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The completeness properties of the discrete set of bound states, virtual states, and resonant states
characterizing the system of a single nonrelativistic particle moving in a central cutofF potential are
investigated. We do not limit ourselves to the restricted form of completeness that can be obtained
from Mittag-LefHer theory in this case. Instead we will make use of the information contained in
the asymptotic behavior of the discrete states to get a new approach to the question of eventual
overcompleteness. Using the theory of analytic functions we derive a number of completeness re-
lations in terms of discrete states and complex continuum states and give some criteria for how to
use them to form resonant state expansions of functions, matrix elements, and Green's functions.
In cases where the integral contribution vanishes, the discrete part of the expansions is of the same
form as that given by Mittag-LefHer theory but with regularized inner products. We also consider
the possibility of using the discrete states as basis in a, matrix representation.

PACS number(s): 24.30.—v, 03.65.Nk

I. INTRODUCTION

Resonance (or Gamom) wave functions were intro-
duced long ago into nuclear physics to describe decaying
states [1). Many methods have been developed for how
to normalize these seemingly divergent functions and use
them to calculate inner products [2—5]. By associating
them with poles of the S matrix they could be treated as
eigenstates [6] and used to form pole expansions of the S
matrix and convenient parametrizations of cross sections
near resonances [7]. The most important step forward in
the theory of resonant state expansions must have been
the derivation of completeness relations in terms of bound
states and resonances [4]. This eigenfunction theory sug-
gests the possibility to use the set of bound states and
decaying resonances as a basis also in nuclear structure
calculations.

It is a fact that the nuclear potentials can be truncated
with reasonable accuracy at a distance of a few nuclear
radii and this is also a necessity in all numerical calcula-
tions. In this paper we therefore consider only a cutoff
potential

V(r) = 0, r ) Rc.
One can then use the pole expansions of Mittag-LeRer
theory to derive other "completeness relations, " which
are valid (although the basis functions are linearly de-
pendent) in this finite radial space. There has been much
debate over the years between the advocates of the two
theories, but we would now like to think of the relations
of the Mittag-LeRer theory as a special case of the more
general eigenfunction theory, which is valid in the infinite
radial space.

Much attention has been paid to the properties of the
resonance states themselves but not so much to the fact
that they are included in a completeness relation (and
what that means). In this paper we will investigate and
illustrate how to use complete sets of generalized eigen-
functions to obtain expansions of functions, matrix ele-

ments, and Green's functions and how to solve exactly
a perturbation problem even for the eigenvalues of reso-
nances and antibound states. The aim here is to summa-
rize and unify various relations and formulas and show
the power of these eigenfunction expansions. Most im-
portant is then to be able to use these expansions (just
as an ordinary eigenfunction expansion) to calculate (nu-
merically) quantities that do not necessarily show reso-
nant behavior and can be calculated exactly.

We make here no mathematical proof of convergence
of the expansions obtained. Instead we have checked ev-
ery statement by a numerical calculation where the ex-
act value is known or calculable with other methods.
This was considered necessary because there has been
too much speculation in this area over the years that
has not been verified by relevant calculations. Since we
would like to apply our theory to nuclear processes in the
continuum but demand high numerical accuracy in our
investigations, we choose to use a square well potential

V( )
—Vg, r(Ro
0, r&Bo (2)

II. A COMPLETE SET OF FUNCTIONS

In quantum mechanics (e.g. , [8]) we usually assume
the existence of a complete set ( ~

n) ) of orthonormal,
(m~n) = 6 „, (eigen)functions in terms of which we can

to generate our basis functions. By choosing as the ba-
sis neutral S-wave states, we include no sharp resonances
and thus the completeness properties can be investigated
without having dominating contributions from one sin-
gle state. If we choose the radius of the square well B&
similar to that of a heavy nucleus, we get a realistic be-
havior of the low-energy spectrum (independent of the
depth of the well). The distribution of the high-energy
resonances, on the other hand, depends on the cutoff ra-
dius R~, but these states are used only to represent the
continuum.
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expand any function belonging to a certain class of func-
tions (obeying some certain conditions)

where c„=(n~4). Since the set is complete we have the
compLeteness reLation

(4)

and the closure relation

A. Potential scattering theory

Since resonant state expansions are connected with
continuum processes (reactions and decays), it is nat-
ural to introduce resonance wave functions starting from
scattering theory. We thus study the eigenfunctions re-
lated to the potential scattering of a spinless particle and
if the potential is spherically symmetric, the equation to
study is the radial Schrodinger equation

(Xe —k') ue(k, r)

, +,«~+, —A.
" u&k, r =O,

d 2m I.(E+ 1)

which we can write more abstractly as a projection oper-
ator (or resolution of unity)

(6)

The completeness properties are so fundamental and im-
portant that the name completeness relation often is used
also for the relations (5) and (6). This is traditional in
the theory of resonant state expansions and used also in
this paper.

It is because of the completeness properties of eigen-
functions that we can transform functions

IO} ).c In} c =(nIC'}

operators

) /m}A (n(,

and (differential) equations

into a matrix representation where often the equations
are easier to solve and scalar quantities easier to calculate
and interpret.

In this work on completeness relations we do not stop
with a convergent expansion of a matrix element like

(ey~AB~C2} = (Cy]A]LB~O2) = ) (@]~A]n)(n~B~C$2)

but we will also study the conditions under which a res-
olution of unity (6) is really a projection operator, a case
which is not obvious when including the resonant states.
This latter property is essential for an expansion like

(c ] ~AB~C 2} = (c ] ~

]LABE ~c 2}

(C'elm} (ml AB ln) (nlc'2}

and for the use of a complete set of discrete states as
an unperturbed basis to solve a matrix equation for the
properties of the perturbed system.

(„) kt+'yt(k, r)
f (—k)

(9)

where pt(k, r) is the regular solution of (7) and ft( —k)
is the Jost function [9]. We can also solve the ra-
dial Schrodinger equation for the resolvent (or complete
Green's function)

('Ht —k')Qt(k; r, r') = b'(r —r'), —

and if we apply the boundary condition that this should
contain outgoing waves only, we can write

(„, (
t+, „tpt(k, r&) ft( k, r&)—

ft ( k)—
where ft( k, r') is th—e (outgoing) irregular solution of (7)
and r&, r& are, respectively, the lesser and greater of r
and r .

The resolvent gt (k; r, r'), the scattering function
gt(k, r), and the partial wave S-matrix element St(k)
all have poles at the same places in the complex k plane,
given by the zeros k = k„of the Jost function ft( —k) = 0.
Due to the symmetry fg( k') = ft*(k), t—here are also
poles at k = k„:——O'. These zeros are naturally di-
vided into four categories depending on their positions
in the complex k plane, and we will sometimes use the
letters a —d to index them. We use the letter a to in-
dex the antibound (or virtual) states that are situated
on the negative imaginary k axis (k = ip, p &—0)
and the letter 6 to index the bound states on the positive
imaginary axis (k& = ipb, pt, & 0). Below the real axis
and symmetrically with respect to the imaginary axis,
we have pairs of resonance poles where we use the letter
c for the capturing (or incoming) resonances (Rek, & 0)
and the letter d for the decaying (or outgoing) resonances
(Rekd, & 0).

To each of these poles k„we can de6ne a corresponding
eigenfunction in two ways. The 6rst way is a generaliza-
tion of the usual eigenvalue problem, i.e. , to solve

where the wave number k is related to the energy by
k2 = 2mE/5 . The boundary condition that applies for
the scattering solutions is

gt(k, r) ~ (-1) Ss(k)e'"" —e '"", r ~ oo,

and we will use the notation of Newton [12] to write
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('Hr —k„)u„(r) = 0 (i2) and ur(k, r) = u&(k, r) so that we can write

with purely outgoing boundary conditions

u„(0) = 0, u„(r) ~ e'""", r ~ oo, (13)

(u lu)=~ (14)

where we have u„(r) = pg(k„', r)/¹ and the properties
of pg imply u„(r) = u„*(r). For all of these states, except
the bound states, the normalization integral

as suggested by Siegert [6]. These eigenfunctions are pro-
portional to the regular solution, u„(r) = pg(k„, r)/N„
and they actually form a biorthogonol set of functions,
which means that they should be normalized using the
overlap with the conjugate states u„,

Q—g (k, r) Qs (k', r') = ug ( k, r) ug ( k, r')

and have —.'(f I&~(k)) (@~(k')If) = (ur(k) If)'

B. The completeness relation of Newton

Newton [12] proved that the set of bound states ub(r)
together with the real scattering states Qg(k, r) form a
complete set

p~ (k„,r) dr
dk Qg(k, r)gq(k, r'), (20)

and the overlap integral Jz y~(k, r)yr(k„, r) dr are at
first sight divergent but we can, nevertheless, associate
a certain number to each integral by the use of some
regularization procedure (see Ref. [10] for a review and
references). All of these regularization procedures give
for the exponential integral

which can be used to expand a function h(r) = f b'(r-
r')h(r') dr' as long as the function is square integrable.
Using this completeness relation Newton also derived an
expansion of the resolvent(,) )- ub(r)ub(r') 1 gs(k, r)g~ (k, r')

q2 —k„2 vr k(q —k)

e'q" dr =
valid in the upper half plane (see also [11]).

(21)

lim (k —k„)gg(k; r, r') = u„(r)u„(r'). (17)

This definition does not require any regularization proce-
dure, and this makes it the natural one in Mittag-LeRer
theory (Sec. IIC). In both methods we can obtain an
explicit expression for the normalization integral

i.e. , a natural analytic continuation of the convergent re-
sult. (The exponential with q = 0 is, of course, not regu-
larizable in any sense. ) This is all that we have to know
about regularizations when considering a cutofF potential
(1)

The alternative way of defining these eigenfunctions is
to say that they should be given by the residues of the
resolvent at its poles

C. Completeness relations in Mittag-LefHer theory

( )
Q(r), r(B,
0, r&A, (22)

with B, ( A~. This restriction is also necessary to prove
the convergence [14] of

The Mittag-LefBer theorem deals with the convergence
of a pole expansion of a meromorphic function [13]. Here
we consider the poles of the resolvent corresponding to a
cutoff' potential (1). It is therefore natural to restrict one-
self to a limited region of the radial space by introducing
the projection operator P [14]

f~(k )f~( k)—
4~k„"+2

(@ ling (k)~l@ ) ) - (C'ilplu )(u IPIC'2)
2k„(k —k„) (23a)

(where the dot indicates derivation with respect to k),
and this relation can be used to write down another im-
portant residue [ll], namely,

which implies the validity of the resolvent expansion

(23b)

Resj, ~I,„QI(k, r)g~(k', r) = +—u„(r)u„'(r'),

which is relevant for the development of the theory below.
We would here like to note that for the discrete states

we have (flu„)(u„lf) = (u„lf) if f is areal function but
there is no analog relation involving the scattering states
Qg(k, r) It is therefore . sometimes convenient to define
modified scattering functions

»m k"(C ilpge(k)&lc'2) = ~u, 2(cil&lc2) (24a)

when p = 1, 2, or [13]

gg(k;r, r') ~ +O(k ), k ~ oo
6(r —r')

k2 (24b)

where the functions u„ in the numerator are the same as
in Eq. (17). Then using the findings [14] that

ur(k, r) = -Sq '(k)Qg(k, r) (19) one can derive the completeness relations
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- (C' IPlu )(u IPIC' )
2k„

1

2 ) .(C' IPlu )(u IPIC'~) = (c' IPIC'~) (25b)

Im k

+~Qn T lLn T
(25c)

—) u„(r)u„(r') = b(r —r'), r, r' ( Re, (25d)

respectively. The above expansions mean that we have

FIG. 1. Contours in the complex A: plane used to define

the continuum of various completeness relations. The dots
mark the positions of the zeros of the Jost function fq( k)—
[i.e., the poles of the resolvent gg(k; r, r')] and the rings mark
the positions of the zeros of fq(k)

PIC") =——).Plu )(u IPIC") PIC', ),

but since the convergence is only ioeak [14], this does not
imply that

(c'iIPIC'~) ~ (c'iIPIC'2)

which indicates that the Mittag-LefBer expansions some-
times are of more mathematical than practical interest.
This we also expect from the fact that for the diverging
functions, the value of the finite integral (u„lPI 4,) might
have no similarity to the value of the regularized integral
(u-IC")

In Ref. [13] the factor 2 in Eqs. (25a)—(25d) was con-
sidered to indicate linear dependence among the u„and
the term "overcompleteness relation" was suggested for
Eq. (25d). Since this linear dependence is only present
in the limited radial range used in Mittag-LefHer theory,
and not in the infinite range that we consider in this pa-
per, we choose here to use other names for the relations
above.

III. VARIOUS COMPLETENESS RELATIONS

In this section we derive a number of completeness re-
lations in terms of scattering states and discrete states.
The former states are defined by an integration contour
C in the complex k plane (from —oo to +oo) that ap-
proach the real axis as lkl ~ oo and the latter by the
poles of the resolvent (zeros of the Jost function) that
are enclosed by this contour and an infinite semicircle in
the upper half plane. It is sometimes convenient to di-
vide this contour into two conjugate parts, C = C++C
e.g. , such that k is on C+ if +Rek ) 0. In Figs. 1—3 we
show the different contours used in this paper and the
distributions of zeros of the relevant Jost functions. We
will here only consider contours that are either inversion
symmetric (such as R, L, Z), i.e. , if k is on C then so is
—k, or reflection symmetric (such as R, W, U), i.e. , if k is
on C then so is —k* (see Fig. 1). If we define the complex
conjugate contour C* (also oriented from —oo to +oo) by
all k*, where k is on C, we can from the reflection sym-
metric contours form inversion symmetric contours such
as 0 = W' —R+ W and T = U* —R+ U (see Fig. 2).

The proof of completeness is made using the theory of
analytic functions with the analytic properties of the re-

solvent and scattering functions governed essentially by
the Jost function. We choose in this section to write the
completeness relations as unit operators (resolutions of
unity or projection operators) in order to show how the
basis states of different completeness relations are related
through the analytic properties of the integrand of the
integrals used in their derivation. We thus first concen-
trate on the derivation and defer to later the discussions
of validity.

A. Newton-Berggren derivation of completeness

il= ). Iu)(u I+—1 IA(k)) dk (@e(k*)I, (»)

where C is the domain in the k plane above the C con-

&i lm k
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FIG. 2. Inversion symmetric contours in the complex A:

plane created from the reflection symmetric contours in Fig. 1,
0 = W' —R+ W and Y = U —R+ U.

The proof of completeness as given by Newton [12]
was modified by Berggren [4] for the inclusion of a finite
number of resonances and a complex continuum. In this
proof we consider the integral Ir = jr dk kgt(k), where
I' = S+ C is a contour in the complex k plane that
consists of two parts, one infinite semicircle in the upper
half plane S and one contour C of the type discussed
above. We evaluate the integral Ir by Cauchys theorem,
the integral Ig is evaluated explicitly and the remaining
contour integral, I~, can be rewritten in terms of scat-
tering functions if (and only if) the contour is inversion
symmetric. In this case we obtain the proper comp/ete-
ness relation
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In Sec. IVC we apply the definition of the resolvent
(10) to a proper spectral resolution and obtain the oper-
ator

Rek
IA(k)) dk (@s(k )I

k
(28)

FEG. 3. Contour in the complex k plane that de6ne
the continuum in the proper completeness relation IL

P & & ln)(nl + —f lk)dk(k'I where all kinds of pole states
are included in the discrete part.

which we interpret as a zero operator. The reason is
that there is an extra factor in the integrand of (28) that
breaks the inversion symmetry of the integrand of (27)
so that now f& lk) "&" (k*l = —f&+ lk) "&" (k'I and thus

fz lk) "&"(O'I = 0. We will anyway, throughout this pa-
per, continue to treat (28) analytically in the same way
as (27). Since (28) at first sight seems to imply a linear
dependence among the eigenstates, we And it appropriate
to call (28), and the relations that we will derive from it,
overcompleteness relations.

tour. We primarily think of C as being either R, I, or
Z, and in these cases we can rewrite the discrete part of
(27)

k gK n=b k gL n=b d k gZ n=b c,d

to show explicitly what kinds of discrete states that are
included in the complete set. Above we noted that also A
and T are inversion symmetric and can be used to derive
completeness relations like (27), where we now have to
interpret C as the sum of C*, i.e. , the domain in k plane
above the C* contour, and C$R, the domain between
the C and the R contours. We can here write

k gA n=b c,d k gT' n=a, c,d

thus indicating the fact that the contours Z and 0 ac-
tually are equivalent. The necessity of using inversion
symmetric contours in the derivation of completeness
means that, due to the symmetry of the integrand of
the continuum part of (27), we only need one of the
conjugate halves of the contour, since f& lk)dk(k*l =
f&+ lk)dk(k'I. This is convenient if we wish to formu-
late completeness using energy as the variable of integra-
tion instead of wave number and, of course, if we need
to perform a numerical integration. We cannot include
both the bound states and the antibound states in the
discrete part of a proper completeness relation when us-
ing the inversion symmetric contours above. Instead we
combine the above Z contour with a part of the contour
suggested in [15] so as to form the contour of Fig. 3. We
then include al/ kinds of pole states in the discrete part

k„EC n=a, b, c,d

at the expense of having an extremely complicated con-
tour that seems to have little physical meaning and cer-
tainly cannot be neglected, since it contains hidden can-
tributions from all the poles. Even if this is a perfectly
valid completeness relation, it does not help us to under-
stand the structure of the important final relations below
so we will only exceptionally consider this contour.

B. Derivation using analytic continuation

Here we present a straightforward method of deriving
completeness relations by starting from the relation of
Newton

ll =).Iu )(u I+—1
n=b

lte(k)) dk (A(k*) I (»)

ll = ). Iu )(u I+-1
n=b, d

l&t(k)) dk (A(k*)
I (3o)

Since the resonance functions are complex, the discrete
contribution from this relation to the expansion of a real
quantity is also complex and the continuum term con-
tains the restoring imaginary part. The real part of the
discrete contribution might, however, be a good approx-
imation in this case, and this has led to various "rules"
for interpretation of such expansions and matrix elements
involving resonant states [4, 16, 17].

If we instead had deformed the real axis into the Z con-
tour, f& & ——Q &, we would have obtained the relation
suggested by Berggren [18],

written in such a way that the integrand is a meromor-
phic function of k with poles given by fg( k) = 0—and

fg ( k') = f—g(k) = 0. The residues of the product of
scattering functions in the integrand at these poles are
given by (18). We can thus, by deforming the contour
continuously and using Cauchy's theorem, extract the
contributions from the resonant states that are hidden
in the continuum integral and write them in the same
form as the bound state contributions. It has often (more
or less well justified) been assumed that by this the re-
maining continuum contribution only would be a smooth
background, hopefully negligible, or even vanishing. This
of course depends on the shape of the contour but not
necessarily on the number of states explicitly included in
the discrete part which will be illustrated below.

If we deform the real axis R into the I contour we
get, using f& &

——Q&, the old Berggren completeness
relation [4]
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) lu-) (u
I

+—1
n=b, c,a

IA.(k)) dk 8e(k*)
I (31)

l1= ).Iu )(u I+2 ). Iu )(u-I
n=b n=c, a

1+— IA(k) )dk (@e(k*)I. (32)

to transfer the restoring imaginary part from the contin-
uum to the discrete part. Unfortunately the discrete part
is no longer a good approximation due to the doubling
of the resonance contribution and the continuum is now
needed to compensate for this.

The relations (30) and (31), with the continuum in-
tegrals, were also derived in Sec. IIIA and are proper
completeness relations but with diferent ranges of valid-
ity as discussed below.

In this method there seems to be no restriction to in-
version symmetric contours so that if we deform the real
axis into the W contour, f~ z ——

~ P, &, we get

symmetric and the contributions from the residues (34)
are cancelling when deforming to another inversion sym-
metric contour. But when we deform C into a reHection
symmetric contour, the symmetry of the integrand is no
longer such that it makes the integral vanish and the con-
tributions from the residues are no longer cancelling. We
thus obtain the more interesting relation

lu )(u-I
2 kn=a, b, c,d

lye(k)) dk (ye(k*)l

(35)

In fact, we see in the numerical studies below that this
overcompleteness relation sometimes is as important as
the corresponding reduced completeness relation (33).
These two relations are very interesting, since the dis-
crete parts of them look the same as in Mittag-LefHer
theory (Sec. IIC). We consider the analytic continua-
tions made here to be the link between the eigenfunction
theory and the Mittag-LefHer theory.

The discrete part of this relation will give a real con-
tribution to the expansion of a real quantity, just as
the discrete part of (31) will, but compared to that it
contains a factor 2 to compensate for the double count-
ing of the resonance contribution so it might be just as
good an approximation as the discrete part of (30) but
without the need of a special treatment of false imag-
inary parts. The relation (32) can also be derived us-
ing the inversion symmetric contour 0 if we split the
integral into two parts, f& ——f~. &+ f~, and evaluate
the closed integral f~. & using Cauchy and the residues

(18)~ fw. —R =
2 +c,&.

If we continue deforming the W contour into the U
contour, fU ~ ——z(P —P&), or taking (27) with C =
T and evaluating f&. R

———z(P, &
—Qb), we get as

suggested by Rorno [19]

). Iu-)(u-I+—
1 - - 1

n=a, b, c,d
l@e(k))dk (&e(k*)l.

The discrete part of this relation is the same as in Mittag-
LefHer theory and the factor 2 indicates, comparing with
(32), that the bound states and antibound states might
give similar contributions but the need for both of them
also indicates that the eventual difference between them
is formally important and thus not compensated for by
the remaining U integral.

To every completeness relation in this subsection there
is a corresponding overcompleteness relation obtained
by deforming the contour in (28), from C = R to

= L, Z, W, or U, now making use of the residues

ge(k, r)Qe (k', r) i u„(r)u„'(r')
Resk pk (34)

or equivalently taking (28) with the same evaluation of
closed integrals as made above. We noted above that this
relation is identically zero when the contour is inversion

C. Validity of completeness relations

The completeness relation of Newton, (20) or (29),
with bound states and real continuum states is valid for
expanding a function

1
C'(r) = ) .u~(r) (u~

I
C') +-

b
jt

dk ge(k, r)(ge(k*)IC),

(36)

provided the function is square integrable. This class of
functions includes those with exponential asymptotics,
C(r) —+ e'q", r ~ oo, with Imq ) 0, i.e. , with q above
the R contour (q E R). In Ref. [4] Berggren states that
the relation (30) could be used for expanding functions
with exponential asymptotics and q above the I contour
(q E L). This condition was based on the regularization
procedure used to calculate overlaps with the complex
continuum states on the I contour. Although we now
believe that we can assign a unique number to every over-
lap between two functions with exponential asymptotics,
we stick to the condition above. The main reason for
this is that we cannot project the capturing resonances
onto the space spanned by the bound states and decay-
ing resonances in (30), since (u„lu, ) = 0, n = b, d and
(Qe(k')Iu, ) = 0. For the completeness relation (31) the
corresponding condition would be q e Z. We can now
generally say that the completeness relation (27) is valid
for expanding a function

C'(r) = ).u (r)(u IC')+—1

A:„EC
dk ge(k, r) (Qe(k*) IC)

with exponential asymptotics, C (r) ~ e'~", r ~ oo,
where q ~ C. For the cases | = 0 and C = T this
might not be obvious but can be understood from the
following considerations.

That there is a special interest (also from an analytic
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point of view) in studying functions with exponential
asymptotics is understood if we look at (36) and deform

the contour. We then have to consider the poles given by
lg~(k))(gg(k*)l (as in Sec. IIIB) but also the possibility
of an extra singularity in (Qg(k') [4) that is not due to a
zero of the Jost function. To see this singularity explic-
itly, we take an S-wave scattering function of a cutoK po-
tential (1) so that @o(k,r) = So(k)e'"" —e '"", r )Rc.
If then 4(r) = e' ", r & R~, we have in (Qo(k') lC) the
integral

OO

8 (k')e*" "—e '" ") s*'" dr
&c

potent operators (27) with C = 0 and T. When we

derive (33) from (27), with C = T, we split the contin-
uum part f& into two parts J& and f&. &, neither of
which is idempotent, but, since they are not orthogonal

[((—k)'lk) P 0], the total unit operator is idempotent.
The critical point is that we reduce the closed continuum

JU. & into a sum z~(P& —Q,&), but, even if this sum

is equivalent to the closed integral, it is orthogonal to

1&, which makes the unit operator (33) nonidempotent.
Even if (32) and (33) are not projection operators, it was

suggested in [ll] to call them reduced completeness reta
tions, since they might still provide us with valid resonant
state expansions.

6
—i(etc —q) r ar— i(k+q)r d IV. RESONANT STATE EXPANSIONS

e i(k —q)R—c ei(k+q)Rc
=So k

i(k —q) i(k+q) '

where we see that we have two extra singularities at
k = ~q to consider when we deform the contour in (36).
In the proof of completeness we only use the overlap with
a purely outgoing function and thus we need only to treat
one extra singularity at k = —q. This pole is not enclosed

by the contour I' = S + C as long as q c C, which sup-

ports the criterium for validity of the completeness rela-
tions (27) with C inversion symmetric suggested above.
In the method of Sec. III B, however, both the singular-
ities at k = gq might be encountered when deforming
R into C. But these two singularities give cancelling
contributions, again a manifestation of the importance
of using an inversion symmetric contour. If we deform

A into a reHection symmetric contour like U, we will

only encounter one singularity, viz. , the one at k = —q

if Imq ) 0. To obtain a correct treatment of this extra
pole when deforming to the U contour, we must, how-

ever, not start from the B contour but rather from the
contour in the completeness relation, which is valid for

the function we are expanding, i.e. , we must choose the
inversion symmetric contour C in (27) so that q 6 C.
When we deform this contour into the U contour, we

will encounter the singularity k = —q (at least sooner
or later if the U contour can be extended without lim-

itations). The expansion of l4) using (33) would then
have to be complemented by a closed contour integral
around k = —q (denoted by —

$& if the orientation

is positive) and, if the singularity is of first order, this
would be proportional to [gz(—q)), which has rather ab-
surd consequences. As will be seen in the next section,
the expansion with such a complementary integral can
only be used under certain conditions to calculate over-

laps with functions, which have exponential asymptotics.
Thus in the unit operator (27), with C inversion sym-

metric, both the discrete part and the continuum part
are idempotent (in addition to IL = IL) so the relations

(29), (30), and (31) are certainly proper completeness
relations. This is not the case for the relations (32) and

(33), where the discrete part and the continuum part (al-
though still arthaganal) are nat idempatent. This halds
despite the fact that they are derived from the idem-

A. RSE of matrix element

Here we study the expansion of a matrix element (or
overlap) obtained by the use of a resolution of unity in

terms of eigenstates (C i lC q) = (C ilILl@q). The sum rule

studies by Berggren [20] and Rorno [21] of (C i lABl@2) =
(C'ilAILBlC2) can be included by associating (AC'i)(r)
and (BCq)(r) with one of the classes of functions below

and will thus not be explicitly considered here. The ex-
pansion of a matrix element using the proper complete-
ness relation (27), i.e. ,

(CilC") = ) .(C'il~-)(6-IC")
nEC

+-

(Cilia(k))

&k (O~(k')IC. ), (39)

is used as a starting point for derivations of expansions in

terms of discrete states and complex scattering states by

By a resonant state expansion (RSE) we do not mean

just a pole expansion but a way of expressing a quan-

tity as a sum where each term is associated with one
specific state u„(or equivalent to a specific pole, k„, of
the resolvent) with the possible addition of a smooth and

small continuum part. This can be achieved by using a
completeness relation or an expansion of the resolvent

(if the matrix element to be expanded involves the resol-

vent). In this paper we consider only the former possi-

bility in detail, since it is more general and the analytic
considerations involved are the same in both cases. From
Mittag-lefHer theory we expect that the best discrete
approximation is obtained if all kinds of pole states are
included so that the reduced completeness relation (33)
would seem preferable to use. For a proper treatment
of eventual extra singularities we choose, as suggested
in Sec. III C, to start from a valid completeness relation

(27) and then deform the inversion symmetric contour

C into the U contour, taking into account the full ana-

lytic structure of the integrand obtained. The difFerence

from a straightforward use of the relation (33) is due to
the uncontrolled interchange of integration orders made
in the derivation and this will show up if the asymptotic
behavior of the functions in the matrix element to be
expanded is of a certain kind.
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deforming the inversion symmetric contour C into the U
contour. We will then pass over some of the poles of the
integrand (C ilgwu(k))(gi(k*)IC'z) and the contributions
from those corresponding to the zeros of the Jost func-
tion is evaluated using the residues (18). But as we saw in
Sec. III C, there might also be extra poles if the functions
4, (r) have exponential asymptotics. We therefore find it
convenient to consider basis states from a cutoff potential
(1) and to define three classes of functions with different
asymptotics: E functions, P(r), with exponential asymp-
totics P(r) ~ e'q", r ~ oo; F functions, h(r), that decay
faster than exponentially, e&"h(r) ~ 0, r ~ oo, V(,
and are not truncated within the range of the potential,
i.e. , there is r ) R(. so that h(r) g 0; and T functions,
X(r), that are truncated within the range of the poten-
tial X(r) = 0, r ) R, , R, ( R(. . Functions in this
class can be created with the projection operator (22),
y = P4. We only consider functions that are sufficiently
continuous in order not to fill the text with mathematical
conditions. (For a more serious treatment of the class T
one can consult [14].)

The class of truncated functions T is the easiest one
to treat, since we can make use of results from Mittag-
I efBer theory (Sec. IIC)

1
(xilxz) =

2 ) (xilu )(u Ix2),
n=a, b, c,d

(xil& )(& I»)
2k„n=a, b, c,d

(40)

(41)

which means that the U integrals in (33) and (35) are
exactly vanishing in this case.

For the classes of functions that are not truncated, we
generally expect the U integral in (33) to be nonvanish-
ing. We saw in Sec. III C that functions with exponential
asymptotics will give rise to extra poles in the integrand
and for the matrix element (Pilgq) they are seen from
the integrand (/ilk)(k'I/2) to be localized at k = ~q2
and k = ~qi. We find numerically that the remaining
U integral in this case actually vanishes, thus leaving us
with the expansion

(Willi) =
q ) (4'ilii )(ii IA) ——

( + )(chili('i(&))~&(i('i(&')Idi)
n=a, b, c,d k= —qp k= —q1

(42)

If these poles are of first order, it is possible to express the
closed integrals as residues in terms of scattering func-
tions with the complex momenta —q2 and —qi. Obvi-
ously we would have missed these extra terms in (42) if
we had made straightforward use of (33) (and found the
U integral vanishing). Due to the existence of an over-
completeness relation in the expansion of the overlap of
class T functions (41) and the vanishing U integral in the
class E overlap, it is interesting to speculate about having
also

1 &n &n 2

2k„n=a, b, c,d

+ i eA: — e&*

This is verified numerically simultaneous with (42).
So far we have mostly considered the U contour, since

it is more challenging to understand how to use all the
different kinds of basis states u„and whether it is possi-
ble to obtain discrete expansions without too heavy re-
strictions on what they can expand. An expansion such
as (39) is safe but one can, in general, not expect the C
integral to be negligible. Since these unit operators are
idempotent, we also have (C'i IC'g) = (@iIX l@z), which
means that we could have formed expansions of the func-
tions I4, ) = ILI4, ) and then the expansion of the over-
lap from these expanded functions. The expansion of a
function using a reHection symmetric contour deserves a
subsection for itself.

B. RSE of functions

We will again concentrate on the U contour expan-
sions, and, since we have already noticed that the resolu-
tion of unity (33) is not idempotent, we cannot use two
expanded functions

IC") =
2 ) l~-)(u IC") +1

n=a, b, c,d
Igr(k)) dk (gr(k*)IC, )

(44)

1 4(» &) dk (A(k*) I&z) (45)
k= —q2

If we in this case act on lgq) with the sum of the "unit
operator" (33) and q2 times the "zero operator" (35),
the singular integral contributions cancel out and we get

to form the expansion of the overlap (@iI@2). But if
at most one of the functions, C2(r) say, has exponential
asymptotics [and this function is expanded as in (44)
with the addition of g& if U has passed —q2], we
can use (44) to form the overlap [if the other function,
C i(r), is not expanded], since we have then only obtained
(@iljllC2) as above. If the remaining U contour has not
passed the pole k = —q2, it is of course irrelevant which
of the functions we expand, but if it has, we have, if the
extra pole is of first order,

dk
0'~(» &) —8~(k') l0 2)

k=-q,
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a purely discrete expansion

(46)

which is valid even if Pq is one of the u„. This expan-
sion can be used to give a purely discrete expansion of
(yq1$2). Even if the set of functions u„ is in some sense
overcomplete, or rather that its completeness is reduced,
it seems that we can to some extent compensate for this
by making simultaneous use of both the reduced com-
pleteness relation (33) and the overcompleteness relation
(35).

C. RSE of resolvent

The resonant state expansion of the resolvent

g&(q; r, r') has recently been thoroughly studied in [11]

so we just comment on it here. Again we can use the
method of Sec. III B, i.e. , starting from the expansion of
Newton (21), valid for q 6 R, , and then deforming the real
axis into C and making use of the residues (18) whenever
a pole of the integrand is passed over. Alternatively one
could start from the proper completeness relation (27)
and use this, as Newton did, to derive the expansion

1 Qt (k, r) Qt (k', r')
~ c k(q —k)

If we use this expansion in the definition of the resolvent
(10) we get

IL = (q —'Rt) gt (q)
2 — 2 1= ). Iu-), k"2(u-1+-

k„EC

qz —k~
dk l«(k))

k k
(«(k')I

= ). Iu )(~ tl+—1

k„gC
dk I«(k)) k

(«(k')
I

(48)

In the last line here, we recognize the completeness rela-
tion (27) and the rest we interpret as q times the proper
zero operator (28).

For a more thorough treatment of the analyticity one
can instead consider the expansion of the double integral
(@q1gt(k)142) and thereby obtain the same modifications
as in Sec. IVA. The expansion of the single particle
response function, Rt(k) = (flgt(k)1 f), was studied nu-
merically in [22] and was commented on in [ll] as will
be done below. One of the major insights of [11] was
the importance of the symmetry of the quantity to be
expanded. For a proper completeness relation this is the
inversion symmetry of the integrand of (20), while for
the resolvent expansion it is important to use a reflec-
tion symmetric contour, since gt( —k') = g&(k). Again
it was found that the U contour gave the most complete
treatment of the pole structure of the resolvent

g (,) ). u„(r)u„'(r')
2k„(q —k„)

1 @t(k, r)@t (k*, r')
vr U k(q —k)

The discrete part is recognized from the Mittag-LefIIer
expansion (23b) so we conclude that the U integral in
the expansion of (ylgt(k)ly) is vanishing. For response
functions involving other types of form factors f, the con-
clusions of the previous subsections should be applicable.

We would here also like to note that if we use the
expansion (49) in the definition of the resolvent

IL = (q —'Mt)gt(q)

).
n=a, b, c,d

"k I«(k)) («(k')
I

= " + qo" (50)

we get in the final right-hand side the sum of the "unit
operator" (33) and q times the "zero operator" (35). The
discrete part of this sum was also found in [23] in the
framework of Mittag-LefHer theory, but there only used
to state that the discrete parts of (33) and (35) must be
valid separately. What we found here though indicates
that both these relations need, under certain conditions,
to be used together for a complete treatment in terms of
discrete states over the infinite radial region. Since we
seem to have a q-dependent unit operator, the validity
is of course not general but it can, as we saw above,
give rise to efBcient expansions and it will make possible
the interpretation of the solutions to a certain matrix
equation (see Sec. VB).

D. Numerical illustrations

Ezyanisons of matrix element

We will first illustrate the proper completeness rela-
tion (27), the reduced completeness relation (33), and
the overcompleteness relation (35) by expanding the ma-
trix element (I q142) where we take 4q = 42 = f and the
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(class F) function f is chosen to be real and of Gaussian
form

f(r) = exp —
(

'

) (51)

As the basis (~n)) we choose the l = 0 states of the
U& ——23 MeV and Ro ——7 fm square well (see Table I)
which means that the integral (f~f) gets a significant
contribution from the radial region outside the cutoff ra-
dius of the potential B~ = Bp. Thus the Mittag-LeRer
expansions are not applicible and the continuum integral
in the expansions derived above is expected to be impor-
tant.

In Fig. 4(a) we show as function of the number of in-

cluded states, P(N) = P„, the discrete part of the
expansions

(flf) = ).(u If)'+ (ut(k) lf)' d» (52a)

(flf) = ).(u If)'+
n=b, d

(flf) =
2 ). (u If)'+

n=a, b, c,d

(ut(k)~ f) dk,

(ut(k) i f) dk,

(52b)

(52c)

0 )- (u lf)'
2k. +

n=a, b, c,d

(«(k) lf)'
dk

+ k
(52d)

[It is possible to simplify the integral

(C' I@ (k)) dk (& (k') IC' )

L+ : 0 + Oi —+ 2 —1.1i + oo —1.1i,

U+ : 0 —1.1i ~ oo —1.1i,

but we calculated them only up to a finite k value, k~»,
which correspond to an energy E „. In Fig. 4(b) we
show as a function of E = ReE the continuum con-

to fU+(ut(k)~f) dk only if Ci ——42 = f = real ]Sine.e
the Mittag-I effier conditions are not fulfilled, the discrete
parts do not converge as N ~ oo. Therefore we illustrate
also the continuum part of the expansions.

We approximated the complex contours I+ and U+ by
straight lines and parametrized them in the k plane as

tribution to the expansions, f'(E) = P + f&
", which

start at the values of the limits of P(N) seen in Fig. 4(a).
The real part of the energy of the last included states in
Fig. 4(a) is chosen consistent with the energy interval
in Fig. 4(b). We see that it is here sufficient to include
states with energies up to 400 MeV to obtain satisfactory
expansions. The question of how the contours approach
the real axis as k —+ oo and the selection of asymptotic
resonances is found to be unimportant.

The main purpose of this example was to show that
the analytically continued expansions work and can be
conveniently performed numerically.

8. Expanisons of overlaps

The importance of the continuum in the form of the
singular integrals in (42) and (43) is illustrated by tak-
ing P, as the E = 0 eigenstates of the Uo ——28 MeV and
R& ——7 fm square well and the basis states from the U& ——

23 MeV well (see Table I for both). We give in Table II
the values of the integrals ——

$& (Pi~k)dk(k'~Pq), i =
1, 2, which can be calculated as simple residues except
when qi ——q2 and we have a double pole. Even if we
include only the basis states listed in Table I, we repro-
duce the value (P, ~P~) = 6,~ with an accuracy of 0.0005
and the zero of Eq. (43) within 0.0002. The contribution
from the integrals is such that keeping only the discrete
parts in the expansions (42) and (43) would be a poor
approximation in most cases.

Note that we have no problem with defining and cal-
culating the overlap between a bound state and an an-
tibound state, since we can start from the completeness
relation corresponding to the contour in Fig. 3. Compare
with the discussion in Ref. [15I where both bound states
and antibound states were used in an attempt to expand
the unit operator.

8. Expansion of functions

We illustrate the discussions above by showing in Fig. 5
the convergence of several expansions of the matrix el-
ement (g„~f ~Q ), where we take g„= @ to be the
third 8 = 0 bound state of the Vp .

——28 MeV and
Ro ——7 fm square well (see Table I). For the form fac-
tor we take f(r) oc r(Ro —r)P(r), where P is defined
in (22) with R, = Ro, normalized so that (f~f) = 1.
In Fig. 5(a) we show the expansions 2 P„(n~f)2 ~ 1

and Q„(z~&~) —+ 0. As basis, (~n)), we use the states

TABLE I. The lowest eigenvalues of the 8 = 0 basis states A:„ from the Vp = 23 MeV, Rp = 7 fm square well and the
eigenvalues, q„, from the Vp = 28 MeV well used as the perturbed system in Sec. V.

k„(fm ')
Im

Energy (MeV)
Re Im

q (fm ')
Im

Energy (MeV)
Re Im

0.000
0.000
0.000
0.368
1.153
1.712
2.222

0.972
—0.909
0.703

-0.149
-0.184
—0.213
—0.237

—19.758
—17.272
—10.340

2.377
27.096
60.313

102.009

0.000
0.000
0.000

-2.289
—8.866

—15.213
-21.984

0.000
0.000
0.000
0.000
0.000
1.046
1.642

1.086
—1.037
0.845

—0.454
0.176

-0.173
—0.201

—24.679
—22.463
—14.945
—4.316
—0.648
22.264
55.503

0.000
0.000
0.000
0.000
0.000

—7.580
—13.809
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of the Vo ——23 MeV square well (see Table I) and we
show the convergence as a function of the number of a, b,
and d states included (although the c states are of course
also included). In Fig. 5(a) we also show the expansions

2 P„(pff fn)(nlflv) ~ (plf Iv) and P &vlfl 1& Ifl l ~
0. The expansions in Fig. 5(a) are convergent according
to Mittag-LefHer theory. Since the form factor used here
is a class 7 function we are also able to use the expansion
(46), and we show in Fig. 5(b) that

! I I I I I I I I

Re fu
~ ~ ~ ~ ~ ~ ~ ~ Im O„

Re)
Im 1L

I I I I ! I I I I ! I I I

IO

(Oplf'l0 ) ~ oo (53)

We also show in this figure that the expansions

„(pfn)(rnff fn)(nfv) and Q „(pfn) &&
&l" (nfv)

do not converge to (pf f fv) and 0, respectively. The ex-
pansion (53) involves radial integrals, (pfn), where the
upper limit is oo so this cannot be achieved within the
framework of Mittag-LefHer theory. According to that
theory we have to do the substitution (pfn) ~ (pIPfn)
but we do not believe that this double expansion should
converge fsee Fig. 5(b)], since the Mittag-LefHer expan-
sion of a function only converges weakly (see Sec. II C).

I I I Expansions of resolvent

We will here illuminate the question of what the con-
tinuum background looks like and how it is represented
in a resonant state expansion. Since the continuum is re-
lated to the integral term in the expansions (47) and (49),
we choose to study the single particle response function

&e(q) = (fl&t(q) If) (54)

500

Re 1u
l~ O„
Re 1L
Im 1L
Re 1R

when the form factor f extends considerably beyond the
cutofF radius of the potential used to generate the basis
functions of the expansions. If we choose a form factor
with exponential asymptotics f(r) ~ e ~r, r ~ oo (such
as, e.g. , the derivative of a Woods-Saxon potential) we
saw in Sec. IV A that the U integral is equal to a closed
integral around k = —ia. One can then show that

E (MeV)

FIG. 4. Resonant state expansions of the matrix element

(f!f) = (f!Ii!f) and the expansion (f!0!f) = 0, where f(r)
is a Gaussian form factor peaked just inside the radius of the
square well potential used to generate the basis functions (the
Vo = 23 MeV states of Table I). The expansions correspond-
ing to the unit operators (27), (30), and (33) are denoted by
1R, lr„and lU, respectively and the zero operator (35) is de-
noted by 0&. (a) Discrete part of the expansions as function
of the number of a, b, and d states included. The states are
ordered according to increasing real part of the energy (as in
Table I) and thus the two first steps in the 11. curves give the
contributions from the two bound states to the expansions
1R and 11.. In the U expansions there is an antibound state
between the bound states. The eleventh (d) resonance has an
energy of 631 —79i MeV. (b) Continuum integral contribu-
tion to the expansions as function of the upper limit of the
parametrized complex contour integrals along the contours R,
L, and U. The integrals are performed in the A: plane but the
upper limit is given here as (real part of) energy. The contri-
butions do not start from 0 but from the final values of the
discrete parts in (a).

(ut(k)lf)'
dk pi

k(q —k) q+ in (q+ in)2'

where the complex constants pq and p2 depend on the
integrals $&,. (ut(k) I f) dk and $&,. (ut(k) I f) dk. It
was found more pedagogical to present numerical results
obtained with the same form factor (Gaussian) and basis
as used in Sec. IVD1.

In Fig. 6 we show the response functions obtained with
the exact resolvent (11), the L contour expansion (47),
and the U contour expansion (49). The expansions are
divided into three parts: the discrete part including the
states of Table I up to (and including) the third resonance
(60 MeV), the rest of the discrete part, i.e., the excluded
resonances with energies higher than 100 MeV, and the
continuum integral part.

We see that the continuum integral gives a very smooth
background (without any resonant features) of the same
shape as obtained with an exponential form factor (55).
The position of the peak of the form factor was of course
chosen so that this contribution is significant. By varying
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TABLE II. Values of (1000x) the integrals —$„(lower triangle) and —$„(upper
triangle) in the expansion of (Pz ~

&Pz), Eq. (42), when the basis is chosen as the Vz = 23 MeV square
well states in Table I. The states &P; are chosen from the Va = 28 MeV square well states and we
use one state of each kind: qq = 0.176i, q = —0.454i, and qq = 1.046 —0.173i (fm ).

Qb

Qa

Qd

Qb

280
-438

—13 +i10

—318
216

20 —i0.4

—7.5—i40
—20 —i34
588 +i59

(a) (a)

20
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.—-4—
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:I'
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I
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log„l (g If 1 flv) - 1 I
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'
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I
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I
~

I

FIG. 5. Logarithm of the relative error (or the logarithm
of the expansion in the cases where it converges to zero)
as a function of the number of a, b, and d states included
in the sum. The basis states are ordered according to in-
creasing real part of the energy as in Table I. (a) Reso-
nant state expansions of the matrix elements (f ~ f) = (f ~

IL
~ f)

and (Ql, ~ f ~g~) = (Q„~fIL f~g„) and the corresponding ex-
pansions with IL replaced by 0 where IL =

z P ~n)(n~ and
0 = Q "2&~" . (b) Here we show that we cannot ex-
pand (g„~f ~Q~) = (Q„~ILf IL~Q„) but instead should use
the expansions (46) and we also show that the corresponding
Mittag-Leiner expansions, with (p~n) replaced by (p~P~n), do
not converge, even if f = Pf

0 IOO 200 300
E (MeV)

400 500

FIG. 6. Resonant state expansions of the resolvent used
to calculate the single particle response function RI.(E) (in
arbitrary units). We show the results when using the exact
resolvent (11) and the expansions (47) and (49) corresponding
to the L and the U contours, respectively. The contributions
from the expansions are divided into three parts that add up
to the exact result: the discrete part with states below 100
MeV, the excluded resonances (energies above 100 MeV) and
the continuum integral part. We use the basis of Table I.
The resonances give equal contributions to the real part of
the expansions. (a) Real parts. (b) Imaginary parts.
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the shape of the form factor we found in many cases that
the continuum integral in the I expansion is smaller than
in the U expansion. This is opposite to the case when
the form factor is negligible outside the cutofF radius and
the U integral vanishes but the L integral does not.

In the contribution from the excluded (high-energy)
resonances we see the fourth resonance (102 —22i MeV),
but what is more important is that we see a large back-
ground even in the low-energy region.

Because of the substantial low-energy background cre-
ated by the integral term and the high-energy resonances,
the discrete part with all the interesting low-energy states
included is clearly insufficient although all the peaks are
there. This is in contrast to the realistic case of using
Woods-Saxon wave functions and a form factor that is
negligible outside the cutofF radius. In this realistic case
the low-energy region is very accurately reproduced if all
states below 100 MeV are included [24]. Here we chose
to present the more artificial example to show that we
have a theory that works also formally. We have not
emphasized the importance of including unphysical and
virtual resonances in order to get a proper representation
of the background but this is done in Refs. [11] and [24],
especially in the latter.

Similar model studies of the response function have
been made [22] with a square well potential and a square
barrier form factor, i.e. , a function that has a constant
value when lr —6.75l ( 0.75 and is zero otherwise. This
form factor also extends considerably beyond the square
well radius (Ro ——7 fm also in that case) and a large
background was missing but it was not related to the
breaking of the Mittag-LefBer conditions. Improved re-
sults were obtained when the form factor was shifted in-
side the square well radius [25].

V. PERTURBATION PROBLEMS

In this section we give an example of how to use the
states in the completeness relations of Sec. III as a basis
when solving a differential equation. We study here the
perturbed eigenvalue problem

where 'Hg is the radial Hamiltonian introduced in Eq. (7)
and V~(r) is the perturbation. The solutions of the un-

perturbed eigenvalue problem (12) are known and their

A. Diagonalizing the Schrodinger equation

If we take a finite number of states in the completeness
relation IL = Q„ ln)(nl, we can transfer Eq. (56) to a
matrix equation and solve it by diagonalizing the matrix

g + V), = k„b „+ m Vg n . (57)

The improvement obtained by increasing the basis is in
this procedure completely different from that in the per-
turbation expansion. It is our intention to demonstrate
that this procedure can be used to find also the reso-
nance eigenvalues, as long as we start from one of the
proper completeness relations of Sec. III that includes
resonances. These relations, however, contain an integral
part that is essential, and we can treat this in two ways:
either we can simply neglect it and use only the discrete
states or else we can discretize it, i.e. , replace the inte-
gral by a sum. We first note that, whereas the discrete
states will give a symmetric matrix, (ml'8 ln) = (nl'8 lm),
the continuum states as written previously do not, since
Qg (k, r) = S& (k)gt(k, r). As here we are not explicitly
interested in the poles of the integrand, we find it conve-
nient to introduce the modified scattering functions (19)
so that the integral part of the completeness relations
now can be parametrized and discretized symmetrically

completeness properties were studied above. We con-
sider perturbations such that there is a one-to-one corre-
spondence between the perturbed and the unperturbed
eigenvalues. This is thus the problem treated in elemen-
tary quantum mechanics textbooks in terms of pertur-
bation theory although one is then restricted to bound
states only. The perturbation expansions are derived us-
ing a resolution of the unity in terms of the solutions of
Eq. (12), which can also be used to define the "exact"
solution, the only source of inaccuracy being the need to
use a finite number of states from the complete set.

If we wish to have a perturbation expansion also for
resonance and antibound eigenvalues (a continuum per-
turbation theory), it has been found necessary to start
instead from the Dyson equation. We show below how
to formulate also an exact procedure from this equation
that yields att the perturbed eigenvalues of Eq. (56), in-
cluding the antibound states. This cannot be achieved
with any completeness relation.

Qt (k, r) Q~ (k*, r') dk = ut(k, r)ut(k, r') dk

u~(k(t), r) u, (k(t), r') k(t) dt

N~

=) u( t(tk, ), r) u( g(tk, ), r') k(t, )At,
i=1
Ni

tl 7 Q 7 )

i=1
(58)
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where u'(r) = k(t, )At, ur(k(t, ), r). We thus obtain

the (complex) symmetric matrix (57) that can be diago-
nalized with standard routines (e.g. , [27]) and the result
should improve if we increase the size of the matrix. This
can be done by including more resonance states N„, or
more discretized continuum states, which can be achieved
in two ways: by increasing the upper limit N, (i.e. , in-
clude states with higher energy) or by decreasing the
step length At, in the discretization. For consistency
one should, perhaps, correlate the two upper limits so
that the truncations are made at the same energy even
if the result might improve with an uncorrelated increase
of N„, and¹.

B. Diagonalizing the Dyson equation

g~(q) = g(q) + g(q)&~g~(q) (59)

The perturbation theory of resonance (and antibound)
states [26] is derived with the use of the Mittag-LefHer
expansions of the resolvents

g () )- IV)(41
2q~(q —q~)

Corresponding to the Eqs. (56) and (12) we can define

two resolvents

(q2 —Mr —Vg)gg(q) = Il,

(k —'Hg)g(k) = II

(here omitting the angular momentum index), which are
related by the Dyson equation

we saw above cannot include all kinds of pole states (ex-
cept if it includes a complicated continuum that cannot
be neglected or conveniently approximated). In the Ap-
pendix we show that we instead should diagonalize the
matrix

K+U =k„6 „+ (61)

In Sec. IVB we suggested that we might have

at least if we only use this expansion together with class T
functions. The perturbing potential belongs to this class,
and we find numerically (see Table III) that we indeed
seem to have

(0 ) = 2k (nlrb )

l.e. ,

with m, n running over all a, b and a finite number (2N„,)
of c, d. (This was also found in Ref. [13] from a variation
of a stationary expression but no interpretation could be
made of the eigenvectors because of the restrictions on
Mittag-LefHer theory. ) Making use of the eigenvectors
from the diagonalization

(q —K —U)P = 0

with components (P )„, we can write the perturbed re-
solvent as a matrix

2k„(k —k„)
(60) (0 ) = "2k (nI& ) (62)

There is no need for the integral term of (49) if the per-
turbation Vp vanishes outside the range of the cutofI' po-
tential included in the operator 'Rg.

We can, however, not find a diagonalization procedure
as in the preceding subsection for all the perturbed eigen-
values q (a, b, c, and d), since these are based on the use
of an idempotent resolution of the unit operator which as

Since the vectors P are the columns of an orthogonal
matrix, we also have the remarkable relations

(63a)

TABLE III. The result for the third (perturbed) bound state in Table I given by diagonalizations of the matrix (61) with
N„, = 3, 6, 12, and 24. We give in the first line the wave number eigenvalue (fm ). The other lines compare the amplitudes

(p )~ with " (nil'~) calculated using the exact q, thus suggesting the relations (62). The numbers n refer to the ordering
2V'&n ev

of the basis states (in order of increasing real part of the energy) as given in Table I.

Ng; =9
Re Im

Ng; = 15
Re Im

Ng;
Re Im

Ng; = 51
Re Im

E~act
Re Im

Q~

n=l (b)
n=2 (a)
n=3 (b)
n=4 (d)
n=5 (d)

0.0164

—0.0626
0.7125
0.0264

0.185

—0.0343

—0.0691
0.0662

0.0173

—0.0653
0.7127
0.0292

—0.0339

—0.0733
0.0643

0.0178

—0.0668
0.7127
0.0309

0.179

—0.0335

—0.0759
0.0635

0.0184

—0.0676
0.7126
0.0318

0.178

—0.0333

—0.0774
0.0632

0.0184

—0.0686
0.7126
0.0330

—0.0330

—0.0793
0.0628
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which we have not been able to derive in any other way
although (63a) is rather similar to (53).

C. Numercial illustrations

Energy eigenvalues

To show how this diagonalization procedure works, we
use as before the states of the Vp ——23 MeV, Rp ——7
fm square well as the unperturbed basis when solving
for the eigenvalues of the V~ ——28 MeV well. This case
is interesting because for 8' = 0, the perturbed system
has one more bound state and one more antibound state
than the unperturbed system, i.e. , when diagonalizing
(57) we have to pass the threshold at which a bound-
antibound state pair is created from a pair of resonances.
(See Ref. [28] for a discussion of square well pole trajecto-
ries. ) This third bound state is the hardest to reproduce
(although it is a square integrable function), so we only
show the results for this eigenvalue. It is interesting to
compare with the first order perturbation theory (1PT)
result E~ = E„+ (n~Vpin) (where ~n) is the unper-(~)

turbed state that becomes
~
v) under the action of the

perturbation) even if it cannot cope with the threshold,
where the comple~ energy becomes real. For all the other
eigenvalues in this example, the error of 1PT is less than
I%%uo.

In Table IV we show the result (cases BQ) when ap-
proximating (29) using various numbers, N, , of included
discretized continuum states (DCS) and upper limits
k~~„, chosen between two consecutive Rek~ of the ba-
sis in Table I. The interval (0, k „)was divided into N,
equal bins with k, in the middle. We note that the result
can be rather good even with few DCS, but there are also
strong fluctuations. In the limit of a larger interval and
more DCS the result becomes more accurate.

We also give the result (cases BDQ) when approxi-
mating (30) with the number of resonances, N„„chosen
consistent with the upper limit k „. Here we approx-
imated the L contour by two straight lines 0+ Oi —+

0.33 —0.3i —+ k „—0.3i with equal bins within the two
parts and comparable bins between them. The results
are almost as good as in the BQ case but they are more
sensitive to the actual parametrization of the contour.
There is also a somewhat reduced numerical accuracy
when we use complex continuum states far down in the
k plane.

We give also the results (case BD and case BCD) of
the approximations of neglecting the contours in (30) and

(31), respectively. As commented above, the BD case is
seen to give a nonzero imaginary part (of the real bound
state energy) that the BCD does not. Neither of these
two gives results similar to the exact ones even when we
increase the basis. The BD results for the other eigenval-
ues (both bound and resonant) are similar to 1PT, and
thus quite accurate. The approximations BQ and BDQ
give the other two bound state eigenvalues better than
1PT with just a few DCS and the BDQ give the reso-
nance eigenvalues better if Nd; and k „ is chosen large
enough. There have been speculations that the BCD ba-
sis should be better than the BD basis as an extension of
the bound shell model basis, but we strongly emphasize
that this is not so. The neglect of the complicated Z
contour and the double counting of the resonance contri-
bution is a severe reduction of completeness properties.
Except for threshold properties, the BD basis is reason-
ably satisfactory, since we in the realistic application are
not so interested in the convergence when includi. ng more
basis states as we are in a reasonable representation with
few states.

8. R'ave number eigenvalues

In Table III we give the wave number eigenvalue q

and in Table IV we give also 2" q
z resulting from di-

TABLE IV. The result (in MeV) for the third (perturbed) bound state given by various diagonalizations of the matrix (57)
as indicated in the first column. Both the perturbed states and the basis are from the potentials in Table I. The letter B
indicates that the basis contains two bound states, the letter D that it contains N„, decaying resonances, and C that also¹,
capturing resonances are used. The letter Q indicates that the basis also contains N, discretized continuum states with upper
limits k „=1.97, 3.42, and 6.19 for the cases Ql, Q2, and Q3, respectively. For a consistent energy truncation, we have

N„, = 3 in the Ql case and N,« ——6 in the Q2 case. Ng; is the dimension of the matrix that was diagonalized. The exact
value is E = —0.6481 and the prediction of first order perturbation theory is —2.463 —0.148i. The case ABCD is the result of
diagonalizing the matrix (61) suggested in Sec. VB and except in the Nd; = 5 case, the dimension of the diagonalized matrix
was actually N&; + 1.

Ng;m ——5
Re Im

N~m =8
Re Im

Ng; ——14
Re Im

Nglm = 26
Re Im

Ng; ——50
Re Im

BQl
BQ2
BQ3

BDQ1
BDQ2

BD
BCD

ABCD

—3.393
—0.695

7.041
-2.149

—0.843

—0.026

—0.026

—0.386
-1.825
—2.851
—1.310
-2.102
—2.102
3.177

—0.717

0.514
—0.047
—0.047

—0.642
-0.708
—1.075
—0.585
-1.201
—2.084
3.175

—0.687

-0.119
0.438

—0.058

—0.645
—0.659
—0,853
—0.630
—0.582
—2,074
3.174

—0.669

—0.004
—0.057
—0.065

—0.645
—0.647
—0.646
—0.643
—0.639
—2.060
3.174

—0.659

—0.003
—0.001
—0.079
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agonalizations of the matrix (61), for the same case as
studied in Sec. V C 1. Compared with the results of that
section, this method gives rather good results even with
few resonances in the basis. The convergence when we
include more resonances is not as fast as when including
more DCS in the other methods but seems more stable.
We give in Table III also some numbers that support the
relation (62).

VI. SUMMARY AND CONCLUSIONS

In all nuclear physics calculations, it is reasonable to
say that the realistic potentials (e.g. , Woods-Saxon) are
of finite range, i.e. , they are vanishing beyond a certain
radius, B~. This means that wave functions of bound
states and low-lying excited states are very small outside
this radius. Scattering states and unbound states have
wave functions that are not decreasing outside this radius
and for the latter states, they are even increasing with
the distance. If one would like to include the unbound
states (d and c) in a calculation, one can proceed in two
ways: using Mittag-I eEer theory or eigenfunction theory
(as was done in this paper).

In the Mittag-LeRer case one assumes that everything
interesting happens at distances smaller than the cutoff
radius B~. One then does not have to treat the diverging
functions and can use the set of discrete states to expand
physical quantities within the limited radial range. But
since these states are not orthogonal in this range, it is
sometimes hard to interpret the coeKcients of the ex-
pansions. The expansions, though, are often faster and
more convenient from the numerical point of view and the
advantage of them is thus more of mathematical nature
than physical.

In the case of the eigenfunction treatment, one uses the
fact that the discrete states are orthogonal if the radial
integrals are taken to infinity even if this means that
one has to use regularization procedures for the unbound
states. Because of these regularizations and the fact that
we have to leave the safe Hilbert space, it is hard to
argue with the same mathematical rigor for the validity
of the resonant state expansions obtained. [Expansions
such as (30) can be argued for mathematically with the
use of the rigged Hilbert space theory [29], but this was
not useful as a starting point for us here. ] Instead we
chose to make numerical calculations to show how the
relations of Mittag-LefBer theory can be obtained from
the eigenfunction theory and how the cutoff radius affects
the eigenfunction expansions.

An important feature of the eigenfunction expansions
is that we always have a continuum integral contribution
in addition to the sum over the discrete states. In the
cases where the discrete part has the same form as in
Mittag-LefBer theory, the integral vanishes if the condi-
tions of Mittag-LeRer theory are fulfilled. On the other
hand, if the Mittag-LeRer conditions are not fulfilled we
need the integral to get a valid expansion. We have here
given several examples of when the integral is important
and as expected, this is in the cases when we consider
a quantity that gets a considerable contribution from

the radial region outside the cutoff radius, In the re-
alistic case of a truncated Woods-Saxon potential we do
not have many such quantities and therefore the Mittag-
LeKer expansions are often appropriate. The drawback
is the problem with defining and interpreting many-body
wave functions. This is no problem in the eigenfunction
theory as long as we start from a proper completeness
relation, i.e. , we can obtain an idempotent expansion of
the unit operator. If we neglect the integral term of this
proper completeness relation we get an approximate unit
operator and if this includes bound states and decaying
resonances, it can be viewed as a generalization of the
bound shell model basis (at least in a particle-hole for-
malism [30, 24]).

In Mittag-LefHer theory one divides the radial space
into two parts (inside and outside the cutoff radius), and
we have two overcompleteness relations that imply the
linear dependence of the discrete states over the finite
radial range used. Over the infinite radial interval used
in the eigenfunction theory we also have two relations:
one proper completeness relation and one proper zero
operator. If we continue them analytically we can obtain
the Mittag-LeRer relations, since the remaining integrals
(over the U contour) vanish when applied to cases where
the Mittag-LefBer theory also can be used. We found by
studying functions with exponential asymptotics that we
have to make simultaneous use of both relations if we
want to expand wave functions and calculate the coeffi-
cients over the infinite radial range. These wave-function
expansions are also valid inside the cutoff radius only but
this might as mentioned be sufficient in a realistic case.

Correct threshold behavior is obtained only with the
Mittag-LefHer expansions or the more general eigenfunc-
tions expansions (33) and (49) derived from the eigen-
function theory, which also gives a correct treatment of
the background. We can divide the contributions to a res-
onant state expansion into three parts: the bound state
contributions, the resonant contribution, and the back-
ground, which in turn can get its contribution in two
ways: from the far away resonances or from the proper
continuum integral. In the realistic case there might
be no contribution from the U integral and the Mittag-
LefBer expansion is valid and useful as long as we do not
have to form overlaps between expanded functions.

Summing up we can say that the discussion of our nu-
merical investigations has clarified what it means to have
a complete set of functions. We stress the importance of
having an expansion of the unit operator that is idem-
potent. Such a unit operator expansion can be used to
derive resonant state expansions of physical quantities
that are convenient to work with both from the physical
and from the technical point of view. By analytic contin-
uation of these expansions we obtain new expansions that
are even more convenient and even if they are shown to be
perfectly valid, they seem to imply an expansion of the
unit operator that is not idempotent and therefore the
completeness is said to be reduced. Observe though that
this does not imply that the basis states are orthogonal.
It means instead that the validity of the expansions is
somewhat restricted and that it is important to perform
integrals and analytical continuations in the right order.
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By working simultaneously with theoretical derivations
(and speculations) and numerical calculations with high
accuracy, it was found that the eigenfunction theory be-
haves well when continued in the complex plane. It might
now then be the proper time for a more extensive use of
the eigenfunction theory in realistic cases, especially since
the conditions there are more advantageous than in this
model case [24].

The author is grateful to Tore Berggren for many dis-
cussions and to the Swedish Natural Science Research
Council for financial support.

APPENDIX: THE MATRIX DYSON EQUATION

found by solving

0 =det I —M = det I —VT (q —K) T

=det T[I —T 1VT 1(q —K) ]T

=det I —U(q —K)

i.e. , 0 = det[q —K —U], which is the secular equation of
the eigenvalue problem

[q
—K —U]P„= 0. (A3)

To see why this is relevant, we multiply the second matrix
equation (Alb) by T 1 and rewrite

We want to solve the perturbed eigenvalue problem
(56) using the known basis obtained from the unper-
turbed eigenvalue problem (12) and the expansion of the
(unperturbed) resolvent in terms of the eigenstates and
eigenvalues (60).

We first define some matrices by their matrix elements
and give some of their properties

(Gp) „={m~g), ~n),
X „={m]Vgg]n),

T M =T [I —M]X
= T [q —K —M(q —K)](q —K) X'

= [q —K —T 1M(q —K)T]T (q —K)
= [q —K —U]T (q —K) X

and get an expression for the X matrix

X = (q —K)T[q —K —U] T 'M.

(A4)

(A5)

G „= ",G = {2K)-'(qI —K)-',6

K „=k„h'

T „=+2kb „, T =2K,
Qi

S„=+2q 6„, S~ = 2Q,
V „=(m~V]n), V~ = V,

We can find the inverse r = [q —K —U] 1 by first diago-
nalizing the symmetric matrix K+ U by an orthogonal,

= C, similarity transformation

C [K+U]C =Q, (A6)

where the columns of 4 = [$1/2 ] is a set of orthogo-
nal, (P„P = b„) eigenvectors. The inverse can now be
written

V „
2k„(k —k„)'

U „= ", U = T 'M(qI —K)T,
2 k k„

T
r=c[, -Q]- c»=) ~.~-

and the resolvent (Ala)

G1, =G[I+ X]

(A7)

where V is the transpose of the matrix V and I is the
unity matrix, I~„= b „. By taking matrix elements
between {m] and ~n) of the Dyson equation (59) by itself
and multiplied by V, we get two equations in matrix
space

=(2K) 'TrT '[I —M+M] = T 'I'T '

1@[q Q]
—1@TT—1 (AS)

= G(q —K)TrT [Tr T (q —K) + M]

G1, = G[I+ X],

[I —M]X = M, (Alb) [q —Q]-' = S-'2Q[q —Q]-'S-',

(Ala) Making use of the matrix S,

( 9)
from which we find the perturbed eigenvalues q as the
singularities of X, i.e. , of [I —M] and the residues of
G~ would then be the perturbed eigenvectors expressed
in matrix space. [Observe that the transformation from
the operator Eq. (59) to the matrix equations (Ala) and
(Alb) is done unthout the use of a projection operator
of the form I = Q„]n)(n] although the use of such an
operator would lead to gVIigg —+ M~G1, (since both V
and G are symmetric) and the matrix Dyson equation
[I —M ]G1, = G.] The perturbed eigenvalues are thus

and introducing

4 =T 'CS=[g,g, ]

we get

T
G1, = @[2Q(q —Q)] '4~ =)- 2q„(q —q )'

(Alo)

(All)

where the components of the vectors in the numerator
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are related to the eigenvectors from the diagonalization
by

(A12)

We shall not be tempted to identify the coefficient
(Q~)„with the overlap (n[Q ), since the former is
of order unity and the latter looks like (n] v)j + . " " e'l""+~"1+, which is not limited.nv —i(A: +q )
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