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Variational two- and three-particle solutions of the relativistic Yukawa model
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The variational method, within the Hamiltonian formalism of quantum field theory, is used to derive
momentum space wave equations for any number of fermions interacting via a massive scalar field.
These coupled equations are shown to be exactly solvable in the limit of fixed fermions. Approximate
solutions are given in the two- and three-particle bound state case for various mass combinations and
various strengths of the coupling of the fermion and scalar fields.
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I. INTRODUCTION

The ab initio description of relativistic few-particle
bound states in quantum field theory has a history that
dates back to the 1930s [1], and a literature that is very
extensive. The traditional approach to this problem is by
means of the Bethe-Salpeter formalism [2], which is de-
scribed in many standard textbooks on quantum field
theory [3]. There are, however, many practical
difFiculties with the Bethe-Salpeter approach: For one
thing it is, in practice, perturbative, and so not straight-
forwardly applicable to strongly coupled systems. In ad-
dition, it leads to four-dimensional wave equations for the
relative motion of a two-body system, and the presence of
the relative time coordinate leads to ambiguities in inter-
preting the Bethe-Salpeter amplitude as a traditional
wave function. Lastly, the implementation of the Bethe-
Salpeter formalism in the case of three- or more-particle
system seems to be quite formidable [4].

Recently, the variational approach, within the Hamil-
tonian formalism of quantum field theory, has been
shown to be a viable alternative method for describing
relativistic few-particle bound-state systems in quantum
electrodynamics [5,6]. Thus, it is of interest to apply this
approach to the Yukawa model, as a prototype of a
strongly coupled theory, such as arises in quantum field-
theoretic models of nuclei [7], and of the standard model.

In this paper we present a study of relativistic two- and
three-particle bound states in the Yukawa model, using
the variational Hamiltonian (VH) approach. The Yu-
kawa model is too naive to be considered as a realistic
field-theoretic model of nuclei. This is because it contains
only scalar (or pseudoscalar) meson exchange interac-
tions, and this is insufficient (as is well known) to describe
internucleon interactions properly. Nevertheless, the Yu-
kawa model does contain the principal features of a field-
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theoretic nuclear model and so is a useful one for testing
the VH approach. In Sec. II we specify the Lagrangian
of the model, the notational conventions, and we intro-
duce the variatiooal ansatz for a system of an arbitrary
number of fermions ("nucleons" ) interacting via a scalar
("meson") field. This ansatz is used to derive the coupled
integral wave equations that describe the stationary states
of this few-nucleon system. In Sec. III we discuss the ex-
act solution of these equations in the limit of fixed nu-
cleons. Section IV is a discussion of the dynamical sys-
tem in a spinless approximation. Solutions of the two-
particle equations are presented in Sec. V, while three-
particle solutions in a separable approximation, are given
in Sec. VI. Concluding remarks are given in Sec. VII.

II. LAGRANGIAN, HAMII. TONIAN,
VARIATIONAL ANSATZ,

AND MANY-BODY EQUATIONS

For a system of two distinct types of massive fermions
(which we will refer to as "protons" and "neutrons"), de-
scribed by Dirac fields g, and 1b2, interacting via a mas-
sive or massless boson (meson) field, tb, the Lagrangian
density, with A=c =1, is

+ X gkfkI A4

where Mot„m, gk (k = 1,2) are the bare masses and cou-
pling constants of the theory, and 1 =I,y for scalar and
pseudoscalar meson fields, respectively. Evidently, the
model specified in (1) can be readily generalized to in-
clude vector, pseudovector, and other types of meson
fields. However, in the present work, we will limit our
discussion to scalar or pseudoscalar coupling.

To make the transition to the quantum theory, we em-
ploy standard canonical quantization and Fourier trans-
formation to momentum space. Thus, for the meson
field, we write
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P(x)= f d p[(2ir) 2'(p, m)]

X [e '~ a(p)+e'i"at(p)],
where co(p, m ) = (p +m )

' and

[a(p), a (q)]=&'(p —q),

while all other commutators vanish.
Similarly, for the nucleon fields, we write

gk(x)= g f d p(2m-) [U„(ps)e '~'b„(ps)

(2)

[bk(ps), bk(qcT )]+= [dk(ps), di, (qcr)]+

=5, 5'(p —q),
and all other anticommutators vanish.

In Eq. (4) the free-nucleon spinors, with masses Mk,
are normalized such that

Uk(ps) Uk(ps ) = —Vk(ps ) Vk (ps)

=Mk /co(p, Mk );
that is, they difFer from the standard spinors according to

Uk(ps) = [Mk ~~(p Mk ) ]
' "ttk (ps»

where

+V(p) ''"d (p)], For systems consisting of nucleons only (no antinu-
cleons), the effective normal-ordered Hamiltonian, in the
Schrodinger representation (with t =0), is of the form

:H:=g f d p Qk(p)bi, (ps )bk(ps)+ f d q co(q, m)at(p)a(q)
k, s

—g Ak g f d p d q[co(p —q, m )]'~ bkt(ps)bk(qo )[a(p —q)+a (q —p)]Uk(ps)I Uk(qcr),
k so.

where 2k = [2(2ir) ]
'~

gk, and where

(Mok M/ )Mk
Qk(p) =co(p, Mk )+

co p, Mk
(9)

The expression for Qk(p) reflects the fact that the masses of the physical nucleons are not identical to the bare masses
Mok of the Lagrangian. Note that Eq. (8) is not the complete Hamiltonian as we have suppressed all terms containing
antinucleon operators, dk and dk.

For a system of N, protons and X2 neutrons and an arbitrary number of quanta of the interaction Geld, we consider
the ansatz

rf (d ~) ( ) '~ (+i i'p2s2 ' ' ' +NsN nial n2~2 ' ' nNioN
$0

+ f d q[co(qm)] P'"(p, s„p2s2,. . . ,'n, cr„n2o2,. . . ,q)a (q)

+ . . + f d q, . d qk[co(q, m) co(qkm)]
1

k N) N2

XII (q )+ iIIb (&' ') IIb (10)

where ~0) is the trial vacuum state annihilated by a, b„and b2 For ease of no. tation we have suppressed the vector na-
ture of the various three-momenta. In addition, we shall at times use the notation

p=Ip, s„.. . , pii, slav ], n =—[nia'i, . . . , niv criii /, q=[qi, . . . , qk],l l 2 2

and we use q& to denote the set of all the q's excluding qk. The equations for the coefficient functions P'"' follow from
the variational principle

(12)
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and are, explicitly,

Nl N2 I3

Q](p;)+ g A2(n )+ g co(qkm) E—ct]'P'(p;n;q)
i =1 j=l k=1

P Nl

g +co(qkm)U, (p;s;)I U, (p;+qk, s)c]]' "(p,s„.. . ,p;+qks, . . . ;n;qk)
k=1 i=1 s

k=1
Nl

+A] g
i=1
N2

N2

g g co(qkm )U2(nlcr )I Uz(n +qk, o )P' "(p;n„a.„.. . , n +qk, cr, . . . ;qk)
j= 1 o.

d3
g f U, (p, s;)I"U](gs)$]~+"(p]s„.. . ,p, =Q, s, =a, . . .;n;q, p; —Q)

co (p; —Q, m)

d3
g f 2 Uz(n~oj)I U2(ga)P' +"(p;n, a], . . . , n~=g, a~=cr, . .;q, nj. —Q),

co (n —Q, m)
(13)

where P=0, 1,2, . . . . We work, of course, in the frame in which the total momentum of the system is zero; hence

g, ',p,. +g ' ]n~+g~k ]qk =0, etc. , in all terms of Eqs. (13), and the stationary state eigenvalue E is just the rest mass
of the interacting (N] +Nz ) nucleon system.

In this paper we shall consider in some detail two-nucleon (N, =N2 = 1 or N, =0, N2 =2) and three-nucleon (N, = 1,
N2=2) systems. For the two-nucleon case (N, =N2=1) the first few of the infinite set of coupled integral equations
(13) are, in detail,

(Mp] —M, ) (Mp2 —M2 )
co(pM] )+ M, +co(nM2)+ M~ E2 y' '(ps]—,'ns~)

co pM, co(nM2 )

d3
U, (ps, )I U, (Qa )P'"(Qo , ns2, p"—Q)

co (p —Q, m)

d3
+A2 g f 2 U2(ns2)l Uz(go )P"'(ps Q]an —Q),

co (n —Q, m)

(M]], —M, ) (Mp2 —M2 )
co(pM])+ M]+co(nM2)+ M&+co(qm) —E2 P"'(ps],'ns2', q)

co pM] co(nM2 )

=A]co(qm) g U, (ps, )I U, (p+q, a )P' '(p+q, a , ns2)+A~co"(qm) g U2(ns2)I Uz(n +q, a )P' '(ps, ;n +q, a )

(14)

d3
+A, ] g f U, (ps] )I U](ga )P' '(Qa , ns2 , q, p"—Q')

co (p —Q, m)

d3
+A2+ f 2 U2(ns2)I U2(ga )ct]' '(ps];Qa;q, n —Q),

co (n —Q, m)

(Mp] —M, ) (Mp2 M2 )M2
co(pM] )+ M, +co(nM2)+ +co(q]m)+co(q2m )

—E2 y' '(ps],'ns2;q], q2)
co(pM, co(nM2 )

=A] g [co(q]m)U, (ps, )1 U, (p+q„a)]t]"'(p+q„o;ns2,q2)'

(15)

+co(q2m ) U](ps] )I U](p +qz, a)P"'(p +q2, a'; ns2,'q] ) ]

+kz g [co(q, m ) U2(ns2 )I U2(n +q „a)P" '(ps „n+q „a;q )

+co(q2m) U2(nsz)l Uz(n +qz, o )ct]'"(ps„'n+qz,o;q] )]
d3

+g]y f U, (ps])I U ( ]Qa)p"'( Q;an&s', q , ]qp3—Q)
co~(p —Q, m )

+p, g f U, (ns, )I'U, (Qa )ct]"'(ps],Qa;q], q2, n —'Q»
co (n —Q, m)
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The equations for the one-nucleon case, which we have not written out explicitly, can be obtained from Eqs. (14)—(16)
by setting A,2=0 and by eliminating all dependence on (say) n. In this case the energy eigenvalue E, (i.e., the one-
nucleon mass) depends on A, i, as is evident from the substitution P(~) ~X~iP'~'. In the same manner, it follows that the
eigenenergy Ez (rest mass of an arbitrary N-neutron or N-proton system} depends only on A, ; that is, it is independent
of the sign of g. More generally for a neutron-proton system, Eq. (16) implies that Ez will depend on even powers of /(, i
and I'2

III. EXACT SOLUTION OF EQUATIONS IN THE FIXED-NUCLEON LIMIT

The Yukawa model for a single-fermion field is exactly solvable in the fixed-nucleon limit [8]. In this paper we con-
sider the more general case of two different kinds of fermion fields and any number of particles. The fixed-nucleon limit
corresponds to the case where co(p, M~ )~M~ or, equivalently, M;~ 0(), where M/ is the physical (renormalized) mass
given by

(17)

and f (Q ) is a cutoff factor used to control the otherwise divergent (when f = 1) integral in (17). In the fixed-nucleon
limit, Eq. (13) reduces to the form

P
N)MO)+N2M02+ g m(qkm ) EP' '—(p;n;q)

k=1

P Nl

=& ~(q. m) ~) g4" "(p) . p;+qk.
k=1 i=1

+ f d'Q f(Q'} ~ ~ ~(p+/)(
co (Qm)

N~

. ; n;q k) +A, 2y y' "(p;. . . , fn+q/„. . . ', q/, )
j=1

N2

. . ;;qQ)+x, y y(/'+"(p;. . . , , —Q, . . . ;qQ)
j=1

(18)

since in that limit the fermion nature of the nucleons becomes suppressed [thus, U(ps)I U(qo. )~5, for I =I, that is
for the scalar coupling case].

The infinite chain of coupled equations (18) describe the N, +N2 nucleon system along with any number of (virtual)
mesons which mediate the internucleon interactions and provide the "links" in the chain of equations. Of course, such
an infinite set of coupled equations is impossible to solve without approximation (such as, for example, truncation), un-
less an ansatz can be found that decouples the equations, so that they can each be solved separately. Fortunately it is
possible, in this case, to write down an ansatz, which decouples the infinite chain of Eq. (18):

N2

y' '(p; nq)=A )y y' "(.. . ,p/, +q;, . . . , n;q;)+A2 y y' "(p;. . . , n/+q;, . . . ;q;) .
k=1 1=1

(19)

We were guided to the particular form (19) by considering the (simpler) two-nucleon case (N, =N2=1) and small
values of //3, that is, equations that correspond to a small number of (virtual) mesons. Note that the result for P'~' is the
same irrespective of which q; is used on the right-hand side of Eq. (19). Thus, substituting Eq. (19) into (18) and using
the identification (17) we obtain, without any approximations, the result

d3 1

(N, M, +N2M2 E)P(~'(p;n;q)—= f f(Q ) /() gP(~)(. . . ,p,
—Q, . . . ,p +Q, . . .;n;q)

co (Qm)

N2

+ A,z g (t~ (/(p;). . . , n; —Q, . . . , n +Q, . . . ; q )
lWJ

+2k, ,A,zg P(~)(. . .,p; —Q, . . .;. . . , n +Q, . . . ;q. ) . . (20)
I,J

Equation (20) is just the momentum-space Schrodinger equation for a system of N, +N2 fixed nucleons interacting via
the meson field. Note that the mesonic momenta q appear only as a parameter in the "wave function" P'~', and so are
ignorable coordinates. Indeed, in this fixed nucleons limit the q dependence can be factored out of
P'~'(p;n;q)=///)( '(p;n)G(q) and so Eq. (20} can be written in terms of P( '. Note, also, that the mass renormalization
conditions (17) are just the solutions of Eq. (20) for the one-particle case, N, =N2 = 1.

The coordinate-space representation of Eq. (20) is [with f (Q ) = 1] given by the expression

Nl N2

M, + g M +—g V, (~r, —r ~) /=Erat/,
i =1 j=1 - i' (21)
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where

—m Ir. —r.
~

e
V, ([r, —r ()=—4nA, , A,iJ ' J J

that is, a Schrodinger equation for fixed nucleons with attractive Yukawa pairwise interactions. We see, therefore, that
the ansatz (19), which decouples the infinite chain of Eq. (18), has the effect of convoluting the field-theoretic meson-
exchange interaction into the Yukawa-like internucleon potentials V;. so that the (virtual) mesonic coordinates no
longer appear explicitly in the decoupled Eq. (21).

IV. A SPINLKSS MODEL

We consider, in the first instance, a simplified spinless version of the present model, in which the spinor products
U(ps)U(qo ) for the scalar meson coupling case (1 =1) are replaced, in Eq. (13) [or, equivalently, in the Hamiltonian
(8)], by the expression [9]

U(ps) U(qcr )~ 5,
M

co P, M
(22)

where P =(p+q)/2. This replacement means that we can suppress the spinor indices in Eq. (13), and so obtain a
simplified chain of equations for the spinless model. Specifically, for the case N, =N, I, , =A, , and Nz =A&=0 (i.e., "pro-
tons" only), if we use the replacement p'p'~Ape'p', the spinless model equations are given by

N (Mo —M)M
co(p;, M) +

i=1 co p;, M

p
+ y c(oq km) Eg y —(P„P2,. . . , Py', q), q2, . . . , qp)(p)

k=1
P N M (pX +(qk ) + M 4' (Pl '' P +'qk '' PN ql q2 '' qk '' 'qP)

k=1 i =1 co p;+ —,'q„,M
N 3

—Q ) (( +Q)g2M) (23)

Alternatively, rather than viewing Eqs. (23) as representing a spinless model, one can view them as approximations to
Eqs. (13), since the form (22) is valid as an approximation to U(ps)U(qo. ) in the limit when p —

q~ &(—,
' ~p+q~ (the re-

placement is exact for the case p =q), that is small momentum transfer between the nucleons and mesons.
Unfortunately, even for the spinless model, we have not been able to find an ansatz, which uncouples the infinite

chain of Eq. (23) exactly. Therefore, we use an approximate decoupling scheme of the form which uncoupled the equa-
tions in the fixed nucleon limit [Eq. (19)],namely, we take

N
(p) (P—1)(Pl P2 ''' Pl( ql q2 ' 'qP) $ 0 (Pl '' Pk+q; P~ q;)

k=1

Substituting (24) into Eq. (23) we obtain

N N Mg ~(p M) —&x 0(pi . p~)=~'& J d'Q. . . 4( . . p; —Q . p +Q
co (Q, m)co(p; —

—,'Q, M)co(p;+ —,'Q, M)

(24)

(25)

where we have written P(p) for P' '(p), and where the physical mass M for each particle is related to the bare mass Mo
according to the renorrnalization condition

A(p, . ) Mco(p;, M)
M=MO —I, d Q

, m co p; —
—,',M co p;+ —,',M

(26)

which is here written in the boosted frame in which the
particle has momentum p;. Note that the cutoff parame-
ter A(p; ) is chosen such that M is a constant independent
of the frame of reference.

Equation (25) is a relativistic momentum-space N
particle equation, which, in the nonrelativistic limit
reduces to the form

N
—m/r, . —r.

/

M — V; E~ —g 2~A, —1 2 e
2M ',.~,. ir, —r, i

X g( r„.. . , r~ ) =0, (27)

i.e., the N-body Schrodinger equation with pairwise Yu-
kawa interactions.



1890 DAREWYCH, SITENKO, SIMENOG, AND SITNICHENKO 47

V. SPINLESS TWO-PARTICLE EQUATION
AND ITS SOLUTION

For the two-particle (N =2) case, Eq. (25) takes on the
simple form

[2+p +M E2—]P(p )

E(n, 1)
2

M

f
2n

2

6n 5 5

2l +1 4
———2n5 +0(f ), (33)

f d, p(q) M'
2~2 p q

2 +m 2 M2 + &

p +q
2

where p=p, = —
p~ and f=(2') A, =g /4'. In the

coordinate representation this equation has the form

[2(/p +M E2]$—(r)=4' M f

where n = 1,2, 3, . . . is the principal and
l =0, 1, . . . , n —1 is the orbital angular-momentum
quantum number.

For the case when p&0, that is, for short-range in-
teractions, bound states are possible only iff &f '"„".For
s states (l =0), the binding energy, e2=2M E2, —has a
quadratic dependence on f f'"„'f—or the small f f;„—,

e
—m

I
r+ x

I

—M
I
r —x

If d x @(x)

(29)

(n, O) g(n, O)~ p g(n, O) ~2

whereas for l & 0 this dependence is linear:

(34)

that is, an equation with nonlocal interactions at small
distances (r 1/M), which, in the nonrelativistic limit
(M~~ ), reduces to the usual Yukawa potential.

Equation (28) is of the Fredholm type with a finite
norm kernel. It has ground-state solutions for all values
of the coupling constant f )f,„,where

3

(30)

for small values of p =—m /M with go = 1.6798 being the
critical (minimum) coupling at which the Yukawa poten-
tial —ge /r supports a bound state in the nonrelativistic
limit, while the constant c& is, approximately, c] =0.7.

The eigenenergies Ez of Eq. (28) decrease monotonical-
ly with increasing f from the value Ez =2M at f =f;„,
as is typical of relativistic two-particle bound-state equa-
tion [5,6, 10]. The value E2=0 is reached at f=f,„,
which varies with m /M for each state.

Writing p(p)=pl(p) Yl (p), Eq. (28) is reduced to the
radial form

[23/p +M E]p, (p) =——f dq k, (p, q)ltd, (q),—(31)
0 p

where

pl" ll
~f f l" ll ~— (35)

2 e2

ffo 't/p'+M'+M 2f

(36)

Since, for small momenta, the wave function pl is, explic-
itly,

1

(P) —c, 2
p 0 p +M@2

it follows that

(37)

and

f d P pl(p)pl(P) —c2+c3/Qe25lo
e2 —+0

2

(38)

These results follow simply from Eq. (31). Thus if pl is
the solution of Eq. (31) for f =f '"„"=fo, and so
E2 =2M, then multiplying Eq. (31) by pl and similarly
multiplying the pl equation by pl, integrating both and
subtracting we obtain the relation

k, (p, q) = 4
m +4M +2(p +q3)

(39)

X '
1

p+q+m
2pq

1)lg P +q +4M
2pq

(32)

and where Ql(x) are Legendre functions of the second
kind. Note that the kernel kl(p, q) is positive definite for
even l, whereas for odd l it is such only if m (2M,
beyond which it becomes negative definite. It follows,
therefore, that there are no odd-l bound states if m ~ 2M.

The small-f perturbative expression for the two-
particle energy in the Coulombic, p=m/M =0, case has
the general form

where c&, . . . , c4 are constants. Thereupon, the results
(34) and (35) follow from (36) in an obvious manner.

The minimal coupling strength at which binding
occurs has the behavior f'"„"=go"' '(m/M) for small
m/M, where go"'" is the critical coupling at which bind-
ing sets in for the nonrelativistic problem with
the Yukawa potential, —g (e "/r). Recall that
go"' '=1.6798,6.46, 14.2, 25. 1, . . . and go"' '-—(m/2)n
for large n In contrast, w.hen the coupling is strong (i.e.,
for f ))1), the binding energy has a linear dependence on
f, ez-—const Xf. It should be mentioned that when
lLl »1 and f -lM, Eq. (28) is no longer of the Fredholm
type, and so this case must be considered separately.

Equation (28) generalizes in a straightforward manner
for the case of particles of dift'erent masses, M, WMz..
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[Qp'+M/ +Qp'+M' —Z = f
q

M M
2

1 2
(40)

r 4
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1 f 2n

2 n 2l+1
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TABLE I. Critical values of the coupling constant, f'";„"for various values of m /M and (n, 1).

0.144
1.0
2.0

10.0

(1,0)

0.245
2.078
5.14

61.98

(2,0)

1.05
13.709
33.32

224.9

(2, 1)

1.42
30.21

(3,0)

2.71
43.18

107.76
545.6

(3,1)

3.22
99.14

(3,2)

3.62
63.18

162.0
784.2

(4,o)

5.45

ous values of p=m /M. (Note that the f scales in Fig. 1 are different for various p values. ) For m =0,f '"„"=0 and our
numerical results agree at low f (f 0.3) with the perturbative expression (33). The numerical integration for Eq. (31)
at low momenta must be treated with some care for the case m =0, l =0 because of the singular nature of the integrals
in that case. In practice the calculations were done using a small but finite p, typically p & 10 . The Coulombic l de-
generacy of the energy levels for fixed n is seen in Fig. 1 to be only slightly broken by the relativistic effects when p is
small [cf. Eq. (33)],but the degeneracy disappears completely with increasing p.

The order of the energy levels, for given p and f, can vary considerably. Thus, for @=0.144 and f =6 the order of
the (n, 1) levels is as follows: (1,0), (2, 1), (2,0), (3,2), (3,1), (3,0), etc. Yet only a small change in the value of f can induce
a reordering of the 1 sublevels, and there is even complete 1 degeneracy for particular values of f. The situation in this
respect is similar to that which occurs in the nonrelativistic Yukawa problem.

The values of the minimal coupling strength f'"„",at which binding sets in for various states, are listed in Table I. As
mentioned previously, these values depend strongly on the ratio m /M [cf. Eq. (30) for the ground state], and are related
to the corresponding critical constants for the nonrelativistic Yukawa potential.

Figure 2 is a plot of the minimal coupling strength f"„'at which binding sets in for the ground state. This critical
coupling grows monotonically with the mass ratio p=m/M, and the numerical results are seen to agree closely with
the formula (30) for p ~ 0.3.

VI. SPINLESS THREE-PARTICLE EQUATION

The solution of Eq. (25) for an arbitrary number of particles is no less complicated than for the nonrelativistic N
particle problem, and similar methods, such as variational methods, can be used to obtain approximate solutions. For
the case of three equal mass particles Eq. (25) can be written in the form

g[+p i+M'++~&+M'++Z3+M' —E3]4(pi p» P3)=,f, , [k(pi p»q)4(pi —q P2+q p3)
2m q +m

+k(P2 P3 'q) P(PI P2 1 P3+q)

+k(pl P3 q)( (Pi —q P2 P3+q)] (43)

where

k(p„p2,q)=M [(p~ —
—,'q) +M ]

' [(p2+ —,'q) +M ] (44)

and p&+p2+ p3= P =0 in the rest frame.
In this paper we shall consider approximate solutions of Eq. (43) based on the Faddeev formalism [11—13]. To this

end we express the three-particle wave function in the form

P(p„p2,P3) =P(k, p)+P(12)P(k, p)+P(23)P(12)P(k, p),
where k and p are the usual Jacobi momenta such that

(45)

pi —p+ —,
' P, p2 k —,p+ —,P, p3 k —,p+ —,P,

and where P(ij ) is an operator that interchanges particles i and j. Thus Eq. (43) becomes the following equation for the
amplitude P(k, p):

[Q(k ,'p) +M +Q(k—+—,'p) +M ++p +M—E3]P(k,p)—
, f d'~&(k q)[O(q p)+u(-,'q+-.'p q —

—,'p)+O( —
—,'q+-.'p —q —

—,'p)] (46)

where



47 VARIATIONAL TWO- AND THREE-PARTICLE SOLUTIONS OF. . . 1893

(50)

0

p. ~/M
3 ~ 0

for all states. This threshold behavior is essentially the
same as occurs in the nonrelativistic case (see, for exam-
ple, the remarks in Refs. [14,15]). The threshold behav-
ior (50) is immediately generalizable to the N-body case
for short-range interparticle interactions, provided that
this interaction has no anomalous dependence on the en-
ergy.

The case f~f2' „when E2 +2M— (@2~0), and
E3~3M, is of particular interest as this corresponds to
the onset of the so-called Efimov effect [14]. The situa-
tion is dominated by small momenta p, q —+0, and Eq. (46)
becomes essentially nonrelativistic [16], with an infinite
number of weakly bound three-particle states of total or-
bital angular momentum I. =0. The number A' of such
Efimov levels increases as

FIG. 2. The ground-state critical (minimal) coupling con-
stant f";„',as a function of the mass ratio p=m/M. Solid
curve: from the numerical solution of Eq. (31). Broken curve:
the asymptotic expansion (30).

~o 1
JV — ln

e2~0 7T E2
(51)

and the energy levels maintain the asymptotic relation-
ship

(n)/ (n +1) ~ o 5003 3 (52)
M

V(k, q) =
(k —q) +m —,'(k+q) +M

(47)

In the nonrelativistic limit p, k ((M, Eq. (46) reduces to
the usual Faddeev equation with Yukawa interactions,
but written in the potential rather than T-matrix form.
Equations (43) and (46) are in all respects equivalent, ex-
cept that whereas the Schrodinger form (43) is more con-
venient for direct variational solutions, the Faddeev form
(46) is more suitable for various separable or approximat-
ing potential approaches.

Equation (46), for given values of m, M, and f, has a
finite number of bound state eigenvalues, such that
E3 & 3M and e3 =3M —E3 ~ e2 =2M —E2 provided that
F2@0. The ground three-particle bound-state exists if
f )f3 ', where f 3 ';„(f2 ';„,that is, the three-
particle system, with the interaction (47), is more strongly
bound than the two-particle system.

We note that, as in the two-particle case, we can deter-
mine the threshold behavior of the three-particle binding
energy from Eq. (43). Thus the relation (36) generalizes,
for the three particles, to the expression

p G E'3 o G 0 (48)

const

g3 k,P~O k + P +Mg3
(49)

whereupon we obtain from Eq. (48) the threshold law

where G(e3)=[+;Qp;+M —3M+@3] ' is the free-
particle Green's function, and g is the exact solution of
Eq. (43) (ttjo and fo correspond to the case when @3=0).

From Eq. (46) it follows that

1
Vo(k, q) = — dz

(k +q +m —2kqz)

M + —,'(k +q +2kqz)
(54)

Since m «M for the case being considered, it is reason-
able to simplify the short-range part of the potential fur-
ther, by replacing it with its simplest separable approxi-
mation, Vo(k, q), where

Vo(k, q) = 1

(1+k /4M )(1+ /4M )

1 1
X — dz

2k +q +m —2kqz

1 1

(1+k /4M )(1+q /4M ) 4kq

(k+q) +m
(k —q) +m

and where we note that Vo ( Vo ( V (see also Appendix
A). We shall further use the Bateman approximation
[17,18,12,13], in which the kernel Vo(k, q) is replaced by

as in the nonrelativistic case [14],where so = 1.00623 is a
characteristic constant.

In this paper we determine three-particle eigenenergies
numerically, using a monotonic sequence of approxima-
tions to the "potential" (47) in Eq. (46), for the case
m/M =,'40 =0.144((1. In the first place we replace
V(k, q) by the weaker s-type potential Vo(k, q), where

Vo(k, q)= —,
' f V(k, q)dz ( V(k, q), (53)

and where z =p q/pq, that is,



1894 DAREWYCH, SITENKO, SIMENOG, AND SITNICHENKO 47

a sum of X separable forms V~ '(k, q), which, as is shown
in Appendix B, form a monotonic sequence,

V'"& V"'« . . V, & V, & V. (56)

This replacement reduces Eq. (46) to a system of one-
dimensional integral equations that can be solved by stan-
dard quadrature methods.

The Bateman approximation to the kernel Vo(k, p) is
given by

N
V~~'(k, p)= g u„(k)u„(p), (57)

and the corresponding expression for the solution of (46)
1S

1
P(k, p)= g u„(k)$„(p),

n =1

where

(58)

(p)p„(p)— 2 fu„(p,q)P„(q)d q =0, (59)

where

and

u. (Iq+-,'pl)u (lp+ —,'ql)

Ico(p)+co(q)+co(p+q) E3]—(60)

E(kp) , co=(k ,'—p)—+co(k+,'p)—+co(p) .

The functions $„(p)satisfy the following system of one-
dirnensional equations:

gies, e2 and e3,as well as the single I. =0 three-particle ex-
cited state energy e3, that exists for the case
p=m/M=0. 144 and f =0.35972. The results given in
Table II indicate that there is reasonable convergence of
the Bateman approximation with n =3, at least for the
ground states.

Our numerical results indicate that the relativistic
correction to the three-particle energy is not large.
Indeed, when the parameters p and f are adjusted such
that the relativistic and nonrelativistic two-particle ener-
gies are both 2.256 MeV, the relativistic three-particle en-
ergy is about 0.1 MeV below the nonrelativistic value. In
general, for values of the parameters in the vicinity of
@=0.144, f =0.36 we find that e3 (rel) 5 e3 (nonrel).

Figure 3 is plot of three-particle binding energies for a
range of values of the coupling constant f. These plotted
results were obtained using an order, X = 1 Bateman ap-
proximation, since higher order calculations require a lot
of computer time. They are meant to illustrate the struc-
ture for the bound state spectrum of Eq. (46), which is
seen to be similar to that of the nonrelativistic case.

We carried out detailed numerical calculations in the
vicinity of f3;„,and our results confirm the linear
threshold behavior e3/M=83lf f3;„lfor —all three
particle states. In particular, we find that B3-—0.006
with f3;„=0.23465 (p=0. 144) for the ground state.
The constant B3 varies with p, and for small values,

p —+0, 83 —c3@ where c3 =2, whereas f3;„varies
linearly with p.

In the parameter domain when t z~O our numerical
calculations confirm the onset of the Efimov effect. The
number of such excited three-particle levels grows as

uk(q)u„(q)
dk~(P)=6kn —,fd'

K q, p E&—(61)
8,/~

The analysis here is very similar to that of the nonrela-
tivistic three-particle problem I13], except that the propa-
gator has the relativistic form defined by K(k, p).

We have applied the Bateman approximation to the
two-body case discussed earlier in order to check its ac-
curacy. Thus, for the case when f =0.359 72,
e2/M =0.0024 (2.256 MeV) and m /M =0.144 we obtain
1% agreement with the results of numerical quadrature,
using a Bateman approximation of order X =3. The rate
of convergence of the Bateman approximation improves
with increasing p, whereas for p~O, that is, for a long-
range potential, the convergence is very slow, although
this has not been investigated in detail to date. Table II
is a list of ground-state two- and three-particle eigenener-

0 ' 03

0 ' 02

0 ' 01

TABLE II. Three particle binding energies, in the Bateman
approximation of order N, for @=0.144, f=0.35972.

10

1

2
3
"Exact"

16.2
23.52
25.0

1.50
2.47
2.83

1.435
2.11
2.235
2.256

Fig. 3. The ground, (0), and first-excited, (1), three-particle
binding energies as functions of the coupling constant f for
p=0. 144 in the Bateman approximation of order 1. Hashed
curve: two-particle threshold. Inset: details of the behavior
near f=f";„'.
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e2~0. For the first two levels we find that e3/E3 —-660,
whereas for the next pair this ratio is e3/e3*=550,
which is in agreement with the asymptotic formula (52).

agreement with and confirm the analytic approximations
in various limits, such as the weak-coupling limit or the
asymptotic expansion of f;„in terms of the mass ratio
m /M.

The spinless model three-particle integral equation
was recast in the Faddeev form, and was solved approxi-
mately using a separable approximation due to Bateman.
Detailed numerical calculations were carried out for the
case m/M=m /m&=0. 144 and with the coupling con-
stant chosen such that the two-particle binding energy is
close to the deuteron binding energy. For this case the
third-order Bateman approximation, which gives a two-
particle binding energy with 1%% accuracy, yields a
three-particle binding energy of about 25 MeV. Relativ-
istic effects are found to be weak in the three particle sys-
tern for this choice of parameters. Our numerical results
confirm the onset of an infinite series of weakly bound ex-
cited three-particle states (the Efimov eFect) in the
domain where the coupling constant f approaches the
critical value, f"„',at which two-particle bound states
set in.

This paper demonstrates that the variational Hamil-
tonian method is potentially a useful approach in a field-
theoretic description of few-nucleon systems. Although
in this work we have suppressed the nucleon spin degrees
of freedom, this was done primarily to simplify the
mathematics of the present expository work. The full
and explicit retention of the spin coordinates presents no
fundamental difficulties (as has been demonstrated in the
atomic case [5]), although it does make the reduction of
the equations to radial form somewhat more tedious.

It is also a straightforward matter to include various
types of mesonic internucleon interactions (scalar, pseu-
doscalar, vector, pseudovector) by adding suitable terms
to the interaction part of the Lagrangian (1). All the
techniques of the present calculation can be just as readi-
ly carried through in such a more general case, and the
resulting inter nucleon interaction would be modified
from the monotonically attractive Yukawa form [cf. Eqs.
(28), (29), (40), and (47)] to include a short-range repulsive
core (as is needed in a realistic description of the internu-
cleon interaction). It would be of interest to do such a
more general calculation, containing various types of
meson exchange terms in the Hamiltonian, in order to
make a realistic comparison with the observed properties
(energy levels, form factors, etc.) of few-nucleon systems.

Finally, we point out that the present VH approach is
straightforwardly applicable to quasibound states, such
as nuclear excited states, or a nucleon-antinucleon sys-
tem, which decays into rnesons. In the latter case, it is
easy to accommodate a final-state two- (or more) meson
channel into the trial state [cf. Eq. (19)] of the system.
This results in equations that couple the NN and (say) wrier

channels, and the short-lived NN system then appears as
a resonance in the rrir scattering cross section [19].

VII. CONCLUSIONS

The financial support of the Natural Sciences and En-
gineering Research Council of Canada is gratefully ac-
knowledged.

We have used the variational method, within the Ham-
iltonian formalism of quantum field theory to derive
momentum-space relativistic integral wave equations for
a system of N, fermions ("protons") of mass M, and N2
fermions ("neutrons") with mass Mz, which interact via a
real scalar meson field of mass m. The variational ansatz
is a superposition of N, +N2 free fermion states and any
number of free boson states. The variational coefficient
functions in this expansion are shown to satisfy an infinite
chain of coupled integral equations, which are explicitly
written out. In the limit of fixed nucleons it is shown that
this infinite chain of equations can be uncoupled exactly
by means of an ansatz in which the mesonic coordinates
appear as explicit factors. The resulting integral equation
for the fermionic part of the wave function is a
momentum-space Schrodinger-like equation with Yu-
kawa interparticle potentials.

We have, thereafter, considered a spinless model,
which is valid for small momentum transfer among the
nucleons and mesons. The infinite chain of equations
were approximately decoupled for this model, using the
same ansatz which decouples the equations exactly in the
fixed-nucleon limit. The resulting N-"fermion" equation
is shown to reduce to the N-particle Schrodinger equa-
tion, in the nonrelativistic limit, with Yukawa interparti-
cle interactions. In general (i.e., relativistically), the in-
teraction has a nonlocal character at small distances,
r & 1/M, where M is the nucleon mass.

The relativistic two-particle equation was solved nu-
merically to determine the bound-state spectrum for arbi-
trary quantum numbers n, l. We find that the binding is
weaker than in the analogous nonrelativistic case, and
this is corroborated by perturbative expansions of the
two-particle binding energy in powers of the coupling
constant. For massive meson exchange bound states exist
only for values of the coupling constant, f, such that
f &f'"„",where f'"„'~0,as the mesonic mass, m, ap-
proaches zero, i.e, for long-range Coulombic interactions.
For s states, the two-particle binding energy e2 is shown
to have a quadratic dependence on f f'"„",for small-
f f;„,whereas this d—ependence is found to be linear
for l&0. The interaction kernel is such that two-particle
bound states are possible only if m &2M for odd l,
whereas such bound states exist for all m/M values for
states with even l.

For the scalar Coulombic case (p=O, f'"„"=0)we
have obtained asymptotic expansions of the two-particle
binding energy in the domain f «1, for two particles of
equal mass M, and for the case where one of the masses
becomes infinite (i.e. , a fixed center of force). The bind-
ing, in this latter case, is found to be weaker than for the
corresponding Klein-Gordon Coulomb equation.

Our numerical solutions of the relativistic two-particle
equation, which were carried out for various values of the
mass ratio m/M and coupling strength f, are in good
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APPENDIX A
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The kernel (32) of the integral Eq. (31), for states with orbital angular momentum l, has the form
1

k&(p, q)=4M I dzP&(z)/[(p +q +m —2pqz)(p +q +4M +2pqz)],

where P&(z) is the usual Legendre polynomial. We note the following identities:

(Al)

1

( 3 2pqz)—(B +2pqz)

1 1 11+2pqz
A B

1 1 1 1

A B
+—+ (2pqz) +

B
1 1+ + ~ ~ ~

A B

1 (
—1)"

+(2pqz)" +, +
A n+1 Bn+

1 1+ + ~ ~ ~

B (A2)

where A =p +q +m and B =p +q +4~, and

1 ( —1)"
A n+1 Bn+1

1 1 1+-
B

1 + 1 +(—1)"
A n —1B A n-2B2 Bn (A3)

Therefore the kernel k&(p, q) can be represented by the series

k&(p, q) g (p'q')"(d„i)'
n=0

1 1+-
B (A4)

for even I, whereas for odd I we have an analogous expression but multiplied by the factor B —A =4M —m .
The positive definite nature of the kernel k&(p, q) follows from the analogous property of the kernel 1/(p +q +m ).

Indeed, since
'k

1

p +q +m
(A5)

is a series of positive terms, then substituting (A5), and the analogous expansion for 1/8, into (A4), we find that the ex-
pression (A4) has the similar positive definite form,

ki(p, q) gW„f„(p)f„(q), (A6)

where %„0.This establishes the positive definite nature of the kernel (Al) for even values of l. All the above argu-
ments can be applied in the case of odd l given that kI can be written in the form

ki ~(4M —m )nt,

where n&(p, q) is a positive definite kernel.

(A7)

APPENDIX B

We verify that a symmetric, positive-definite kernel K(x,y) is not smaller than its Bateman approximation K (x,y).
The Bateman approximation has the form [12,17]

K (x,y)= g K;(x,s, )K, (s, ,y)/K, (s, , s, ), . (B1)

where

K;+,(x,y)=K;(x,y) K;(x,s; )K;(s;,y)/K;(s;—,s; )

and Ki(x,y) =K(x,y). For a positive-definite kernel of the Hilbert-Schmidt type,

K(x,y) = g P;(x)P;(y),
1

i

where all eigenvalues A, , & 0, we have

1K, (s„s,)=K(s„s,)=g [P;(s;)] &0.
i

Thus the first-order Bateman approximation yields a positive-definite kernel.

(B3)
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In a similar fashion,

K2(sg, sg) —K(s2, $2) [K(s1,s2)] /K($1, $1)

[i'( ($1 )pj(sp ) +pj2($1 )pi ($2 ) —2p;($1 )p| ($2 )ilj) ($1 )$&(s2 ) ]
S1,S1 ',j i j

[Pi($, )gj($2) Pj(—$1)gi(sz)] )0,K($„$,)
which demonstrates the positive-definite nature of the second-order Bateman approximation, since

(B5)

(P,K2$) = J d'«'y P(x)K&(x,y)P(y) = g cr'; — g tz;P;($1)
1 2 1 1

i 1 Slsl i i

[a;P (s, ) —u P, ($1 )] )0 ,
I 1 i j i j

(B6)

where a; =p, ($1)Jd x p(x). Thus the positive-definite nature of Kz(x,y) follows from that of K1(x,y). By induction,
using the recurrence relation (B2), it follows that all kernels K;(x,y) are positive definite. Thus, all K;(s;s;) being posi-
tive, the bilinear form (Bl) is positive and increasing so that increasing the order jV of the Bateman approximation in-
creases the kernel K monotonically. From this it follows that E increases monotonically to E, i.e., E (E.
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