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Effectiv interaction of three resonantly interacting particles and the force range
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The effect of the force range ro on an effective long-range interaction in a system of three resonantly
interacting particles is considered. By employing a boundary-condition approach, it is explicitly shown
that the account of the force range gives rise to a correction ro/R in the effective long-range interac-
tion. The correction is universal (i.e., independent of detail structure of the force), and is attractive for
symmetric 0+ three-particle states. The effect of the correction on the well-known correlation between
the three-particle binding energy and the particle-pair scattering length is calculated.

PACS number(s): 21.45.+v, 25.10.+s, 03.65.Nk

I. INTRODUCTION

As of today, a great variety of models for the nuclear
forces have been used in calculations of low-energy prop-
erties of the three-nucleon systems. Despite the
differences in the models, the calculated properties
display a universal pattern [1—3]. For example, if two
models give rise to close values for the triton binding en-
ergy, the values of other observables turn out to be close.

It is natural to think that the universality, i.e., the in-
dependence of results on details of forces, is due to the
fact that at low energies, with the wavelengths greatly
exceeding the force range, the details cannot be dis-
cerned. Under these conditions only a small number of
force parameters are significant, and these parameters
determine all totality of low-energy properties of a three-
particle system.

An approach can be developed that enables one to ob-
tain the universal properties of a three-particle system
directly, without any recourse to specific models of
forces. Although this approach, the so-called three-
particle zero-range theory, was introduced long ago [4,5],
it was not used often until recently, because its physical
meaning was not sufficiently clear [3]. Subsequent studies
[6,7] made the physics rather clear and prompted a re-
vival of interest in the subject. A number of interesting
universal properties of the three-nucleon systems have
been revealed and explained [2,3,8,9].

The zero-range theory is only a first approximation to
the description of the universal properties. It can be
shown that a correction, linear in the force range ro, is
also universal [3]: deviations from the universality start
only in the quadratic approximation. Therefore, a next
natural step, as far as the universal properties of three-
particle systems are concerned, is to calculate the linear
correction. The present paper addresses this problem.

The linear correction was first considered in Ref. [10],
with a result formulated as an integral equation for the
correction. Due to the revival of interest in the subject,
we recently revised the problem and showed that the
correction can be found explicitly [11]. By this we mean
that it can be expressed in terms of wave functions of the

II. EQUATIONS AND BOUNDARY CONDITIONS

We consider the three-body problem subject to the fol-
lowing conditions:

where ro is the force range, E is the energy of the system,
and a is a typical momentum of a loosely bound (or virtu-
al) s state of two particles. The a is equal to &e (or —&e
for the virtual state), where —e is the energy of the state.

For the two-body case the solution of this problem is
well known [4,12]. Under conditions (1), only s-wave
forces are of importance. The s-state wave function can
be found by solving the free Schrodinger equation

d2 +E rg=O
dI'

(2)

subject to the boundary condition
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zero-range theory. We also suggested that physics of the
correction involves a modification of an effective long-
range three-nucleon interaction 1/R existing in the
three-particle systems under conditions of the zero-range
theory, by a singular perturbation ro/R .

In the present paper we give another independent
derivation of the linear correction. We perform our cal-
culations in the coordinate space, which enables us to re-
veal the origin of the perturbation ro/R in detail. This
procedure has a clear advantage over that used in Ref.
[11]where the analysis was performed in the momentum
space and where only the answer was indicative of the
ro/R form of the correction.

Since the aim of the present paper is to elucidate the
physics of the correction and because the spin and isospin
degrees of freedom seem not to bring new features [11],
we restrict our consideration to the case of spinless parti-
cles. The particle masses are assumed to be unity.
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where the right-hand side is considered as a small pertur-
bation. It can be readily verified that the well-known ex-
pression for the scattering amplitude,

f (k) = —(a+ik)
2 a+ik (4)

(where k =&E ), follows from (2) and (3). Employing the
standard relation between the scattering amplitude and
the phase shift, one can also check that ro is the effective
range of two-body scattering. At ro=0 Eqs. (2)—(4) are
the basic relations of the Bethe-Peierls zero-range theory
[12]; the terms proportional to ro constitute a linear
correction.

A similar approach for the three-body problem was
developed in Ref. [6]. The leading approximation in ex-
pansion parameters (1) is formulated as follows. The wave
function is written as a sum of three terms. For the most
interesting case of the symmetric S state

X( 12 P3 ++( 23 Pl)+X( 31 P2) (5)

where the coordinates r, 2,p3 are defined as r,2=r, —r2,
p~=(2/&3)[r3 —

—,'(r, +rz)]. The other coordinate sets

r23 p, and r3} p2 are obtained by permutations. The wave
function y is found by solving the free Schrodinger equa-
tion [cf. Eq. (2)]

a2 a2
2

+ +E rpy=0
ar ap

subject to the boundary condition [cf. Eq. (3) for ro =0]

(6)

a +0. r+=0 .
r=o

The states with other symmetries and angular momenta
are considered in a similar way.

The comparison of expressions (2) and (3) with (6) and
(7) makes it plausible that the account of a correction
linear in expansion parameter (1) can be taken by
modification of boundary condition (7) by a perturbation
proportional to ro.

a
+CX

ar
ror%=

o 2

a2 +a
a 2

r=0
(8)

a 8~„+a Xo+ — Xo
r=o 3P

V'3p

2 '2

a'
2+a

ar
(10)

We show in Appendix A that condition (8) indeed holds.
The formulations of the two- and three-body problem
turn out to be similar, the latter being more complicated
due to the additional variable p.

Denoting the function rpg by go and substituting
decomposition (5) for %' into (8), we finally obtain the
equation and boundary condition for the three-body case:

(b, +E)go=0,

where 5 is the two-dimensional Laplacian. In deriving
(10) we used the fact that at r &z

=0 one has
r23 =r» =&3P3/2 and p, =p2=p3/2. We also took into
account that, being an even function of ri2, the sum of
the last two terms on the right-hand side of (5) does not
contain terms linear in r&2. From the definition of go we
have another boundary condition,

go(r, O)=0 .

In addition to (10) and (11), there is one more boundary
condition, involving small distances r,&-ro between all
three particles [6]. To impose it, a radius R is introduced
according to R =

—,'(r&2+rz3+r» )=r +p The. close
approach of three particles corresponds to R -ro. The
boundary condition is imposed at RO=Cro, where C is a
sufficiently large arbitrary number such that the wave
function at R =R o has reached an R » ro asymptotic
form. On the other side, R o is chosen such that
Ro& E~ &&1 and Roa &&1. The leading asymptotic be-
havior of yo in this region of R is [13]

yo ~ sin[
~ so ln(R /R o ) +b;„] (12)

III. LINEAR CORRECTIONS
TO THE BINDING ENERGY
AND SCATTERING LENGTH

The small perturbation on the right-hand side of
boundary condition (10) gives rise to corrections to vari-
ous three-body quantities. In this section we derive linear
corrections to the three-particle binding energy and
particle-pair scattering length.

We start with the binding energy. We write the energy
and the bound-state wave function in the form
E =Eo+&E go=go +go", where 6E and go a
corrections proportional to ro. For yo

' and yo" we have
from (9) and (10)

(we omit the dependence on the other variables), where
~so is a certain known number, and the phase 5;„is
determined by the interaction of three particles at small
distances r,&

—ro. Since we only deal with the
configuration space R & Ro, the phase 5;„is a parameter
of our theory. The boundary condition referred to sets a
certain fixed value for the phase 5;„or,equivalently, for
the logarithmic derivative of yo with respect to R at
R =Ro.

As long as we restrict our consideration to the linear
correction, the energy dependence of the phase 6;„canbe
neglected. Indeed, let us expand b,;„in powers of ro& ~E~.
The leading term is of order of unity. The estimate for a
first correction is roE because the Schrodinger equation
at R &Ro contains only an integer (first) power of E.
The correction is seen to be quadratic in ro and can
therefore be omitted. Thus, the phase 6;„is an indepen-
dent three-body parameter which, like the two-body pa-
rameters e and ro, determines the solution of our three-
body problem.
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(~+E, )y,("=0,
a 8~(0)+ ~(o) p p 0
ar , ' v'3p ' 2

' 2

(a+E, )q,("= —SEq,'",

(13)

(14)

(15)

ary conditions (14) and (16). As a result, one can obtain
an explicit expression for 6E.

In our problem this approach does not work directly.
The reason is that the normalization condition for yo has
a nonstandard form. To see this, consider the normaliza-
tion of %. According to (5),

+aa
Br

(()+ 8 (i) + p p
r=O P

ro

2

a2
+ca

Br r=0
(16)

According to the standard methods of solving the
boundary-condition problems, Eq. (15) should be multi-
plied by po

' on the left and integrated over r and p at
R )Ro. The integral should then be transformed so as to
make the Laplacian operate on yo

' instead of go". Equa-
tion (13) is used to calculate the result of the operation.
Combinations of the boundary values of the functions
yo ', yo", and of their derivatives, which arise in the
course of the transformation of the integral, should then
be expressed in terms of the perturbation by using bound-

&+I+&=3&+Ix& . (17)

Since at R )Ro the function y depends only on the
length of the vector r, the contribution from the distances
R )Ro to (17) contains only the projection of 4) onto the
s state of a pair. Introducing the projection operator Po
onto the s state and defining Vo=rpPQV, we obtain that
the normalization at R & Ro is determined by the integral

f dr dp%o(r, p)yo(r, p) (18)

instead of the standard expression Idr d pro.
The normalization (18) will be used in our derivation of

|)E. We multiply Eq. (15) by %o ' on the left and then fol-
low the standard approach. This modification proves to
be enough to derive 5E. After integration over r and p at
R )Ro and transformation of the integral we have

ggy(0) (&)

dr dpi''"(b+E )'P' '+ f dR
r=0

(0) (&)

+R dP
/2 ~+0 ~SO

oE f —dr dp (p")y(o',0 aR
(19)

where a polar angle P=arctan(r/p) is introduced I14].
The integral over two boundaries appear as a result of
transformation of the initial integral. Boundary condi-
tion (11) was also used. The result of applying the opera-
tor b, +Eo in (19) to the function %o( ' can be found from
Eq. (13) and relation (5). The calculation is done in Ap-
pendix B, with the result

' f "dR y,")—
0

a2
2 ~(0)

Br r=o
(21)

I

Using also boundary conditions (7) and (16), as well as the
fact that ('po ')„o=(go')„o,we find that the sum of the
first two terms on the left-hand side of (19) is equal to

(~+E,)e,(o)=—,(e,")), ,S 13——
3R

(20) It is directly expressible in terms of the boundary-
condition perturbation. For the shift 5E we have

(&) (0)

+R()f dP 'Po
m/2 (0) ~+0 ~+0

r=O

f dr dp q/(o)y(o)
0

a'
(r /2) dR y(o) +a2 y(o)

0 R 0 0

(22)

The meaning of the second term in the numerator becomes clear if one compares Eq. (22) with the standard
quantum-mechanical expression for the energy shift. Suppose one solves a two-dimensional problem with a potential
Vo(R) perturbed by another potential V, (R), such that both potentials operate at R )Ro, and with an energy-
independent boundary condition imposed on the logarithmic derivative of the wave function at R =Ro. The energy
shift for this problem is

dF'" dI'' '
dR RV (R)(/( ') +R

dR dR

f "dR R (E(o))'
R0

R =R0
(23)



47 EFFECTIVE INTERACTION OF THREE RESONANTLY. . . 1879

a2
(r /2) f dR x' — +a

0 Br

f dr dp )Ii(0)X(0)
0

r=0
(24)

The normalization integral in (24) can also be expressed
in terms of Xo

' (Appendix B). The question, what form
of the perturbation V, (R ) this shift corresponds to, will

I

where F' ' is the wave function for the potential VO, and
F"' is the wave-function correction proportional to the
perturbation V&. The presence of the second term in the
numerator is due to the fact that the logarithmic deriva-
tive of the wave function at R =R 0 may be given an arbi-
trary small variation. If one chooses not to change it, the
second term disappears, and the standard expression for
the shift 5E comes out.

The origin of the second term in the numerator of Eq.
(22) appears to be the same, although its form is more
complicated due to the dependence of the wave functions
on the polar angle P. If we are not interested in the ener-

gy shift due to a variation of the boundary condition at
R =R p this term can be omitted. As a result, we have
for the shift

be answered later.
Now we proceed to the second part of this section, the

derivation of the shift of the particle-pair scattering
length. For this case E = —e . The equations and
boundary conditions for yo

' and go" have the form

(a—a')X,"'=0, (25)

(0)+ (0) P
ar ' v' ' 2 '2

r=p 3p

(b, —a')X'"=0,

=0, (26)

(27)

+ea
Br

+3p
()

r=o P

rp

2

82 +a
Br r=p

(28)

Employing the method described, we multiply Eq. (27)
by 40 ' on the left and integrate over r,P from Rp to R,
where R is a certain large radius much greater than the
extent of the bound pair a '. We will tend R to infinity
in the end of the derivation. After transformation of the
integral and use of the boundary conditions, we obtain

rp R ()2
dR g' ' — +o.

Ro Qr r=0

(0) (1)

fo BR BR
n/2 ()q 0 ()) (p) ~XO

g@(0) (&)

=R dP Xp
—q'0

7T/2 p (~) (p) XO

0 BR BR R =R
(29)

We show now that the integral on the right-hand side
can be expressed in terms of the shift of the scattering
length. Indeed, at R =R we can use large-distance ex-
pressions for the wave functions in the integrand. The
form of yp at large distances between the particle and the
pair is determined by the particle-pair scattering length, v'3P —A 0 exp( ar), — (3l)

I

to simplify the calculations. Writing A in the form
A =Ao+5A, where 5A is the scattering-length shift
proportional to ro, we have from (30) for the asymptotic
forms of go

' and yo":

3p
2

—A exp( —ar) . (30)
Xo '= —5A exp( —ar) . (32)

Here exp( —ar) is proportional to the wave function of
the pair, 2 is the scattering length, and &3P/2 is the rel-
ative distance between the particle and the pair, accord-
ing to our definition of p. The particular choice of overall
normalization in (30) is not important and was made so as

I

Due to the fact that these functions rapidly decrease with
r, the integration over P on the right-hand side of Eq. (29)
involves only a narrow strip P~(Ra) '. In this region
the second and third terms of decomposition (5) are ex-
ponentially small. For +0 '=go ' the integral becomes

gqI(0) ()) (0) ())

xo —q'o
~

= «
~ xo —xp()) (p) 0 (o)

0 BR 0R R —R 0 Bp Bp
(33)

Substituting expressions (31) and (32), we obtain —(V3/4)(5 A /a), in accordance with our claim.
Thus, the shift of the scattering length is

5A = —r()a dR X()
— +a X()

(o) () z (o)
Ro Br

g~(&)
+ R,a f"dP eo(0)

v'3 '
o

' aR

(0)aq'0 (1) (34)
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The integral over P has the same origin and structure as
that in Eq. (22). In fact, these two integrals are directly
related to one other. Since the energy E in the
Schrodinger equation can be neglected at R-R0, the
functions %p(

' and yI)" in both integrals are the same (to a
numerical factor). Hence the integrals themselves differ
only by a factor. If the integral in (22) is omitted, the in-
tegral in (34) must be omitted also. Tending R to infinity,
we finally have for the shift of the scattering length

2

5A = r()a dR yp
— +a yp

2 (p) B 2 (p)

3 Ro Br
(35)

r=0

If one chooses another normalization of asymptotic form
(30), expression (35) needs to be divided by the square of
the normalization coefficient.

It is worth noting that expression (24) and (35) for oE
and 6A are consistent with one another. The shift 6E is
determined by an average of the perturbation operator
over the bound-state wave function, accordingly, the shift

d' d
RdR

Isol' F' '(R)=E F' '(R) .
R 0 (36)

To find the form of V, (R), we rewrite the matrix ele-
ments in (24) and (35) using Eqs. (13) and (25) for yp(

the distances of interest, ro «R «a ', we employ the
above factorization of the wave function and Eq. (36).
We obtain

6A involves the average of the same operator over the
scattering wave function.

The rest of this section concerns with the form of the
perturbation V, (R). The form of the interaction Vp(R)
is well known [6,7]: at the distances rp «R «a ' it is
an attraction of 1/R type with a known strength lspl .
The wave function go

' factorizes in this region,
gp '=F' )(R)(l)(P), with the radial wave function F' '

satisfying the equation of motion with the potential
Vp(R ):

fdR y,") CI2 2 ~(0)
Br2 r=0

= f dR yp(P), +Ep yI)"
Bp r=0

Ro

2

= —())2(0)f dR F' ' +
R dR

F(P) 2 lsp I'+-,'= —
(t, '(0) + f dR

' ' (F"')'
2R R

(37)

The term that involves the boundary values comes from
the distances R -ro and R -a ' and can be omitted.
Therefore, the contribution of the distances
ro «R «a ' to the matrix element of the perturbation
1s

——'(t)'(0) ls, l'+ —f dR R
ro (F(P) )2
R

(38)

where the phase space is written in the form dR R ap-
propriate for our two-dimensional formulation of the
problem. Expression (38) shows that Vi (R ) has the form
ro/R and is negative. This forms looks natural on the
dimensional grounds [9] because the linear perturbative
correction to the interaction 1/R must have the form
rp/R in the region where no dimensional parameters are
available.

At the distances R —ro the correction ro/R becomes
comparable with the leading term 1/R . If the distances
are greater than the extent of the pair, R ))cz ', the per-
turbation Vi(R), like Vp(R), dies out. Indeed, at these
distances the function gp(

' in matrix elements (24) and
(35) describes an independent motion of the particle and
the pair. Since the wave function of the pair is propor-
tional to exp( —ar) and because the application of the
perturbation operator —(() /()r )+a to this function
gives zero, the distances R ))a ' do not contribute to
the matrix elements of perturbation.

To summarize, we have come up to the following quali-
tative picture of the effective interaction of three reso-
nantly interacting particles. There is the potential 1/R
plus a correction ro/R, both acting at the distances
rp & R p

& a '. The potential 1/R and the correction
ro/R are attractive for symmetric 0+ three-particle
states.

IV. CORRELATION BETWEEN
THE BINDING ENERGY

AND SCATTERING LENGTH

Expressions (24) and (35) solve the problem of finding
the linear shifts. Yet the solution is still incomplete. By
this we mean that these expressions determine the shifts
6E and 6A as functions of the phase 6,'„'of asymptotic
expression (12) for yI)

' [15]. This phase is not an observ-
able. As was stated in Sec. II, the phase 6;„characterizes
the interaction of three particles at small distances
R -ro.

It is more useful to have our solution cast in a form
determined by a certain observable instead of the phase

We can choose, for example, the particle-pair
scattering length A. With this choice, in the leading ap-
proximation in expansion parameters (1), instead of two
functions Ep(b, „')and Ap(b, I„))we will have a correla-
tion Ep(Ap) between the binding energy and scattering
length. The account of the corrections 5E(b,I„))and
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ep(a) =a (39)

is well known. This correlation is modified in the next,
linear in ro, approximation to become

e(a) =ep(a)+he(a) =a +rpa (40)

Our correlation Ep( A) is a direct analog of correlation
(39). To find a correction b,E ( A ) analogous to the
correction he(a), we write E ( A ) in a form similar to (40):

E( A) =E()(A)+bE( A) . (41)

From this definition we can obtain the following for
bE( A):

5 A (6,'„')found in Sec. III will modify this correlation. It
becomes E(A), where E=E0+5E, A =Ap+5A. In
this section we calculate the difference between Ep( A)
and E ( A ), a linear shift in the correlation.

We note that the appearance of a correlation and its
subsequent modification also occur in the two-body prob-
lem under conditions (1). In the zero-range approxima-
tion the correlation between the two-particle binding en-
ergy and the scattering length a,

value of 6,'„'.The variation of 5,'„'just moves a point on
the (E, A ) plane along the correlation curve Ep( A ) of the
leading approximation. On the other side, the shift
bE(A) is a deviation from this curve. Therefore, the
small-distance contributions to this shift must cancel,
which is accomplished by the subtraction term in (42).

Since the expressions for 5E and 5 A have been derived
in Sec. III, the only unknown quantity in (42) is the
derivative dE0/d A. Its calculation can also be done us-

ing the method of Sec. III. Setting ro=0 there, let us

give a small variation to the phase 6,'„'.The quantities

Ep and A 0 will change by some 5E0 and 5 A 0, respective-
ly. The ratio 5E0/5 Ap is the derivative dEpld A that we

are looking for.
Let us find 5E0 and 5A0. From expression (22) we

have

(I) (o)

R()f dp )pp —
yp

m/2 (p) ()Xp (3 pp

f dr dp )p(0)~(0)
0

where, for this case, yo" is a correction to go
' produced

by the variation of the phase 5,'„).From (34)
dE0bE(A)=5E — 5A .
dA

(42) (1) (0)
4 (o) ~~ ~~0

( )5 Ap = —Rpa dP 0 p gp
3 0 3R 9R

There is an interesting physics explaining the necessity
of the subtraction term in expression (42). Since the per-
turbation rp/R is singular at small distances, the main
contribution to 5E and 6 A comes from distances R -Ro
[16]. As was pointed in Sec. II, the eff'ect of any interac-
tion at the small distances R «( ~E~ '~, a ') can be ab-
sorbed into the phase 6;„.Therefore, the effect of the
singular part of the shifts is equivalent to resetting the

(44)

As was pointed out in Sec. III, at R -Ro the bound-state
and scattering wave functions differ only by a factor.
Therefore, the angular integrals in (43) and (44) are relat-
ed to one another. If we denote the square of the factor
by Z+5Z, where 5Z is proportional to the variation of
the phase b,;'„',we have for the integrals in (43) and (44)

g~(&)

f d p )p(0)
o BR

gyp(0) g~(1)
=Z '

dP e(0)
(o)

0 (() + 5Z
d~ )p(0) 0

BR , 2 o BR

Bq'0"
(0)

BR

(45)

where b and s stand for the bound-state and scattering wave functions, respectively. Due to the boundary condition at
R =Ro, the second term on the right-hand side disappears. Therefore, the integrals for the bound and scattering state
differ only by the factor Z.

Taking this into account, we find the following for the derivative dE0 Id A:

dEo i/3Z/4a
d A dr dp%(0)x(0)

R&R 0 0
0

(46)

with Z=(&o) IXo 4=a .
We now use this expression to finish our calculation of the shift b E( A ). Substituting the expressions for 5E, 5 A, and

dE0!d A into (42), we obtain

(r()/2) f dR yp
a2

Br
+A g Zg0 0

f drdp4 g

2 O
2

+a
Br r=0

(47)



1882 VITALY EFIMOV 47

To avoid confusion with notations, we switched from y0~
'

to y0 for the bound-state wave function and to gz for the
scattering wave function, respectively. Since the main
contributions to the integrals come from the distances
R-(~E~ ', a '), we extended the integrations to
R =0. For Z we can use the asymptotic ratio
(Xo /Xo4 ~o.

Expression (47) is our final answer for the linear shift of
the correlation between the binding energy and scattering
length. Let us now show the correspondence of (47) with
an expression for this shift obtained in Ref. [11]in a rath-
er different way.

We rewrite Eq. (47) taking into account Eqs. (13!and
(25) for gp and yp:

bE(A)=

oo 2 2

( o/2), dp Xo, +Eo+a Xo
—ZXo, Xo

2 T 0 8 0

Bp
(48)

J dr dp 4pyp

The approach of Ref. [11]is formulated in terms of momentum components yT(p) and yo(p) related to yp and yp in the
following way [6]:

1/2
2 . &3 3pg (pr, p) =— dp gT(p)sin pp exp —r Eo-
7T 0 2 4

yo(r, p)= — dp 5(p)+go(p) sin pp exp —r +a0 2 oo 7T v'3 3p 2

VT 0 2p
0 4

1/2

(49)

(50)

The term (vr/2p)5(p) is the free wave of the scattering
wave function, and the coefficient in front of integral (50)
is chosen such that the free wave coincides with that
determined by Eq. (31). The factors &3/2 in (49) and
(50) reflect the fact that the momentum conjugated to the
coordinate p is &3p/2.

The substitution of these expressions into Eq. (48) gives
the shift b,E( A ) obtained in Ref. [11](see remark [17]).

( T + V)go= —a Pp . (A 1)

The solution at a close energy E and in the region r -r0
can be presented in the form

I

strated for a simpler case of two particles.
We start with some definitions. Let Po be the solution

of the two-body Schrodinger equation for a state with the
energy —o. ,

2

V. CONCLUSION 4' =go+ (E +a')pi, (A2)

The results of this paper can be summarized as follows.
It has been shown by explicit calculations in coordinate
space that the effect of force range can be described by a
correction r0/R to the well-known effective interaction
1/R existing in systems of three resonantly interacting
particles. Like the interaction 1/R, the correction is
universal. The correction does not destroy correlations
between three-particle observables caused by the interac-
tion 1/R yet modifies them. The modification of the
well-known correlation between the binding energy of
three particles and the particle-pair scattering length is
explicitly calculated, and the result is given by expression
(47).

The estimate of P, is P, -romp.
To derive boundary condition (3) using these

definitions, we first calculate the logarithmic derivative of
the wave function rP at the boundary of the interaction
region. Denoting the boundary by r0, we have

Ir=r 0

(rPo)'+(E+a )(rP, )'

rPp+(E+a )rP, II' = r 0

where the second term is a small correction. The equa-
tion for ((), follows from the Schrodinger equation:

(A3)
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APPENDIX A: BOUNDARY CONDITION
FOR THE THREE-BODY WAVE FUNCTION

(rP)'
rP r=r',

(r, )'
+(E+a )

rPp r =ra r =r',

(r0o)'

(A4)

The second term in the denominator is a quadratic
correction in expansion parameters (1) and may be omit-
ted. Yet we keep the second term in the numerator be-
cause the condition ur0«1 implies that the derivative
(rPo)', is abnormally small. Thus,

0

In this appendix we derive boundary condition (8) for
the three-body wave function. The idea is first demon-

This expression contains two parameters describing the
interaction of two particles in the region r —ro Since rPp.
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has the form of exp( a—r) outside the interaction region,
the parameter [(rPo)'/rPo], is equal to —a. We

0
denote the second parameter [(rP, )'/rPo], , which has

0

the dimension of length, by l; its estimate is I -ro. Intro-
ducing these notations in (A4), we have

r/2

I

0

= —a+/(E+a ) . (A5)
x/6

Now, following the standard procedure, we match (A5)
with the logarithmic derivative of a solution outside the
interaction region. Denoting this solution by i/j and ex-
panding in r o 3/

~
E~, we obtain

2 '

r/6

FIG. 1. Lj.msts of integration.

r=0

= —a+/(E+a ) . (A6)

+Q.'

r=0 r=0

This is boundary condition (3).
Consider now the three-body problem. First, we con-

struct an analog of expansion (A2). We write the solution
in the region r -ro, p ))ro in the form

To linear terms in ro, the second term in the curly braces
is equal to —a, as follows from expression (A6) itself. In
addition, the Schrodinger equation for i/ enables us to
rewrite the energy E as —[(rg)"/rP]„o Therefor. e, the
factors multiplying ro and l differ only in their sign. Com-
bining the terms with r o and l into one term and denoting
the sum r o+1by ro /2, we finally obtain

I

2 rg

Let us calculate this expression at the boundary r =ro.
Here V can be omitted and N replaced by )II. Introducing
r% and expanding in ro&~E~, we obtain

Ao '(E —T )Ao=(4 'T„qi)
0 r=0

After substitution of this expression into (A8), we again
arrive at the result that the factors multiplying ro and l
differ only in their sign. Combining the terms with ro
and I and introducing ro, we finally obtain

—a . As compared with (A6), the right-hand side of (A8)
contains a new term A o

'T A o. To calculate it, we ap-
ply the operator T„+V to both parts of (A7). Using Eqs.
(A 1) and (A3) and neglecting high-order terms, we find

Ao '(E —T )Ao=(goAo) '(T„+V)4&=4 '(T„+V)@ .

&=NO+&),

where the function 4o is the solution in the leading ap-
proximation in expansion parameters (1). As is known
[6], it factorizes, No=go(r)Ao(p). For the correction @,
we have from the Schrodinger equation:

ro= —0.+
r=0 2

This is boundary condition (8).

+0!
r=0

(T„+V)@,=(E+a —T )PoAo,

where T„and T are the kinetic-energy operators for
motion along the variables r and p, respectively. Using
Eq. (A3) we find that this equation is satisfied by the func-
tion N, =P,(r)A, (p), with A, =(E+a —T )Ao. There-
fore, at r -ro [cf. Eq. (A2)]

APPENDIX B: EQUATION
FOR THE WAVE FUNCTION % 0

To derive the equation for %o ', we use a known rela-
tion between '0o and yo [18],which is obtained by averag-
ing decomposition (5) over the angle between r, z and p3..

NoAo+Pi(E+a —T )Ao (A7) 4 pz(p)
q'o(p) =yo(p)+ —J d/3' yo(p') . (Bl)

(r%)', (rV)"
2

(r%')'
r%' r=0

= —a+/(E+a —Ao 'T Ao) . (A8)

The second term in the curly braces is again equal to

Following the two-body case, we now calculate the log-
arithmic derivative of N at ro and match it with the loga-
rithmic derivative of an external solution. Denoting the
latter by +, we have

Here all functions are taken at the same radius R, and the
integration limits are shown in Fig. 1. Applying the
operators b+Eo to both sides of (Bl) and using explicit
expressions for the functions P, (P) and P2(P), as well as
Eqs. (11), (13), and the relation %~ '(0) =yz '(0), we come
to Eq. (20).

Using relation (Bl) we can also obtain the expression
for the normalization of %' ' in terms of the wave func-
tion yo~ ',
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f dr dp%'o 'y(') '= f dr dp(y(') ') + —f dR R f dpdp'Jt(') '(R, p)y(') '(R,p'),
0 0 0

where the angular integration is performed over the shaded region shown in Fig. 1.
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