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Calculation of the moment of inertia by a proper treatment of pairing correlations
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It was recently reported that the well-known discrepancy between theoretical values of the moment of
inertia and observed ones could be removed by a number-projection technique for the BCS states. To ex-
amine this problem, the exact calculation of the moment of inertia in the cranking model is performed in
the ' Dy isotope as a typical example. The Richardson method is applied to the exact treatment of the
pairing correlations and recurrence formulas for computing various matrix elements in the cranking
model are developed. The numerical results in ' Dy indicate that the exact treatment hardly improves
the BCS values of the moment of inertia and that the discrepancy with the observed values cannot be re-
moved by the correction for the number nonconservation in the BCS wave functions.

PACS number(s): 21.10.Re

I. INTRODUCTION

It has been well known that the theoretical values of
the moment of inertia obtained with the cranking model
are systematically smaller than the experimental ones by
a factor of 10—40% [1—4]. Many efforts [5—7] have not
decisively succeeded in reducing the discrepancy between
theory and experiment. The theoretical moment of iner-
tia is usually calculated by the BCS treatment of the pair-
ing degree of freedom but the pairing correlations play a
leading role in reducing the rigid rotor value of the mo-
ment of inertia to the observed one. It is therefore neces-
sary in the discussion on the above discrepancy to evalu-
ate the error originated in the BCS approximation. How-
ever, this study has not been completed yet, because the
exact diagonalization of the pairing Hamiltonian is im-
practicable due to a numerous amount of single-particle
levels in deformed nuclei.

Recently, Allal and Fellah [8] studied the effects of
nonconservation of the particle number in the BCS wave
functions on the moment of inertia. They concluded
from their calculations that the discrepancy in the mo-
ment of inertia between theory and experiment is due to
the number-nonconservation effects of the BCS treat-
ment. Yet their calculations are based on a method of
successive projections of the BCS states and they have
not carried out any direct comparison with exact calcula-
tions.

On the other hand, we had a preliminary result in a
schematic model different from the conclusion of Allal
and Fellah about the BCS error in the moment of inertia.
The purpose of this paper is to investigate in a realistic
case how much the moment of inertia calculated by the

exact treatment of the pairing correlations is different
from the BCS one and whether the discrepancy between
theory and experiment is really due to the error of the
BCS approximation.

The exact solution of the pairing Hamiltonian with a
constant force strength can be accomplished by the
Richardson method [9]. The Richardson method re-
quires much smaller dimensions than the diagonalization
method (the shell model) and is suitable for obtaining the
wave functions and energies of the pair-correlated eigen-
states. The calculation of the moment of inertia is then
reduced to that of the matrix elements of the angular
momentum J between the pair-correlated states in the
cranking model. The computation of these matrix ele-
ments is difFicult for the shell model approach because of
its large dimensions. Alternatively we present manage-
able and useful recurrence formulas for computing the
matrix elements of J„using the Richardson solutions.
We are thus able to obtain the exact value of the moment
of inertia in the cranking model.

In this paper, we carry out numerical calculations of
the above-mentioned exact treatment in the ' Dy isotope
as a typical example of deformed nucleus and compare
the exact results with the BCS results in order to examine
the error of the BCS approximation. Furthermore, we
investigate the contributions from the fluctuations of the
static pairing field (i.e., the pairing vibrational excita-
tions) to the moment of inertia which are not included in
the usual BCS treatment.

II. FORMALISM

In the cranking model, the moment of inertia is given
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where
I gr ) and

I
ex ) denote the ground and excited states

with the energies Eg, and E,„, respectively. The matrix
elements (j„)„arethose of the x component of the angu-
lar momentum (J ) between the single-particle states pcs
and vo ( a. =+ denoting the signature).

The nucleon creation operator c can be expressed in
terms of the pair operator S:—c +e and unpaired-
nucleon operator a =c ( 1 —c c ) [10]:

ct =at +erst~ (o =+) (2)

—a„a s„)ls"~ y=o))
and hence the excited states lex) in Eq. (1) can be written
as

)[p ]y & =a„'.a'„.- Is'" ""[pv]y » (4)

where IS'" ' [v,v2 . v ]y )) are pair-correlated
states of ( n —m ) /2 pairs ( n being the nucleon number
and m being the number of unpaired nucleons) and y is
the quantum number denoting the order of energy
(y=0, 1,2, . . . ). The notation [v,v2 . v ] means that
the single-particle levels v)v2 . v in the bracket [ ]
cannot be occupied by S due to the occupation by a . In
this notation, lgr) is obviously IS" y=0)). The trans-
formation (2) is, in a word, the number-conserving ver-
sion of the Bogoliubov-Valatin transformation. After the
transformation (2), our task is to determine the pair-
correlated states IS" y =0)) and IS'" ' [pv]y )) in-
stead of the BCS mean field (the quasiparticle vacuum).

In the subspace excluding a, the pairing Hamiltonian
with a constant force strength G is written as

Hs = g 2EQ g Gg S—„S (5)
V PV

where e denotes the single-particle energies. The com-

%'hen we consider only the pairing correlations as the re-
sidual interactions, the ground state lgr) does not con-
tain the unpaired-nucleons a but contains only the
pairs $ in the expression (2). The states excited by the
operator J from lgr) are the states with two unpaired
nucleons a a

J„lgr) = g (j„)„(at+a t S,

Is"[v,v, ]y » / S'(z~[v, v, . . . ])Io& (7a)

I (z([v,v~ . ])= s'.
v(W)v v . . 2~v Zi

1 2

(7b)

where z,r (i = 1,2, . . . , X) are the solutions of a set of the
equations

VXV V
1 2

N —1=—+
j(+ ) Z~~ Z

The energy of a state (7a) is the sum of the solutions z;~,

N

E(S [v,v, . ]y)= yz~

The solutions z;~ are generally a complex number but
every complex solution has its complex conjugate one.
Hence the energy (9) is always a real number. The ener-
gies of the states lgr) and Iex(o )[pv]y ) appearing in Eq.
(1) are given by

E,„=E(S""y=O)

E,„( )(„) =e„+e + E (S'" )i [pv]y )

( 1oa)

( lob)

The remaining task is to calculate the matrix elements
(exl J lgr), which are reduced to

( ex( o ) [pv]y IJ„I gr)

=(j.)„.(&s'"-""[p ]yIs, —s„ls""y=o»

i.e., the matrix elements of the pair operator S between
the pair-correlated states.

The matrix elements of S can be calculated by combin-
ing the eigenstates (7) with the commutation relation (6)
in the following way:

mutation relation of the operators S and S within the
subspace excluding a is given by

[S„,s„]=5 „(1—2SQ, ) (6)

Richardson [9] proved that the eigenstates of the pairing
Hamiltonian (5) are obtained in the following way:

1 1 N —1 N —2
& ol ~ s( g [, ,])s„~s'(,')Io) = g —,g —,( ol ~ @(,&[, ,])s.' g @'(,') Io &

2g —zl 2E j i (Wlm)

1 1 N —1 N —2

&ol g @ j[
j i (Wlm)

(12)

The matrix elements of S in the right-hand side of Eq. (12) are similarly reduced to those of S,
N —1 N —2

1 1 N —3 N —2
&ol ~ z(, [, ,])s„' ~ z'(,')lo& =g, g —,«I Q ~(, [, ,])s. H &'( )lo&

j i (~1m) p 2' p v v q j(&pq} i (%1m)

1 1 N —3 N —2—2g, «I ~ +(,&[, , ])s„+ &'( ) Io & (»)
p (q 2+@ Zp 2~p Zq j{+pq) i (&lm)
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Repeating the procedures (12) and (13), we finally reach the simple matrix elements

&Ols, x'(z,') lo& =
2Ep z;

(14a)

& Olz(zj'[v, v, ])S„'lo&
= 1

(p&v„v2) .
26 ZJ~

(14b)

We can regard Eqs. (12) and (13) as a set of recurrence formulas starting from the initial values (14a) or (14b).
We are thus able to calculate the matrix elements (11) and the moment of inertia (1), if we get the solutions z, and zJ'

by solving the Richardson equations (8). The normalization of the eigenstates (7) is presented in Richardson s paper. If
we want, we can alternatively evaluate the normalization constant by changing it into

1 N —1 N

&Ol g ~(.)'[, , ])g @'(.,'[, ,])10& = y & Ol ~ ~(;)'[, ,])S.g ~'(.,'[, ,])IO& . (15)
j i tv&v2 2~~ z

$ j(A1) i

The right-hand side of Eq. (15) can also be calculated by
the recurrence formulas (12)—(14).

Our exact method of calculating the moment of inertia
has an advantage that the Richardson equations (8) re-
quire only small dimensions in comparison with the shell
model (the method of diagonalizing the Hamiltonian ma-
trix). In the case of 20 nucleons distributed to 23 levels
which is considered in the next section, for instance,
the number of independent basis states is
23!/(10!13!)=1144066for the ground state lS" y=O»
and is 21!/(9!12!)=293 930 for each excited state
lS'" ' [pv]y », and the number of the matrix elements
(11) is 1144066X293930. The shell model approach to
such a large dimensional problem is impracticable even
for the latest model of computer. This is the reason why
the exact examination has not been performed on the
problem of the moment of inertia. In contrast to this,
our exact method is applicable to a considerably large
space of the single-particle levels. The Richardson equa-
tions have no problem with the dimensions. When calcu-
lating the recurrence formulas (12)—(14) in the case of 20
nucleons in 23 levels, we encounter the largest matrix
such as &Ol+ $(z~r[pv])S +;4 (z; )l0&, in which the
number of the different combinations of & Ol Q 4(zJ'[pv])
for fixed pv is 126 and the number of the different com-
binations of /f6' (z; )l0& is 210. Thus the exact calcula-
tion of the moment of inertia becomes possible in a
significantly large space of the single-particle levels,
which enables us to compare the BCS results with the ex-
act ones.
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served values of the moment of inertia. Our recurrence-
formula method is capable of treating the single-particle
space which is significantly large enough for comparison
with the BCS method but still requires a limit to the di-
mensions on computation at present. Hence, we adopt
two types of single-neutron spaces 2 and B illustrated in
Fig. 1 for the exact calculations: A consists of 16 levels

III. NUMERICAL RESULTS IN ' Dy

We have carried out numerical calculations in ' Dy as
a typical deformed nucleus. We have fixed the single-
particle states in the same manner as Nilsson et al. [11],
using the parameters a=0.245, ~=0.0637, p=0.420, and
@4=—0.015. The matrix elements (j„)„have been ob-
tained for these single-particle states. Obtained energy
levels of the single-neutron states are shown in Fig. 1.

The number of the single-particle states considered in
the calculations must be large for comparison with ob-

7/2
7/2
5/2

1/2

FIG. 1. Energy levels of the single-neutron states in ' Dy
calculated in the same manner as Nilsson et al. The parameters
used are shown in the text. The space of the single-neutron
states is truncated in the three different ways: (A) 16 levels
with 16 neutrons; (8) 23 levels with 20 neutrons; (C) 38 levels
with 30 neutrons.
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with 16 neutrons and B consists of 23 levels with 20 neu-
trons. The space C composed of 38 levels with 30 neu-
trons is also considered in the BCS calculations.

Nilsson et al. [11] used a pairing force strength de-
pending on the proton and neutron numbers. In this pa-
per, we vary the pairing strength G so as to reproduce the
same value of the gap b, =

GURU

V„(V being the occu-
pation probability and U =+1—V ) in the truncated
spaces 3, 8, and C. We employ the value 6=0.934 MeV
as a standard for neutrons of ' Dy which is obtained by
Ma and Tsang [7]. Namely, fixing G so as to reproduce
5=0.934 MeV in 3 and B, we solve the Richardson
equations and calculate the moment of inertia.

In the BCS treatment we make two types of calcula-
tion: one includes the self-energy term —GV in the
quasiparticle energy Q(e —

A,
—GV ) +b, and the oth-

er does not include it. (Note that the self-energy term
—GV is omitted in the usual numerical calculation. ) We
call the former the BCS1 approximation and call the
latter the BCS2.

The fluctuations of the pairing mean field (i.e., the pair-
ing vibrations) are not taken into account in the BCS cal-
culation of the moment of inertia. Similarly we first
neglect the pairing vibrational excitations with y &0 in
the excited states

~

ex) =
~
ex(o )[pv]y ) when exactly cal-

culating the moment of inertia, i.e., we approximate Eq.

(1) to

/&ex(o. )[pv]y=o/i„/gr) f'
2O= 2A'

ex(o. )I pvjy =0 gr
(16)

Contributions from the excited states with y &0 will be
discussed in the next section.

Figure 2 illustrates the gap 6 and the moment of iner-
tia So which are calculated by varying the force strength
G in the three truncated spaces A, B, and C. The results
of our exact method (the solid lines) are compared with
those of the BCS1 (the chain lines) and the BCS2 (the
broken lines). This figure indicates that the exact value of
Jo is smaller than both the values of the BCS1 and the
BCS2 for a fixed value of A. In other words, the
number-conserving treatment of the pairing correlations
never enlarges the BCS values of the moment of inertia
by a factor of more than 10% in our case.

In detail, the value of the moment of inertia calculated
for a Axed 6 gradually increases as the single-particle
space is extended. However, the truncation of the space
does not seem to harmfully damage the discussion about
the comparison of the calculated moment of inertia be-
tween the exact method and the BCS. The BCS2 approx-
imation brings the lines of the moment of inertia closer to
the exact lines than the BCS1, but the difference between

1.0-

n

07-

0.15

C //

0.20

1.0—

0.9

0.15

/

C /

/
i

/
/

/ /l

O. 20

r
A

16-

12- A' +

E

0.15 O. 20

I

0.15 0.20

FICx. 2. The gap 6 (MeV) and the moment of inertia Zo
(R MeV '

) calculated for neutrons of ' Dy. The results of our
exact method are denoted by the solid lines. In the BCS treat-
ment, the self-energy term ( —GV ) is included in the chain
lines (BCS1) and is neglected in the broken lines (BCS2). The
notations A, B, and C mean the same truncated spaces as in Fig.
1 and G (MeV) is the pairing force strength.

FIG. 3. The gap 6 (MeV) and the moment of inertia go
(A MeV ') calculated for protons of ' Dy. The single-proton
leve1s are arranged at equal intervals in order to make the nu-
merical solution of the Richardson equations easier. The space
is truncated in the three different ways: (3') 15 levels with 16
protons; (B') 24 levels with 20 protons; (C') 42 levels with 36
protons. The solid and broken lines denote the results of the ex-
act and BCS2 calculations, respectively.
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the BCS1 and BCS2 results becomes smaller as the
single-particle space is extended. If we regard Fig. 2 as
the relation of So to b„ the exact value of the moment of
inertia becomes more smaller than the BCS2 value. The
calculated lines of 5 suggest that the exact distribution of
the pairs S in the ground state

~
gr ) is in an intermediate

situation between the BCS1 and the BCS2.
To check the above results, we have carried out similar

calculations for protons of ' Dy. Because our numerical
solution of the Richardson equations fails in a few
specific configurations unfortunately, we have artificially
arranged the single-proton levels at equal intervals. The
obtained results are shown in Fig. 3, where the exact re-
sults (the solid lines) are compared with the BCS2 (the
broken lines). This figure is very similar to Fig. 2 and
also insists that the exact method hardly brings about a
larger value of the moment of inertia than the BCS.

Accordingly we can say that the BCS calculation of the
moment of inertia is a fairly good approximation to the
exact calculation of So, contrary to the conclusion of Al-
lal and Fellah [8). The discrepancy in the moment of in-
ertia between the BCS calculation and experiment may
not be removed by the number-conserving treatment of
the BCS wave functions.

0 5-

2 3 5 7 10 20 30 150 300

FIG. 4. Sum of the contributions from the excited states with

y & 0 to the moment of inertia in the neutron truncated space A.
The single-neutron levels are arranged at equal intervals in or-
der to make the numerical solution of the Richardson equations
easier.

IV. DISCUSSION

The calculations in the previous section do not
include the contributions from the excited states
~ex(o)[pv]y &0) with the pairing vibrational excitations
to the moment of inertia. From the cranking-model for-
mula Eq. (1), these excited states with y) 0 apparently
contribute to S by the positive sign. It is a problem how
much the total sum of their contributions is. Let us
define the contributions from a set of the states
~ex(o )[pv]y ) with a fixed y to S such as

~
(ex(o ) [pv]y ~ J„~gr ) ~'

bS =2k'
p~~ ex(o )[pv jy gr

(y&0) . (17)

To find a clue to discussion, we have calculated the
contributions from the three sets of states containing the
lowest three pairing vibrations (y= 1, 2, and 3) in the
neutron truncated space B. The results are
aS~=i/SO=0. 67%, bSr=2!So=0.05%%uo, and AS& 3/So
=0.15%. We can expect that b J becomes smaller as y
increases because the excitation energy in the denomina-
tor of Eq. (17) becomes larger. However, the number of
the pairing vibrational states with fixed pv amounts to
293 929 in the space B. So we should still estimate the to-
tal of the contributions gzb, S&.

Although our recurrence-formu1a method is much less
time consuming than the shell model, its computation is
impracticable for such a huge number of states
(293929X(number of combinations [pv])). Therefore we
have calculated A2& up to y =300 in the smaller space 3
(in which the maximum y is 3432 and the number of
combinations [pv] is 120). We have furthermore
simplified the single-neutron levels to be at equal intervals
in order to make the numerical solution of the Richard-
son equations easier. The calculated values of g AS are

plotted as a function of y in Fig. 4. In this figure, the
sum g 5J /So almost reaches its maximum value be-
fore y=30 and hardly changes after y=30. This sug-
gests that the corrections hS may be negligible for
y) 300. We can say that the total sum gzhS /So is
only 1% at most. Figure 4 also teaches us the overwhelm-
ing importance of the lowest few pairing vibrations,
namely, g &3b,S is about 80% of the total correction.

Combining the value g &3b,S~/So=0. 87% in the
space B with Fig. 4, we conclude that the total correction
factor of all the excited states with y )0, gr & oh S~/So is
no more than 1 —2%. This increase in the calculated mo-
ment of inertia cannot compensate the discrepancy be-
tween theory and experiment by a factor of 10—40%.

In conclusion, our exact treatment of the pairing corre-
lations in ' Dy indicates the fair goodness of the BCS ap-
proximation regarding the moment of inertia. A11al and
Fellah's conclusion that the discrepancy in the moment
of inertia between theory and experiment is due to the
nonconservation of the particle number in the BCS wave
functions is not certain and should be examined further.
We should also investigate another origin of the
discrepancy instead of the ambiguity of the BCS approxi-
mation. If it is not hopeful to readjust the parameter set
within the conventional framework of a deformed poten-
tial (including various terms) plus the pairing correla-
tions, we should search for residual correlations which
have not been considered previously.
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