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Chiral color-dielectric model with perturbative quantum pions and gluons
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Pionic contributions to static nucleon properties are calculated in a chiral extension of the color-
dielectric model. The pion field and residual gluon field are treated perturbatively. It is shown that with
a simple choice for the energy of the scalar confining field and assuming the chiral limit, the system of
equations describing the bare soliton and the perturbative pion and gluon fields may be cast in a dimen-

sionless, parameter-free form for large glueball masses. This enables a formula for the masses of the nu-

cleon and b including leading-order pionic and gluonic contributions and corrections for spurious
center-of-mass motion, valid for a wide range of input parameters determining the bare-soliton solutions,
to be derived. A further consequence of the scaling behavior is that pionic contributions to nucleon
properties, calculated using the methods of the cloudy-bag model, are insensitive to the soliton parame-
ters, once the size of the soliton is fixed. The model results are very similar to those of the cloudy-bag
model but the predicted masses are about 20% too large, and the pionic contributions to charge radii are
underestimated.

PACS number(s): 21.60.—n

I. INTRODUCTION

In their simplest form color-dielectric models (CDM)
[1] describe the quark structure of hadrons by confining
effective quark fields with a scalar field which represents
the long-range order of the QCD vacuum. Like the
MIT-bag [2] Lagrangian, the typical Lagrangian of these
models at this level is not chirally symmetric, but it is
well known that by introducing a suitable interaction
with an elementary pion field, manifest chiral symmetry
may be restored [3]. There is no unique prescription for
the additional terms in the effective Lagrangian and a
number of different chiral versions of nontopological soli-
ton models have been considered by various authors (re-
viewed recently by Birse [1]).

Following the approach which was used to obtain the
cloudy-bag model (CBM) Lagrangian [3] from the MIT-
bag model, Williams and Dodd [4] investigated chiral ex-
tensions of both the Nielsen-Patkos color-dielectric mod-
el [5] and the Friedberg-Lee soliton-bag model [6]. It was
found that the pion fields in the soliton were suKciently
weak that pionic contributions to nucleon properties
could be calculated using perturbation theory as in the
CBM work [3,7—9]. This is to be contrasted with non-
perturbative approaches where the pion field is treated in
the mean-field approximation using the hedgehog ansatz
[10]. The numerical results of Ref. [4] for pionic correc-
tions showed an insensitivity to the details of the unper-
turbed soliton solutions and, when the scale of the soliton
solution was fixed to reproduce the proton charge radius,
broad agreement with the results of the CBM. However,
no attempt was made in this work to choose a parameter
set which would also fit the nucleon and 6 masses when
center-of-mass corrections and gluonic corrections, dis-
cussed below, were included.

Another refinement of the CDM, necessary for the cal-
culation of mass splittings of the hadrons, is the retention

of residual color fields left over from the coarse graining
of the QCD fields. For example, the mass degeneracy of
the nucleon and 6 isobars is lifted by the color-magnetic
hyperfine interaction. The one-gluon exchange contribu-
tion to the nucleon-6 mass difference has been calculated
in the CDM both perturbatively and self-consistently
[11,12]. However, these calculations did not take into ac-
count the contribution from pion exchange expected
from the chiral models.

The aim of the present work is to test the predictions
of the CDM for static nucleon properties including both
pionic and gluonic contributions and with center-of-mass
corrections. A similar calculation has appeared recently.
Leech and Birse [14] have calculated pionic contributions
using Peierls™Yoccoz projection to remove spurious
center-of-mass contributions. They use a chiral version
of the CDM where the pion fields are accompanied by an
additional scalar field, as in the linear o model, rather
than the nonlinear realization of chiral symmetry adopt-
ed in this paper. Although their Lagrangian has chiral
symmetry, the Goldberger-Treiman relation, which
should be satisfied by the model, is violated by the ap-
proximations made in projecting momentum eigenstates.
In our work we have chosen to preserve the Goldberger-
Treiman relation at the expense of using only cruder esti-
mates of center-of-mass corrections. In our view reliable
estimates of c.m. corrections which respect the sym-
metries of the Lagrangian remain a problem for these
models. Leech and Birse did not calculate the gluonic
contribution to the nucleon-6 mass splitting but assumed
that the strength of the quark-gluon coupling could be
adjusted so that a fit to the nonpionic part of the mass
splitting would be achieved. Here we calculate the M1
color-magnetic energy explicitly to see whether con-
sistent values of the strong-coupling constant are ob-
tained over a range of soliton parameters.

We would like to emphasize that our model is just one
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of many possibilities. From a more fundamental point of
view it is natural to regard the pion (and other mesons) as
composites of the quark and gluon fields. For example,
in the work of Banerjee, Broniowski, and Cohen [15] it is
assumed that an effective low-energy chiral model can be
derived from QCD by entirely eliminating the gluon de-
grees of freedom in favor of meson exchanges between
quarks. In this approach one-gluon exchange should not
be added to the quark-meson model. The Lagrangian
that we use, as in the CBM, includes an additional ele-
mentary pion field to restore chiral symmetry, and within
the context of the model both one-pion and one-gluon ex-
change are calculated.

Section II describes the chiral version of the color-
dielectric model considered in this paper, how the
lowest-order perturbative pionic and gluonic contribu-
tions to the soliton energy are calculated, and how the
masses of the nucleon and 6 are estimated including c.m.
corrections. The bare soliton solutions are characterized
by three parameters, the quark mass m, the glueball mass
M&, and the scale cr, of the confining scalar field. The
magnitude of the gluonic energy shift is determined by
the strong-coupling constant e, which is essentially a free
parameter of the model. The magnitude of the pionic
contributions are fixed through the Goldberger-Treiman
relation of the model in terms of the pion mass, the pion
decay constant, and the axial coupling constant. The
latter is calculated from the bare soliton solution while
the pion mass and pion decay constant are given their ex-
perimental values. Thus once the bare soliton solutions
are chosen there is no further freedom in the model to
vary the pionic contributions to nucleon properties.

In Sec. III, following the scaling argument of McGo-
vern, Birse, and Spanos [13] for a large glueball mass, we
are able to show that the system of equations determining
the bare soliton solution and the perturbative pion and
gluon fields may be cast in a dimensionless, parameter-
free form in the chiral limit where the pion is massless.
This enables a mass formula for the nucleon and
masses to be given whose numerical coeKcients are deter-
mined by solving the universal equations once only. This
scaling which still holds to a good approximation for
quite small ratios of the glueball to quark masses and for
nonvanishing pion mass explains the insensitivity of pion-
ic corrections to the soliton parameters found in earlier
work [4].

Pionic contributions to static nucleon properties are
considered in Sec. IV. The formulas for charge radii and
magnetic moments are essentially identical with those of
the cloudy-bag model, with the CBM form factor re-
placed by the form factor computed from the soliton
solution.

Section V contains our numerical results and con-
clusions.

II. THE MODEL

A. The Hamiltonian

With the notation of Ref. [4], the Hamiltonian of the
chiral extension of the color-dielectric model, including

gluons, to be considered here may be written as

H=HNs+H +HI +H +Hf =Ho+HI +Hf, (2.1)

where the Hamiltonian for the nontopological soliton in
the mean-field approximation (MFA) is

HNs= f d x:q(iy V+m ly)q:+ c—r, (Vy)2

+—oMy1
V

(2.2)

the pion field contribution is

H = f d x —:[(Box.) +(Vm) +m m ]:,1
(2.3)

and the interaction between quarks and pions is given by

(2.4)

The remaining terms in Eq. (2.1),

(2.5)

Hj= —g, f d x:qy"VA„'q:, (2.6)

describe the coupling of effective gluon fields A„' to the
color-singlet dielectric mean field g through the dielectric
function a(y) =y and the quark fields q, respectively. As
we consider only single-gluon exchange between quarks,
the quadratic terms in the gluon field tensor

F„' =B„A'—B A„'+g,f' 'A„"A' (2.7)

are dropped, so that each of the gluon fields propagates
like an independent electromagnetic field in the presence
of a spatially varying dielectric medium. It should be
noted that in the absence of a rigorous derivation of the
dielectric model from QCD, there is some arbitrariness in
the details of the Hamiltonian density adopted above.
Bayer, Forkel, and Weise [16] and Banerjee [17] have ar-
gued that the quark-pion coupling of Eq. (2.4) should be
proportional to g . The question of whether residual
gluon interactions, Eq. (2.6), should be included at all,
has been mentioned in the Introduction. However, the
work of McGovern [18] in fitting the baryon spectrum
with a chiral dielectric model including perturbative
gluons lends some support to the model chosen here. The
fit using the inverse coupling of Eq. (2.4) was found to be
more satisfactory than the fit using inverse-square cou-
pling.

In zeroth order the interactions between quarks and
pions and quarks and gluons may be ignored and the bare
baryon states are eigenstates of Ho with no gluons or
pions present. The bare nucleon and 6 states are thus de-
scribed by the usual MFA solutions where the mean g
field has spherical symmetry and the three quarks are all
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placed in the lowest 1S mode. The upper and lower radi-
al components u and v of the quark wave functions and
the quark energy eigenvalue e satisfy

C. The pion shift

A calculation of the pion shift, similar to that of Chin
[19]for the MIT bag, yields

dQ I6+
dr x

dv

dr

V (2.8)

(2.9) with

8 2

A 3 fg s g s ] A n (2.17)

and the mean field y is determined self-consistently from

+— = — (u —u )+M
dr 2 y dr o 2g2

(2.10)

EQ=3e+2~o„J dr r

'2

+Mrs . (2.11)
dr

B. Perturbation theory

Our aim is to include perturbative corrections due to
one-pion and one-gluon exchange. In the remainder of
this section we consider the mass splitting of the nucleon
and b, to order (1/f ) and g, . In Sec. IV pionic correc-
tions to the static nucleon properties will be evaluated.

Working in the Schrodinger picture, we may write an
exact formal equation for the dressed nucleon or 6 state
l

A & which satisfies Hl A & =E„
l
A &,

lA &=(Z2 )' 'lAQ&+(E„—Ho) 'Aall A &, (2.12)

with appropriate boundary conditions. The spin and iso-
spin states of the bare nucleon and 5, denoted here sim-
ply by l Ao &, are degenerate with energy

$ (cr; cr)r& v)&„=36—4S(S+1) 4T(T+1—)
lWJ

(2.19)

and g, ( &„=27 for both the nucleon and b, . Thus
the predicted splitting of the energy levels of the nucleon
and 6 due to the pion, to the order of approximation con-
sidered here, does not depend on the pionic self-energies.

It is convenient to define

II(r)= b, (r,r'), r' dr',u(r')u(r')
o

' y(r')

satisfying

(2.20)

u(r)v(r), u(r')u(r') 2, 2b, r, r' r dr r' dr',
o o y(r) ' g(r')

(2.18)

where b, (r, r') is the free pion propagator. (In his work
Chin uses a pion propagator which excludes the pion
from the bag. ) The question arises whether the quark-
pion self-energies given by the terms with i =j should be
included in the sums over the spin-isospin matrix ele-
ments in Eq. (2.17). Chin excludes the self-energies from
the energy shift, grouping them with the vacuum energy
of the bag. On the other hand, in cloudy-bag model cal-
culations, they are included in order that intermediate
quark states may be coupled together to give the full sub-
space of intermediate nucleon and 6 states. If S is the
spin and T the isospin of the state A, then [20]

where both
l
A & and

l
A Q & are normalized to unity and A

is the complement of the projection operator onto the
space of degenerate bare nucleon and 6 states

dH 2dH
dr r dr

in terms of which

2H 2 uv—m H=
x ' (2.21)

a=I y lA, &(A,—l .
o

(2.13)

The perturbation HI =Hf +HI includes interactions
with gluons as well as pions. The energy shift
b A =EA —Eo is determined from

2
2dH + 2H + 2H2, 2d

dr l

D. The gluon shift

(2.22)

Ag =( AQlHIl AQ &

+(A, la, (E,—H, +~„) '~a, lA &(Z,")-'~'.
(2.14)

The second-order shift

4
b.g = ——m.g g (A, 'A, cr"o & MA 3 s i j i j A g

1,J

with

(2.23)

The shift due to exchange of gluons in the dominant
M1 mode is

a'~"=& Aolar(Eo ao) 'wall Ao&— (2.15)

(2.16)

~ u(r)v(r), u(r )v(r )

o o rv(r) ' r'a(r')

is obtained by replacing
l
A & (Z2 )

' by l
A Q & in Eq.

(2.14), noting that in this case ( A Q lHI l
A Q & vanishes and

that the shift separates into distinct gluon and pion
pieces.

(2.24)

where g(r, r') is the static Green's function [21] for the
propagation of the confined M1 gluon.

The matrix elements of the quark spin and color ob-
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(2.25)

uses the field function F(r) which satisfies

servables in Eq. (2.23) are taken with respect to the spin-
isospin-color states of the nucleon or h. In the sum over
quarks it is customary to exclude the terms with i =j, i.e.,
color-magnetic self-energies of the quarks are not includ-
ed, and g;& j(A;A, &cr, ; o'j) z =+16, the plus sign for the
nucleon and the minus sign for A. This choice is support-
ed by the derivation [22] of the shift using relativistic,
many-body perturbation theory which suggests that the
quark self-energies should be regarded as part of the vac-
uum energy of the soliton. However, in the present work
we ignore the Dirac sea and make no attempt to calculate
the Casimir energy of the soliton. As usual we assume
that the color electric energies for quarks in the same
spatial state sum to zero.

An equivalent expression [12] for Mg which avoids the
construction of the Green's function,

2
dF + 2F

o dr r 2

interesting scaling properties leading to a formula for the
6 and nucleon masses in the chiral limit m =0.

III. THE NUCLEON AND b, MASSES
IN THE CHIRAL LIMIT

A. Scaling

The MFA solutions describing the degenerate bare nu-
cleon and 5 states depend on three parameters, the quark
mass m, the glueball mass M&, and the scale o, of the g
field. McGovern, Birse, and Spanos [13]have shown that
for sufficiently large values of the glueball mass only two
of the parameters are independent and after choosing one
to fix the size of the soliton, one is left with a one-
parameter family of MFA solutions. In this section we
extend their arguments to find a mass formula for the nu-
cleon and 6 which includes the color-magnetic energy,
the pion interaction energy, and corrections for center-
of-mass motion.

With the help of a length unit

d F 1 dK dF
dr K dr dr

2F uvr

r K
(2.26)

ro =(mMxo, )

new dimensionless variables may be introduced:

(3.1)

Equations (2.24) and (2.25) may be shown to be
equivalent by using the explicit expression for the
Green's function and integration by parts.

K. Center-of-mass corrections

r =rox,

ro ~0

mroyo

(3.2)

(3.3)

(3.4)

The nucleon and 6 energies

E~ =Eo+~~+~~ (2.27)

u =r '"u
0 0 ~

v=r v0 0 ~

(3.5)

(3.6)

contain contributions from the center-of-mass motion of
the soliton. Our calculated masses

and

F=pl rp Fp ) (3.7)

M, =(E„' —(P') „,—(P'), ,)'" (2.28)
H=m 'ro Hp . (3.8)

(P ) z =12mf dr r e'+ v
X

2

2

u +2v

include corrections for the quark momentum [23]

u 0
1

+EP Vp
Xp

(3.9)

In terms of these variables, the system to be solved is (the
prime denotes differentiation with respect to x =r /ro)

(2.29)

2v+ —v=—
0 0 60 Qo

+0
(3.10)

and the momentum of the y field [24] (using a quantum
coherent state to produce the mean g field),

2

(P ) ~ x=2~Mxcr, f r2dr . (2.30)
0 dr

rp gp
I

gp 2 upvpx
0 0 2 P 4gp X gp

(3.1 1)

(3.12)

In our numerical calculations the differential equations
(2.8) and (2.9) for the quark wave functions, Eq. (2.10) for
the g field, Eq. (2.22) for the pion field, and Eq. (2.26) for
the gluon field, together with a normalized integral for
the quark wave functions, are formulated as a nonlinear
boundary value problem and solved simultaneously [25].
In the next section we demonstrate that this system has

i(
H0 + +0 2 Hp 772 rpHp

x Xp

with the normalization condition

(3.13)

4~f (u0+ vo )x dx = 1 . (3.14)

For sufBciently smooth variations of the yp field and large
values of the glueball mass M&, the left-hand side of Eq.
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(3.11) is negligible and yo is simply determined from the
quark wave function,

1.2 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 600

1.0
go=3(uo uo ) (3.15)

Furthermore if the pion mass vanishes, Eqs. (3.9), (3.10),
and (3.12)—(3.15) constitute a dimensionless, parameter
free system which needs to be solved only once to deter-
mine the quark wave functions, the y field, and the pion
and gluon fields for all values of m, o.„and M&, provided
Mzrp is large.

0.6
O

0.4

0.2

—400
y 0

O

—200

B. Mass formula

Evaluation of the energy of the nucleon in terms of the
scaled variables gives

0.0
0.0 0.8 1.2

0
1.6

E~ = rp [3&p+c i +c2(M&rp )

+c3g, (mro) +c~(f ro) ], (3.16)

t p=2. 426 (3.17)

where ep, c„c2,c3, and c4 are the following constants:

FIG. 1. Solutions of Eqs. (3.9)—(3.11) with a large value of
the glueball mass, M~rp =48.7. The dashed curve is the gluon
source term of Eq. (3.12). For x ( 1.4 these curves are indistin-
guishable from the solutions of Eqs. (3.9) and (3.10) with the ap-
proximation (3.15).

and

c, =2m fgx dx =1.456,

c2=2vr f (yo) dx =6.68,

C3= 256 2 , 2 2 2 4~ f (Fp) + 2Fp ppdx

= —0.046 17,

c,= —80~ (n,')'+, n,' x'dx2

(3.18)

(3.19)

(3.20)

which shows the expected dependence on the soliton pa-
rameters. Of course, defining the coupling constant and
gluon potentials in this way does not remove the sensitivi-
ty of the color-magnetic energy to the g field inside the
soliton. Once the scale of the g field is set variations of
the field inside solitons with different quark content will
produce large relative changes in the gluonic energy.

The corrections, Eqs. (2.29) and (2.30), to the energy
due to the center-of-mass motion also scale:

= —0. 1469, (3.21}
(P'), =c,r, ' (3.23)

4', c3[gp(0)] ro ' =0.9050a, ro ' (3.22}

determined from numerical solution of the soliton equa-
tions in the limit where Eq. (3.15) is satisfied. A typical
solution is shown in Fig. 1. In the expression for the en-
ergy, Eq. (3.16), the first term is the quark energy, the
second the potential energy of the y field, the third the ki-
netic energy of g, the fourth the color-magnetic energy,
and the fifth the pion field energy (in the chiral limit).
The energy of b, is also given by Eq. (3.16) with c3 re-
placed by —c3 and c4 replaced by c~/5.

The color-magnetic energy appears to be strongly
dependent on the quark mass. However, as Mcgovern
[18]points out, the definitions of the strong-coupling con-
stant a, and the dielectric function are interdependent
and there is no unique value of the quark-gluon coupling.
From Eqs. (2.5), (2.6), and (2.7) we see that a change
~~A, ~ is compensated by the changes A „' —+A, A „and
g, ~A, g, . We will fix the definition of the strong-
coupling constant by choosing ~= 1 at the center of the
soliton. Since the value of the dielectric function is pro-
portional to y (0)=(mro) yp(0) at the center of the soli-
ton, the coupling constant is 4+a, =g, [mrpyp(0)] and
the color-magnetic energy may be written as

c&=12m f [[(Ep+gp )up] +[ 2uo/x+(~o go )"o]

+2uo/x ]x dx,
=16.12

and

(P )r=c2(Mrro)

(3.24)

(3.25)

where

and

(x ) =4m f (up+up)x dx =(0.7923)

2 1/2

~= 1 —2K+3K'+—
2 cprp

(3.27)

(3.28)

The nucleon and 5 masses in the model are found from
Eq. (2.28), using Eq. (3.16) for the energies and Eqs. (3.23)
and (3.24) for the momentum corrections.

The parameter r p is related to the root-mean-square ra-
dius of the quark distribution in the nucleon R by

(3.26)
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TABLE I. Nucleon and b, masses in the chiral limit. Quantities in columns labeled (a) have been cal-
culated by solving the full set of soliton equations; the corresponding predictions from the approximate
mass formula are contained in columns (b).

Quantity

Mz/m = 10
M~=648. 6 MeV

a, =0.6016

Mz/m = 50
M~=1910.5 MeV

a, =0.5699

Mz/m =150
X

a, =0.5687

(r )' ' (fm)

Eo {MeV)
b.Q (MeV)
a~ (MeV)
M~ {MeV)

(MeV)

0.750
1600.8
—92.5
—97.9
1228.6
1523.6

(b)

0.752
1624.5
—95.9
—92.7
1227.1

1529.7

(a)

0.750
1558.3
—91.8
—95.3
1175.6
1470.6

(b)

0.751
1559.2
—91.5
—94.8
1165.6
1461.5

(a)

0.750
1553.1
—91.6
—95.3
1167.7
1462.7

(b)

0.750
1553.2
—91.4
—95.1

1162.1
1457.7

with

(3.29)

an additional scaling factor [23] which estimates the
reduction in size after removal of the motion of the
center of mass.

We note that the simple scaling behavior derived here
depends on our initial choice of the quadratic form of the
potential energy of the g field. In practice this means
that the MFA solutions are one-phase solutions in the
nomenclature of Ref. [26]. Unlike the usual bag models,
there is no bag pressure, the energy of the y field having
the same 1/rc dependence as the quark energy. For
two-phase solutions, possible in quartic potentials, where
there is rapid variation in g between the interior and ex-
terior of the soliton, the kinetic energy of the y field is
not negligible, and the above scaling does not hold. Of
course, in this case the full equations may be solved nu-
merically for a given parameter set which may include a
bag pressure, but the simplicity of the energy formula
equation (3.16) is lost.

From the work of this section, we see that the masses
of the nucleon and 6 are essentially determined by the
length scale r&&=(mM&o, )

'~ and the strong-coupling
constant a„ the pion decay constant f =93 MeV being
taken from experiment, and the small corrections due to
the kinetic energy of the y field being of order (Mrrc)
If ro is fixed by fitting the isoscalar charge radius of the

nucleon and a, by fitting the nucleon-6 mass splitting,
the predicted masses of the nucleon and 5 in the model
show little variation for a wide range of quark and glue-
ball masses. In Table I the predictions for the masses us-
ing the approximation equation (3.15) are compared with
those given by numerical solution of the full system, Eqs.
(3.9)—(3.14), for three parameter sets. The input parame-
ters have been fixed by requiring a nucleon-6 mass split-
ting of 295 MeV and an isoscalar nucleon radius of 0.75
fm in the full numerical calculations. Even for ratios of
the glueball mass to the quark mass as small as
Mr /m = 10 the approximate formula is remarkably accu-
rate.

IV. PIONIC CORRECTIONS TO NUCLEON PROPERTIES

Previous work [4] has shown that it is consistent to
treat the weak pion field in chiral nontopological solitons
perturbatively, as is done in the cloudy-bag model. With
an appropriately modified pionic form factor, the CBM
expressions may be applied to evaluate pionic contribu-
tions to nucleon properties in the present model.

The vertex functions for the absorption or emission of
a pion are found by expanding the pion field in a plane-
wave basis and taking matrix elements of the interaction
(2.4) between the bare soliton states

~ Ac ). In particular,
the vertex function u." (k) for the absorption of a pion
with isospin j and momentum k on the bare baryon state
~Bc) to produce the baryon state

~ Ac) may be written as
[4]

u (k)= —i, g (Sz,sz, l, m ~$&,sz )( Tz, tz, l, n
~ T&, ttt )k*e*„,~a f"

m (2'�) (2ruk )' (4.1)

where Sz and s~ denote the spin and third component of
spin for A (and similarly T„and t„ for isospin), k and
ez „are the spherical tensor components of the momen-
tum k and the vector e, respectively, and cok =k +m „.

The CBM form factor [7]

p'(kR )=3j,(kR )/kR, (4.2)

where j, is the spherical Bessel function of order one and
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3.0

0.8

0.6

~~ 0.4

0.2

0.0

—0.2 ~ ~ 4 I ~ I ~ I ~ ~ 4 I

construct the form factor (4.3) and the transition cou-
pling constants (4.6) using (4.4) and (4.5). With the cou-
pling constants and the form factor calculated from the
soliton solution replacing the CBM form factor and cou-
pling constants, the usual CBM expressions for the pionic
contributions to the nucleon and 6 self-energies, charge
radii, and magnetic moments, etc., apply. Before discuss-
ing these contributions in detail, it is important to note
that the pionic corrections will be largely independent of
the choice of the bare soliton parameters. This can be
seen by applying the transformations (3.2)—(3.6) of the
previous section to the (4.3) and (4.4). The bare axial
constant becomes

0 2 4 6
k (fm)

10
b 80m. QpUp

gA — dX X
Xp

(4.7)

R is the bag radius, is replaced in Eq. (4.1) by the soliton
form factor

f dr r [m /y(r) ]u (r)U (r)p'(kr )
/M(k) =

f dr r [m /y(r) ]u (r)U (r)
(4.3)

defined so that /u(0) =1. The form factors are compared
in Fig. 2.

From Eqs. (1.8) and (1.9) it is easy to establish [4,27]
that the denominator in (4.3) is proportional to the bare
axial vector coupling constant

b 5 3 z 1 2g" =— d r u (r) ——v (r)A

FICx. 2. Comparison of the soliton model (solid line) and
CBM (dashed line) pion form factors for the parameter set of
column 2 of Table II. The CBM radius, R =1.1 fm, minimizes
the root-mean-square diff'erence of the form factors.

80~ QpUp
p(k) = f dx x p'(krox ) .

Xp
(4.8)

B. Pionic self-energies

The pionic self-energies of the nucleon and 6 are given
by

f AB

12m' g m„
k /u (k)

Cdk ( Cdk +m//
—m g )

(4.9)

For a sufficiently large glueball mass, the scaled variables
approach their limiting forms, gA =1.318, and hencef,f,f, and f are constant under variation of
the soliton parameters. In the same limit the form factor
only depends on the length scale set by
ro = (Mxm o „) ', since

20
4m f dr r u(r)u(r)

9 x
(4.4)

and hence that the nucleon-nucleon transition coupling
constant in (4.1) is

fNN 3 m
A (4.5)

and that the other relevant couplings have the usual
CBM ratios,

c/.fN/3.fhN 5.5.4+2.2Q2— (4.6)

In terms of the usual m.NN coupling constant,
f =(3m /2mN)g NN=3&4~f NN and Eq. (4.5) is an
expression of the Goldberger-Treiman relation.

A. Scaling

In the cloudy-bag model the masses mz=mz, m& are
usually taken as the physical masses and renormalized
perturbation theory is considered. Here, since we are
only considering the leading order in a perturbative cal-
culation, the masses mz and mz are equal to the bare sol-
iton mass. In this case the energy shift given by Eq. (4.9)
is the same as that given by Eq. (2.17), derived at the
quark-pion level, provided the quark-pion self-energies
[terms with i =j in Eq. (2.17)] are included. If the scaling
transformations are applied to (4.9), we see that the mass
splitting of the 6 and nucleon due to pions has the form
(f ro) ro 'I(m ro), where I is an integral depending on
a single parameter, the product of the soliton scale, and
the chiral symmetry-breaking pion mass.

C. Electric form factors and charge radii

The solutions of Eqs. (2.8) and (2.9) for the quark wave
functions and Eq. (2.10) for the y field may be used to

I

The pionic contribution to the nucleon electric form
factor is

T

1 f 3 P(k)/M(k')kk' 1 f 3 /u(k)/u(k')k k'
E,N + d k

~k~k'(~k +~k') 72~ m (~k +cdhN )(cdk'+cdAN )(~k +cdk')
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where k'=k+q and ~z~=mz —m&. The upper sign
holds for the proton and the lower sign for the neutron.
Since (4.10) involves the difference of two similar terms, it
turns out that the calculated values of the electric root-
mean-square radii of the neutron and proton are quite
sensitive to the assumed value of cuz&. In our simple per-
turbative approach where mz and m& are equal to the
bare soliton mass, co&&=0. Alternatively, we may corn-
pute the pionic correction, after the gluonic hyperfine
splitting has been calculated, by setting co&N=b,(—b,g
[cf. Eq. (2.23)]. Numerical results for both choices are
compared in the next section.

The quark contribution to the electric form factor is
proportional to the Fourier transform of the quark densi-
ty,

~ =+, "' f "dkk'",fNN 2(k)

27~ Pl 0 COk

dkk
p'(k)(coaN+2a)k )

216m m 0
cok (cogN +.cok )

(4.13)

the upper sign holding for the proton and the lower sign
for the neutron.

The quark contribution involves several integrals
which determine the probabilities of various components
of the dressed nucleon. Define

fNBf NC

BC~ 2 2
12m I„

GP N(q )=CN f d r[u (r)+u (r)]e'q', (4.1 1)
x f "dkk'

0 ~k(~BN+~k )(~CN+~k )

then for the proton,

(4.14)

where the constant C& is determined from charge conser-
vation, Gg (0)+Gz (0)=l for the proton and
Gg „(0)+Gz„(0)=0 for the neutron.

The charge radii are calculated from the electric form
factors by

p~= (27Z2+PNN +20Paa +16&2PN~ ), (4.15)

and for the neutron,

p~ = — (18Z2+4PNN +5Paa +16 2PN~ ) . (4.16)q
Po

(r )N= —6 [GpN(q )+GBN(q )], . (4.12) The contribution from three bare quarks in Eqs. (4.15)
and (4.16) is

D. Magnetic moments

oo

pa= — dr r u(r)U(r),
3 0

(4.17)

The pionic contribution to the nucleon magnetic mo-
ment is

and the normalization is determined by
Z2+P&z +P&z =1. The pionic and quark contribu-

TABLE II. Results for nucleon properties, including perturbative pions and gluons, for four
di6'erent soliton-parameter sets compared to experiment. The soliton scale is fixed to give the experi-
mental isoscalar charge radius and the strong-coupling constant is fixed to give the experimental value
of the nucleon-6 mass splitting in all cases. Center-of-mass corrections are included. The values in
parentheses are for vanishing nucleon-5 mass di6'erence.

Expt.
Quan

Mz/m
M, (MeV)

10
648

0.646

50
1908

0.612

150
3974

0.611

50
1920

0.401

(r )' (fm)

Eo (MeV)
h$ (MeV)
hg (MeV)
M~ {MeV)
Mg —M~ (MeV)

0.750
1601
—99.2
—81.6
1240
295

0.750
1556
—98.5
—79.5
1185
295

0.750
1551
—98.2
—79.2
1177
295

0.750
1566
—65.0

—160.0
1139
295

0.750

939
295

b

pp
Pn
(r )' (fm)
(r )' ' (fm)

0.283
1.34
2.28

—1.72
0.795

—0.264

0.280
1.32
2.29

—1.72
0.795

—0.263

(2.40)
( —1.78)

(0.770)
( —0.175)

0.279
132
2.29

—1.72
0.795

—0.262

0.393
1.32
2.71

—2.18
0.830

—0.355

0.28
1.27
2.76

—1.91
0.83

—0.35
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tions together give

px p%+ p% (4.18)

V. NUMERICAL RESULTS AND CONCLUSIONS

Typical results of our numerical calculations of static
nucleon properties, including pionic contributions, are
shown in Table II. In these calculations chiral symmetry
is broken by using the experimental value of the pion
mass in the field equation (3.13). Nevertheless Table II
shows that the scaling behavior derived in Sec. III for
massless pions persists; when the overall scale of the un-
perturbed soliton solution is set by matching the experi-
mental isoscalar charge radius, there is little variation in
the predicted nucleon properties over a wide range of in-
put parameters for the soliton. As in other soliton-bag
calculations, the predicted nucleon masses are too large.
The nucleon mass can be made smaller by including the
pion-quark self-energies, but following the discussion of
Sec. II, we believe it is more consistent not to do so. The
pion generates about 25% of the nucleon-5 mass split-
ting; the rest is provided by the M1 color-magnetic split-
ting (a, is adjusted to reproduce the experimental mass
difference). A comparison of Tables I and II shows that
the pionic energy shift is decreased by about 17% in go-
ing from the massless to the massive pion.

The strength of the pion coupling is fixed by the experi-
mental values of the pion decay constant and the pion
mass, and the value of the bare axial coupling g~, which
is calculated from the model. The axial coupling is in-
dependent of the soliton scale and is nearly constant over
the various parameter sets. Thus the pion couplin. g is al-
most constant and as can be seen from the first three
columns of Table II, once the soliton size is fixed, the
pionic contributions to the nucleon properties exhibit lit-
tle dependence on the details of the soliton solutions.

The model is qualitatively similar to the cloudy-bag
model; the pion cloud increases the charge radius of the
proton and gives the neutron a negative charge radius.
In Fig. 3, we plot the neutron charge density, together
with its quark and pion components, for the soliton mod-
el using the parameters of column 2, Table II (Mz = 1908
MeV). The quark and pion components for the CBM are
also shown for comparison, where the bag radius R =1.1

fm. This choice of R minimizes the root-mean-square
difference of the soliton and CBM form factors (shown in
Fig. 2). The quark (isoscalar) radius is then 20% larger in
the soliton model than in the CBM. The pionic term
(r ) is 10% smaller. The decrease in (r ) is attribut-
able to the small tail of the form factor (Fig. 2). There
are minor differences in the numerical values of the cou-
pling parameters f chosen in the two models, some
second-order renormalization being taken into account in
the CBM, but these differences are compensated for by
the larger value for the mass difference co&& in the CBM
where the physical masses are assumed. Excluding
center-of-mass corrections, the proton and neutron

0.2

E
0. 1

M
C:

0.0
L

U

U

o 0. 1

0
CL

—0.2
0.0

q
1

0.5 1.0 1.5 2.0 2.5
Radius (fm)

FICi. 3. Comparison of the quark and pion components of
the neutron charge density in the soliton model (solid curves)
and the CBNI (dashed curves). The CBM radius is R =1.1 fm.
The total charge density is shown only for the soliton model.

charge radii are 0.93 and —0.31 fm in the soliton calcula-
tion in comparison with 0.87 and —0.34 fm in the corre-
sponding CBM calculation [8]. The values of f~z and

g„ in Table II are bare values. They are decreased by
about 5% if the renormalization procedure of the CBM is
adopted.

The values for the magnetic moments and charge radii
given in Table II have been calculated with the difference
between the 6 and nucleon mass given by the color-
magnetic energy, co&&=26,g in the energy denominators
of Eqs. (4.10) and (4.13). For the parameter set with glue-
ball mass M& =1908 MeV, the values in parentheses, cal-
culated with a vanishing 4-nucleon mass difference, are
also given for comparison. It can be seen that the pionic
contributions, particularly the neutron charge radius, are
quite sensitive to the assumed value of co&&.

Although the ~XX coupling constant agrees well with
the experimental value, pionic contributions to static
electromagnetic properties are somewhat underestimated
by the model. From the above comparison with the
CBM it appears that the pion form factor (4.3) falls oif
too quickly in momentum space compared with CBM
form factor (4.2). This can be compensated for by regard-
ing the pion coupling f as an adjustable parameter
rather than taking the value fixed by Goldberger-Treiman
relation, Eq. (4.5), of the model. For example, the results
listed in the sixth column of Table II, obtained with the
pion coupling strength increased by 40%, are in excellent
agreement with the experimental values. However, it
should be emphasized that this procedure violates one of
the attractive theoretical features of the model, the con-
nection between the scale of the bare soliton and the mag-
nitude of the pion cloud. In view of the simplicity of the
perturbative calculation of gluonic and pionic correc-
tions, and the crudeness of the estimates of center-of-
mass effects, the quantitative results are in reasonable
agreement with experiment.



1800 L. R. DODD AND D. E. DRISCOLL 47

ACKNOWLEDGMENTS

We wish to thank A. G. Williams for helpful discus-
sions and the Australian Research Council for financial

support. One of us (L.R.D.) gratefully acknowledges the
hospitality of the Department of Physics and the Super-
computer Computations Research Institute, Florida State
University, while part of this work was carried out.

[1]Extensive references are contained in the recent reviews

by M. C. Birse, Prog. Part. Nucl. Phys. 25, 1 (1990); and

by L. Wilets, Nontopological Solitons (World Scientific,
Singapore, 1989).

[2] A. Chodos et al. , Phys. Rev. D 9, 3471 (1974); T. De-
Grand et al. , ibid. 12, 2060 (1975); C. E. DeTar and J. F.
Donoghue, Annu. Rev. Nucl. Part. Sci. 33, 235 (1983); P.
Hasenfratz and J. Kuti, Phys. Rep. C 40, 75 (1978).

[3] See, for example, the review by A. W. Thomas, in Ad-
vances in Nuclear Physics, edited by J. W. Negele and E.
W. Vogt (Plenum, New York, 1983), Vol. 13, p. 1.

[4] A. G. Williams and L. R. Dodd, Phys. Rev. D 37, 1971
(1988).

[5] G. Chanfray, O. Nachtmann, and H. J. Pirner, Phys. Lett.
1478, 249 {1984); H. B. Nielsen and A. Patkos, Nucl.
Phys. B195, 137 (1982).

[6] R. Friedberg and T. D. Lee, Phys. Rev. D 15, 1694 (1977);
T. D. Lee, Particle Physics and Introduction to Field
Theory (Harwood, Chur, Switzerland, 1981); R. Goldflam
and L. Wilets, Phys. Rev. D 25, 1951 (1982).

[7] A. W. Thomas, S. Theberge, and G. A. Miller, Phys. Rev.
D 24, 216 (1981); S. Theberge and A. W. Thomas, Nucl.
Phys. A393, 252 (1983);S. Theberge, Ph.D. thesis, Univer-
sity of British Columbia, 1981 (unpublished).

[8] S. Theberge, G. A. Miller, and A. W. Thomas, Can. J.
Phys. 60, 59 (1982).

[9] L. R. Dodd, A. W. Thomas, and R. F. Alvarez-Estrada,
Phys. Rev. D 24, 1961 (1981); R. F. Alvarez-Estrada and
A. W. Thomas, J. Phys. G 9, 161 (1983).

[10]A. Chodos and C. B.Thorn, Phys. Rev. D 12, 2733 (1975);
M. C. Birse and M. K. Bannerjee, Phys. Lett. 136B„284
(1984); Phys. Rev. D 31, 118 (1985); S. Kahana, G. Ripka,
and V. Soni, Nucl. Phys. A415, 351 (1984); H. Kitagawa,
ibid. A487, 544 (1988).

[ll] M. Bickeboller, M. C. Birse, and L. Wilets, Z. Phys. A
326, 89 (198?); M. Bickeboller, M. C. Birse, M. Marshall,

and L. Wilets, Phys. Rev. D 31, 2892 (1985).
[12] L. R. Dodd and A. G. Williams, Phys. Lett. B 210, 10

(1988).
[13]J. A. McGovern, M. C. Birse, and D. Spanos, J. Phys. G

16, 1561 (1990).
[14] R. G. Leech and M. C. Birse, J. Phys. G 18, 785 (1992).
[15]M. K. Banerjee, W. Broniowski, and T. D. Cohen, in

Chiral Solitons, edited by K.-F. Liu (World Scientific,
Singapore, 1987), p. 255.

[16]L. Bayer, H. Forkel, and W. Weise, Z. Phys. A 324, 365
(1986).

[17]M. K. Banerjee, in Quarks, Mesons, and Nuclei, edited by
W.-Y. P. Hwang and E. M. Henley (World Scientific,
Singapore, 1988); C.-Y. Ren and M. K. Banerjee, Phys.
Rev. C 41, 2370 (1990); M. K. Banerjee, ibid. 45, 1359
(1992).

[18]J. A. McGovern, Nucl. Phys. A533, 553 (1991).
[19]S. A. Chin, Nucl. Phys. A382, 385 (1982).
[20] A. Th. M. Aerts, P. J. G. Mulders, and J. J. deSwart,

Phys. Rev. D 17, 260 (1978).
[21] M. Bickeboller, R. Goldflam, and L. Wilets, J. Math.

Phys. 26, 1810 (1985); P. Tang and L. Wilets, ibid. 31, 1661
(1990).

[22] S. A. Chin, A. K. Kerman, and X. H. Yang, MIT CTP
No. 919, July 1981;S. A. Chin, Ann. Phys. (N.Y.) 108, 301
(1977).

[23] J.-L. Dethier, R. Goldflam, E. M. Henley, and L. Wilets,
Phys. Rev. D 27, 291 (1983).

[24] E. G. Lubeck, M. C. Birse, E. M. Henley, and L. Wilets,
Phys. Rev. D 33, 234 (1986).

[25] L. R. Dodd and M. A. Lohe, Phys. Rev. D 32, 1816 (1985).
[26] L. R. Dodd, A. G. Williams, and A. G. Thomas, Phys.

Rev. D 35, 1040 (1987).
[27] R. Goldflam, I. Duck, and E. Umland, Phys. Lett. 127B,

155 (1983).


