p~ in the QHD-I and p„)pz in the nonrelativistic
theories. Tracing back to the starting point of the
QHD-I, the unusual result may come from the fact the
nucleon-nucleon interaction in QHD-I is independent of
isospin. A model with the isospin dependence shall give
quite a different result.

Z=O. SA —0.3X10 (17)

For a comparison, we also draw the curve (dashed line)
calculated by using the SkI interaction [5] in Fig. 5. It is
seen that the two curves have a similar trend: the limit-
ing temperature decreases monotonously as the mass
number 2 increases, but the rate of the decrease is small-
er for large A. It is also seen that the limiting tempera-
ture given by QHD-I is higher than that given by the SkI
interaction for the nuclei along the line of P stability.
This result indicates that the hot nuclei described by
QHD-I is more stable than that described by the nonrela-
tivistic theory with the SkI interaction. This fact has also

10 12.5
50 10.5

109 8.5
150 7.5
208 6.5

0.182 0.0334
0.183 0.0242
0.185 0.0205
0.185 0.0200
0.185 0.0143

—0.036
—0.110
—0. 174
—0.200—0.227

—17.3
—14.8
—12.0
—10.5
—8.9

—16.1
—11.9
—8.0
—6.4
—4.9

0.197
0.130
0.088
0.069
0.051

TABLE I. Equilibrium values of densities (in fm ), pressure
(in MeV fm '), reduced chemical potentials (in MeV) and asym-
metry parameter for the nuclei along the P-stability line at the
limiting temperature, with the QHD-I model.

Tlim
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V. QHD-II MODEL

We have shown in the preceding section that although
the limiting temperature calculated with the QHD-I
model has reasonable values, the asymmetry parameter of
the nuclear matter in the vapor phase is always negative,
which is not consistent with either the Hartree-Fock
(HF) results [15] or the nonrelativistic calculation for the
Coulomb instability of hot nuclei [4,5], where the neutron
density is larger than the proton density in the outside
vapor phase. This unusual or unphysical result is caused
by the shortcoming of the QHD-I model, i.e., the isospin
dependence of the physical properties is not contained in
the model. One possible way to improve the QHD-I
model is to take into account the p meson degree of free-
dom. Then, we have the QHD-II model. In the mean-
field approximation [1], the Lagrangian of QHD-II is
written as

~MFT e[~ Y ~p Rppr3Y b0 gu Y ~0 (M g 00)] P

where Po, Vo, and bo are the expectation values of the
neutral scalar meson, neutral vector meson, and neutral p
meson fields, respectively. The second term in Eq. (18) is
explicitly isospin dependent. With the above Lagrangian,
the chemical potentials for neutron and proton become

gU 1
pn +n+ z p gpbo (19a)

gv 1
p =v+ p+ —g bo,

mU

where v is determined by the condition, Eq. (6), and

(19b)

gp y gp

2m 2m
(20)

I 2
+— Jd k [n„(k)+n„(k)]

3 (2~)' k'+M*'

jd3k [n (k)+n„(k)] .
3 (2m. ) k +M* (21)

The additional parameter c =g M /m =54.71, which
is determined from p~2m decay. Together with the pa-
rameters C, and C, given in Sec. IV, this value predicts
an accurate value for the symmetry energy coefficient [1].

By including the p meson degree of freedom in the La-
grangian, we have taken into account the isospin depen-
dence of the chemical potentials p and pressure p, as
shown in the expressions (19) and (21). By means of these
formulas, we have recalculated the same properties as in
the QHD-I model. We can learn from Eqs. (19) that the
neutron chemical potential p„shall shift up and the pro-
ton chemical potential p shall shift down when the p

with p3=p —p„. The pressure of bulk nuclear matter is
now expressed as

2 2 2

p= p
— (M —M') + p3

* z

2m 2m Sm

20

T= ioMeV
u = 0.4

0. 0.2

fr» 3)

—20

FIG. 6. The changes in the chemical potentials caused by the
inclusion of the p mesons in the system with +=0.4 and at
T= 10 MeV, where the dashed and solid curves stand for the re-
sults without and with the p mesons, respectively.

TABLE II. The same quantities as in Table I, but with the
QHD-II model.

10
50

109
150
208

Tlim

12.7 0.181
10.7 0.182
8.8 0.183
7.7 0.183
6.7 0.183

pv

0.0330
0.0262
0.0220
0.0159
0.0121

cxv

0.012
0.019
0.070
0.133
0.255

—17.0
—13.3
—9.4
—7.4
—4.9

—17. 1
—13.9
—11.4
—10.5
—10. 1

0.203
0.140
0.094
0.072
0.052

meson is included. As an example, we illustrate in Fig. 6
such changes for the asymmetric nuclear matter with
a =0.4 and at temperature T = 10 MeV, where the
dashed curves are for the chemical potentials without the

p meson and the solid curves for the chemical potential
with the p meson. We can see that the gap between p„
and p in the QHD-II model is much larger than that in
the QHD-I model. Now the value of such a gap is com-
parable with that in the nonrelativistic approach (for ex-
ample, about 50 MeV at p=0. 17 fm in this case). Such
change shall be responsible for giving a reasonable value
to the asymmetry parameter of the vapor phase in the
two-phase equilibrium model. Now we would like to dis-
cuss the changes in the critical phenomena. The T, -cx,

phase diagrams given by mean-field of the QHD-II model
are also presented in Fig. 4, together with those predicted
by the QHD-I model, where the solid curve is determined
from the p„-p isotherms and the chain curve from the p-p
isotherms. One can easily see that the phase diagrams
drop down more quickly than those given by the QHD-I
model as asymmetry parameter a increases. In other
words, the asymmetry effect in the QHD-II is much
larger than in the QHD-I model. The inclusion of the p
mesons increases the repulsion between nucleons, which
makes the critical temperature for the liquid-gas phase
transition in nuclear matter have lower value. As a re-
sult, such phase transition disappears in pure neutron
matter even if at zero temperature [1]. It is also seen that
the results given by the QHD-II model are closer than
those by the QHD-I model to the results calculated with
the SkI nucleon-nucleon interaction (dashed curve).

In Fig. 5, we show by a solid curve the limiting temper-
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atures for the nuclei along the P-stability line calculated
with the QHD-II model. The equilibrium values of p,„,
p~, and p at the limiting temperature are presented in
Table II. We can see that there is no large difference be-
tween the curves of the QHD-I and QHD-II models. But
if we examine the equilibrium values nz of the asym-
metry parameter in the vapor phase, we shall find the
difference between the two models is very large. In con-
trast to the results in the QHD-I model, the values of a~
in the QHD-II model are all positive, in consistency with
the results in either the HF calculation or the nonrela-
tivistic calculation for the Coulomb instability of hot nu-
clei.

VI. CONCLUSiVE REMARKS

We have studied the liquid-gas phase transition in
asymmetric nuclear matter and the Coulomb instability
of hot nuclei by means of the mean-field theories of the

QHD-I and QHD-II models. From the results and dis-
cussions in the preceding sections, we can arrive at the
following conclusions.

(1) The critical temperature for the liquid-gas phase
transition in nuclear matter decreases as the asymmetry
parameter of nuclear matter increases. Such an asym-
metry effect in the QHD-II model is much larger than in
the QHD-1 model, due to the inclusion of the p mesons.

(2) The QHD-II model is more reasonable than the
QHD-I model when they are used to studying the proper-
ties of asymmetric nuclear matter.
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