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Second-order radiative corrections to the nucleon axial vector coupling constant from gluon, pion,
and sigma meson exchange are calculated in the chiral soliton quark model. Many apparent processes
are found not to contribute. The soliton is elastically decoupled from meson radiative corrections which
are dominated by a gluon exchange contribution equivalent to a gluonic hybrid component of the nu-
cleon. A 30% radiative reduction of the axial coupling strength is indicated.
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I. INTRODUCTION

Two recent major developments make it important to
reexamine critically the quark model nucleon structure
calculations, especially their predictions for the axial vec-
tor coupling constant. The first of these developments is
the EMC experiment [1] which radically contradicts the
naive quark model expectation that the angular momen-
tum of the nucleon is in large part due to the quark spins.
As is well known, the EMC analysis leads to a nucleon
quark spin close to zero [2]. In a second development,
Weinberg [3] has raised the question of the reason for the
success of the quark model in predicting the nucleon axi-
al vector coupling constant G 4, (=1.254). In quark mod-
els of the nucleon, there are two (at least) competing
points of view, characterized as the constituent quark
model [4] and the current quark model. In the constitu-
ent quark model, quarks are dressed in a chiral phase
transition and acquire a mass taken to be about one-third
the nucleon mass. Nucleon structure calculations then
involve weak binding of these constituent quarks [5]. In
the current quark model, exemplified by the MIT bag
model [6], relativistic quarks are confined by an ad hoc
prescription and subject to meson interactions to restore
chiral invariance violated by the confinement mechanism.
Even here there is a multiplicity of opinion on, for exam-
ple, the degree of dominance of the meson interactions
and even on the necessity of including quarks in the first
place [7].

In spite of the ambiguities, we choose the current
quark point of view because it is a Lagrangian-based
model, including basic QCD degrees of freedom supple-
mented with various meson interactions, for which we
can do field theoretic perturbation calculations and,
hopefully, calculate corrections to the model predictions.
Furthermore, the relativistic chiral soliton quark model is
well developed, especially in the work of Birse and Baner-
jee [8], and it is remarkably successful in its predictions of
nucleon parameters including mass, magnetic moment,
axial, and pion couplings. It is the quantitative success of
this model which we examine by calculating perturbative
corrections to the axial vector coupling constant. We
concentrate specifically on the axial vector coupling, but
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radiative corrections to the magnetic moment are also in-
teresting. As we will see in the conclusions, perturbation
theory is quite encouraging. It gives sensible results
which appear to converge where testable, but show need
of improvement where otherwise suspect.

We will make frequent reference to the MIT bag mod-
el, whose relevant quark wave functions are listed in Ap-
pendix A. Together with the prescription of the SU(6)
spin-isospin symmetric wave function for the (NA)
baryon multiplet [9], it produces an axial vector coupling
constant

G, MIT)=(P1|o,r,|P1)g4(q)

=3g,(g)=1.09, (1.1)

in terms of the 1§ quark mode value of the axial coupling
g4(9)= [(U*—V?/3)d* =0.653 (1.2)

for zero quark mass. G ,(MIT) increases to 1.25 for a
quark mass equal to 1/R (=250 MeV for R =0.8 fm),
and to 3 if the quark mass is taken large and the relativis-
tic current quark model is replaced by the nonrelativistic
constituent quark model. Clearly, there is no difficulty in
choosing a quark mass to produce the required result for
G ,. We ignore this tactic, however, and use a massless
current quark as a QCD degree of freedom interacting in
a chirally symmetric way with the sigma-pion mesons
which occupy all space in accord with the Lagrangian
used by Birse [10]

L(x)=g(x){iy,*+glo(x)+iT-m(x)ys]}q(x)
+40,0(x)3"0(x)+ 39, m(x)-0Hm(x)
—AAlo(x) P+ a(x)?—fi]P—f.m20(x) .

(1.3)

We refer to the extensive discussion of the meson-
quark soliton contained in Birse’s paper for technical de-
tails, and just briefly describe the results. The equations
of motion for the sigma-pion-quark system separate for
the hedgehog configuration where the spin and isospin
are in the radial direction. The resulting soliton is a su-
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perposition of degenerate states with total angular
momentum J equal to total isospin I, with J,+1,=0.
The N(J =1, I =1) nucleon and the A(J =3, I=3) 7N
resonance dominate the hedgehog soliton. Matrix ele-
ments of observables, including the axial vector coupling
constant, must be evaluated by projecting the hedgehog
state onto the appropriate (J,I) component. Birse devel-
ops the technique formally, and the intuitive results of
Cohen and Broniowski [11] are very helpful also.

The hedgehog soliton is characterized by radial profile
functions corresponding to (U, V) of the quark states in
the MIT bag, and a sigma meson profile g(7) and pion
profile A (7). These are reproduced from Birse’s results in
Fig. 1. The key features of these profile functions are the
following.

(1) Asymptotically g(r)=—f_ (the pion decay con-
stant equal to 93 MeV), and A (r)=0, corresponding to an
asymptotic, external quark mass M, =g, f, and the
coupling parameter g,,, =5 chosen for a fit by the nu-
cleon parameters. In Birse’s calculation, this asymptotic
quark mass is responsible for a pseudoconfinement of the
quarks so that bag confinement is rendered irrelevant.
(Note, however, that even though confinement is ir-
relevant for the soliton ground state, it cannot be ignored
when discussing excited quark states or gluon states. In
these situations the soliton binding must be supplemented
with a confinement mechanism. Also in so-called weak
coupling, or one-phase, soliton models, the quarks are not
bound by the mesons and must be confined by an MIT
bag or some other mechanism.)

(2) A sigma field that turns over from — f_ at large r to
+ f, at r =0, with g (r =0.5 fm)=0 corresponding to an
internal quark mass that is zero at » =0.5 fm, giving rise
to a relativistic quark bound state with Dirac radial func-
tions (U, V) similar to those of the MIT bag model.

(3) A strong potential which constrains o?+7? to be

FIG. 1. (A) Birse profile functions for the hedgehog pion
h=f,sing and for the sigma meson g=f, cos¢ with
¢=rmtanh(0.916r). (B) Birse quark radial wave functions U and
V (solid lines) and MIT bag model, massless quark radial wave
functions (dashed lines) for a bag radius 0.8 fm.
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practically equal to f2. We will make extensive use of
the soliton calculations as a zero-order result upon which
we base our perturbative corrections.
The axial vector current of this Lagrangian is
_ T
A"Zq'y"yszq +odtr—mdto . (1.4)
The axial vector coupling constant defined by the matrix
element

G,=2(P1| [ 4(z,3)d|P1) (1.5)

gets quark and meson contributions which must be calcu-
lated from the hedgehog configuration by projection onto
the proton spin-isospin eigenstate. The result following
from Birse’s Egs. (A10) and (A18) is a quark contribution
that depends on the mean number of pions in the soliton,
N ., approximately as

— AN N

225

G (g)=3g4(g){1 (1.6)

There is also an implicit dependence upon the meson
configuration, hidden in the quark wave functions U and
V determining g ,(g). Birse obtains a value N, ~1 and a
7% reduction of the quark contribution to G, from the
nominal bag model result.

The sigma-pion fields in the soliton also contribute
directly to G 4. The projection of the hedgehog matrix
element of this piece follows from Birse’s Eq. (A37) as' a
factor of (—1) to give

GA(meson)z—g<2f 4 (z,3;meson)d3r> (1.7

evaluated with the soliton profile functions for sigma and
pion. Birse’s soliton configuration is conveniently sum-
marized by the profile functions

o(r)=f_cos¢p=g(r) (1.8)
and a radial-isospin pion soliton

w(r)=1f,sing=h (r}t (1.9)
where the profile angle

¢(r)=1tanh(ar) (1.10)

varies from zero to 7 for O <r <infinity, with ¢ =0.916
for a radius 0.8 fm. The sigma-pion contribution to G , is

_ d .~ .d |,
GA(meson)—%f gzﬂ.z_ﬂ..zgz_o d3r
9 J oy |Hrrtdr (1.11)

which vanishes for a constant sigma field. In terms of the
angle ¢

167 .2, dd
GA(meson)—Tf,fsmd)drrdr . (1.12)
Birse obtains G ,(q)=0.98 and G ,(m)=0.81 for a very
unsatisfactory result. It was conjectured at the time that
radiative corrections might improve the model predic-
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tion, whose possibility we examine here. In a subsequent
extension of the chiral soliton model to include vector
mesons, Broniowski and Banerjee [12] obtained good
agreement and a much reduced meson component. Stern
and Clement [13] have also achieved an improved fit us-
ing different parameters for the sigma and a semiclassical
projection of the hedgehog.

Before we describe the radiative corrections to the
model G 4, let us discuss further the role of perturbative
calculations in this problem. There are essential features
of the problem—confinement and the spontaneously bro-
ken chiral symmetry of the vacuum state—which must be
incorporated in the basis states on which the perturbation
theory is erected. A rigorous theory of meson field fluc-
tuations on the soliton background [14] seems prohibi-
tively difficult even in the simplest model problems. The
evaluation of radiative corrections for meson field modes
other than simple plane waves is an intimidating task.
Nonetheless, it is interesting to make even the most naive
start at evaluating corrections to the underlying soliton
model if for no other reason than to see perturbation
theory fail explicitly, and then perhaps to fix it. Further-
more, many perturbative processes are not contained at
all in the soliton results, so that even a crude estimate of
their importance is useful. For example, radiative pro-
cesses with quark excitation, or with antiquarks, gluons,
L =1 sigmas and L =0 pions, various non-wave-function
time orderings, and so on are not included in the soliton
calculation. The perturbative processes which are includ-
ed in the soliton results can be identified and require spe-
cial attention. We consider all but these ‘“double-
counted” processes to be legitimate radiative corrections
to the soliton results. The double-counted perturbative
processes are among the largest, but an improved pertur-
bation scheme on the soliton background eliminates
many of these contributions. The reason is that the soli-
ton configuration is “immunized” against elastic radia-
tive processes. The source term for radiative modes
which leave the soliton unchanged are just the soliton
equations of motion, which vanish. This conclusion is
made clear in Egs. (36)—(39) of Ren and Banerjee [14].
The radiative processes that remain necessarily have exci-
tations of the internal degrees of freedom of the soliton.
However, no calculations exist on excited states of the
meson-quark soliton although the required equations are
also presented in Ren and Banerjee. Even if we were to
solve these equations for excited states we would have to
invoke a confinement mechanism for sensible results for
quark and gluon modes. We avoid this quagmire in our
first explorations of the problem and, without further
ado, evaluate such contributions using MIT bag modes.
For reference we first state results of meson radiative pro-
cesses calculated with the MIT bag as a source, and then
eliminate those terms which are decoupled from the soli-
ton. In the event that the perturbative predictions were
disastrous, we would be provided with strong motivation
to face the real difficulties without compromise. In fact,
the perturbative results seem well under control. One is
reminded of the similar experience in nuclear matter cal-
culations, where a modified perturbative approach has
led to an understanding of the properties of the strongly

interacting many-body problem.

In the following sections we discuss in order (1) gluon
exchange-, (2) nucleon-delta multiplet pion exchange-, (3)
other pion exchange-, (4) sigma-pion transition-, and
finally (5) sigma exchange-radiative corrections to the axi-
al vector coupling constant. All calculations are based on

TABLE 1. Contributions of amplitudes of Figs. 2(A)-10(B)
to dG,/G, and dZsq of Eq. (2.3). The QCD coupling
a=g?/4m~0.8. Small quantities in parentheses are contribu-
tions which survive elastic decoupling of mesons from the soli-
ton, described in Sec. II1 E.

Amplitude dG ,/G 4 dZ sq
(24) (0.653) (1.0)
B —0.043 0.129
C +0.017 0.086
D,E,F,G —0.004 0.004
H —0.0008
1 —0.005 0.0167
J +0.036
K —0.067
Total 2 (TE) —0.066a +0.236a
34 +0.0012 0.0018
B +0.00006 0.0002
C —0.0014
Total 3 (TM) —0.00015a +0.002a
4D —0.0225
E +0.0165
F —0.0199
Total 4 (Coul) —0.025%a
5B +0.019(0) +0.173(0)
C,D +0.132(0)
E +0.057(0) +0.102(0)
Total 5 (NA7) +0.208(0) +0.275(0)
64 —0.003 +0.024
B +0.015
C —0.006 +0.020
D +0.008
Total 6 (m,L =0) +0.014 +0.044
7A4,B +0.002 (0.0007) +0.0095
C,D +0.013 (—0.008)
E +0.031 (0)
F +0.018 (0)
G +0.057 (0)
H —0.004 +0.027
Total 7 (m,L =1) +0.127 (—0.011) +0.037
Total 6,7 +0.141 (0.003) +0.081
8A4,B +0.232 (0)
C,D,E +0.049
Total 8 (o,m) +0.281 (0.049)
9C,D,G —0.0009 (0)
E +0.0012 +0.0019
F —0.0017
H,I —0.0863 (0)
J —0.0050
K +0.0028 +0.0069
Total 9 (oL =0) —0.0899 (—0.003) +0.0088
104 —0.0023 +0.0118
B —0.0003
Total 10 (o,L =1) —0.0026 +0.0118
Total 9,10 —0.0925 (—0.005) +0.0206
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ordinary time-dependent perturbation theory using ener-
gy denominators for propagators, and all time orderings
for the two strong interaction vertices and the one weak
interaction vertex. In a straightforward way, many such
processes are recognized to make contributions that can
be ignored because they are effectively absorbed into
model wave functions. We omit as many calculational
details as possible and simply enumerate the perturbation
terms via topologically distinct Feynman diagrams, and
summarize the numerical results in Table I. Section II
contains the gluon radiative corrections; Sec. III contains
the meson radiative corrections calculated with the MIT
bag quarks as meson sources, and finally eliminates dou-
ble counted meson corrections which are decoupled from
the soliton; Sec. IV discusses other corrections and other
work; Sec. V is a summary and conclusion.

II. GLUON RADIATIVE CORRECTIONS
A. TE gluon exchange

Following the work of Close and Horgan and others
[15], we only briefly describe the elements required for
calculating the gluon radiative corrections. The pertur-
bation Hamiltonian is

A

H=—gqcp quzy"Ta.q d’r (2.1
with g%)cn /4T=a, the strong coupling parameter and
Ay a=1,...,8, are the Gell-Mann SU(3) (color) ma-
trices. The quark fields g will be limited to low-lying bag
modes with quantum numbers 1S, 2S, 1P, ,, and 1P;,,
for quarks and antiquarks. Our discussion will focus on
the lowest L =0 TE (i.e., magnetic dipole) gluon whose
bag mode wave function is also given in Appendix A.
The calculation requires (1S or 2S to 1S or 25) g-g-g ma-
trix elements and (1S or 2S plus 1P,,, or 1P;,,) g-G-g
matrix elements which are collected in Appendix B. The
effect of the lowest-lying TM gluon mode has also been
explored and found to be completely negligible compared
to TE. Later we discuss the contribution of the Coulomb
gluon exchange which is also very small.

We summarize the required amplitudes via the Feyn-
man diagrams of Fig. 2 and their contributions to dG ,,
the correction to the axial vector coupling, and to dZ sq,
the correction to the wave-function normalization. The
wave-function renormalization is required because the
perturbation mixes a 3¢g +g component into the nominal
3g nucleon state whose normalization must be reduced
accordingly. The corrected axial vector coupling is

G,+DG,=(G,+dG,)/(1+dZ sq) , (2.2)
leading to a complete correction
DG,/G,=dG,/G4—dZsq , (2.3)

keeping terms to second order in the strong interaction.
Note that a conserved vector current gets, term by term,
corrections dGy /Gy equal to dZ sq and no radiative
correction, so DGy /G, =0 as required. For the axial
vector current which is only partially conserved, this can-
cellation does not occur exactly and the problem in per-
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FIG. 2. Feynman diagrams for quark matrix elements of
operator X. (A) the nominal matrix element, and (B)-(K) are
transverse electric (lowest gluon bag mode) radiative correc-
tions. (B) and (C) with no quark excitations from the 1S mode
are gluonic nucleon contributions. In (D)-(H) heavy lines are
2S quark excitations. In (I)-(K) heavy lines are 1P, ,, and 1P;,
antiquarks. All possible time orderings of vertices and all spec-
tator interactions are implied. (L) and (M) make no contribu-
tions.

turbation theory is to choose a basis in which these par-
tial cancellations are recognizable. In this regard, our
work in the following is only a preliminary step in which
the passage to a conserved axial current is not explicitly
elucidated, but we are dependent on the underlying
chiral-invariant model for incorporating the partial con-
servation.

The uncorrected matrix element of Fig. 2(A) is evalu-
ated with the SU(6) spin-isospin 3¢ wave function with
model independent 1S quark radial functions. The pro-
cesses of Figs. 2(B) and 2(C) involving 1S quarks and a
TE gluon exchange, dominate the gluon radiative correc-
tions. These processses constitute a perturbative descrip-
tion of the mixing of the 3¢ nucleon with its 3g +g
gluonic-nucleon partner [16]. Similar processes involving
a 28 quark excitation are indicated in Figs. 2(D)-2(H).
Figure 2(H) has all possible time orderings of the gluon
interaction with the spectator quarks. Only Fig. 2(F)
contributes to the wave-function renormalization. Fig-
ures 2(I)-2(K) are also a priori interesting processes in-
volving 1P, ,, and 1P;,, antiquark excitations, some of
which make marginally competitive contributions. Radi-
ative processes involving only spectator quarks as in Fig.
2(L) contribute equally to dG , /G 4, and dZ sq and can-
cel, leaving the processes of Fig. 2(A)-2(K) to be calculat-
ed. Figure 2(M) involves only post or prior exchanges
which are supposed to be absorbed into the model wave
functions [17].

Gluon and other radiative contributions can sometimes
be deduced qualitatively and, for example, major cancel-
lations can be anticipated on the basis of the overall color
neutrality of the nucleon. The wave-function renormal-
ization dZ sq is positive and can dominate the correction
to G,. Although it is reassuring to see these intuitive
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features appear, by and large we are dependent on the de-
tailed calculations.

The contributions of the various TE gluon exchange
perturbation diagrams to dG 4 and to dZ sq are shown in
Table I and sum to

G ,+dG,=1.088—0.072a;, and 14+dZ sq
=1+40.236a, (2.4)
giving a net correction
DG , /G 4(TE)=(—0.066—0.236)a, = —0.302¢; .
(2.5)

B. TM gluon exchange

The TM gluon exchange has many fewer diagrams
shown in Fig. 3(A)-3(C), none of which compete with the
dominant TE exchange contributions of Fig. 2. The con-
tributions are shown in the table and sum to

dG ,/G ,=—0.0002a; and dZ sq = +0.0020c, (2.6)
giving a net correction from this source of

DG ,/G 4,(TM)=—0.002c, . 2.7

C. Coulomb gluon exchange

We calculate radiative corrections for L =0 and L =1
Coulomb gluon interactions of the quarks using the
Barnes, Close, and Monaghan [18] screened Coulomb in-
teraction for confined gluons. The interaction Hamiltoni-
an is

aS
H(Coul)=~£~fd3rpa(r)GC(r—r’)pa(r’)d3r’ (2.8)

with the quark color charge density

A

pa(r>=z7(r)y°7"q (r) 2.9)

and the screened Coulomb Green’s function

1/(r>) for L=0,
[(r <)/(r>)2+2rr']cos(??') for L=1,

(2.10)

G (r—r")=

e

s £ 7

FIG. 3. Transverse magnetic gluon radiative corrections.
Heavy quark lines are 1P,,, and 1P;,, quarks and 1S anti-
quarks.

A—a Bz CZ
b e €e? ¢

FIG. 4. Coulomb gluon radiative corrections. (A)-(C) with
an L =0 gluon and no quark excitation make no contribution.
(D) with L =0 gluon and 2S quark, (E) with L =0 gluon, 1P, 5,
antiquark and 28 quark, and (F) with L =1 gluon, 1P,,, and
1P;,, quarks, and 1S,2S antiquarks make nonzero contribu-
tions.

where r > (r <) is the greater (lesser) of » and r’, and less
than the bag radius which is 1 in our units. The relevant
diagrams are shown in Fig. 4. Those with post or prior
L =0 interactions with no quark excitations are absorbed
into the SU(6) wave function so Fig. 4(A) makes no con-
tribution. The L =0 exchange Z diagrams of Fig. 4(B)
and 4(C) contribute nothing because of the color neutrali-
ty of the nucleon state. The diagrams that remain are the
L =0 Coulomb gluon exchange with 2S quark excitation
of Figs. 4(D) and 4(E) and also the L =1 exchange with
1P, , and 1P, ,, quark excitation of Fig. 4(F). Their cal-
culation is straightforward and we just state the total
contribution

DG , /G 4(Coul)=—0.026a, , 2.11)

for a total one gluon exchange correction to the axial-
vector coupling constant of

DG , /G 4(one gluon exchange)= —0.330c, . (2.12)

Approximately three-quarters of this comes from the TE
wave function renormalization, and the other one quarter
from the explicit TE reduction of G ,. As already noted,
this dominance leads to an interpretation in terms of a
gluonic component of the nucleon which has some angu-
lar momentum carried by the gluon with a resultant
depolarization of the quarks and a necessary reduction of
G ,. For orientation, we use a value of a;=0.8 to give a
total gluon correction of DG 4, /G 4= —0.265. This value
of a; is much smaller than the frequently mentioned
value of 2.2 originally introduced in bag calculations to
remove the nucleon and delta degeneracy, but is close to
the value of a,=0.75 advocated by Barnes, Close, and
Monaghan [18], and to that of Golowich, Haqq, and Karl
[16], and to the bag model parametrization developed by
Donoghue and Johnson [19]. Stern and Clement [13]
favor an even smaller value.

III. MESON RADIATIVE CORRECTIONS

We consider the relativistic chiral quark model with
confined quarks in chiral invariant interaction with
scalar-isoscalar sigma mesons and with pions, for which
we calculate perturbative results for comparison with
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hedgehog soliton predictions. We discuss in order, pure-
ly pionic, mixed pion-sigma, and purely sigma contribu-
tions. The purely pionic contribution separates naturally
into NAm (L =1) processes which we discuss in the next
Sec. IIT A, and other L =0 and L =1 pion reactions, in-
volving quark excitations out of the 1S orbitals or excita-
tion of antiquark states, which we postpone to Sec. III B.

A. N A7 radiative processes

The (NAm) contribution is summarized by the dia-
grams of Fig. 5, where the coupling strengths G ,(NN)
G (NA), and G 4,(AA) are readily calculated from matrix
elements of A (z,3;q) with the nominal SU(6) wave func-
tions. The (NNw), (NAm), and (AAw) vertices are easily
expressed [9] in terms of couplings f(NNw), f(NAw),
and f(AAm) and a form factor F(k?)=3j,(kR)/kR for
an L =1 pion of momentum magnitude k.

A straightforward calculation of the axial coupling of
the A produced from a spin-up proton by emission of a
pion with (L =1; L,=1,0,—1) and (I,=+1,0,—1) pro-
duces a somewhat surprising result [20]. The A(J,=2,
I,=3) has an axial coupling of 3g ,(g) compared to the
proton (J,=1/2, I,=1/2) with g ,(q). However, the
A is produced with a probability of only } for this state
and all other A states have a smaller axial coupling. The
weighted mean of the A axial coupling over all spin-
isospin states is 2 X3 indicating a quark spin-isospin
depolarization from the initial nucleon due to the pion
emission. The correction to the nucleon axial coupling
will be the probability P of pion emission and reabsorp-
tion, multiplied by this averaged quark depolarization of
2 minus one from the wave-function renormalization

DG, /G =P(3—1), (3.1)

which is a negative contribution from the (7A) inter-
mediate state. This conclusion remains valid when (NA)
weak transitions are included. One might have thought
that the Adler-Weisberger sum rule [21] which is dom-
inated by the A(+ +) resonance in 7N scattering, and
which requires G 4 > 1 through the relation
1=1/6%=12M} /2821 [ 0 —0 ) (32)
(involving g2,y /47=13, M, is the nucleon mass, o4 is
the 7 -proton cross section at 7 laboratory energy v)
would be qualitatively reflected in the perturbative result.

FIG. 5. One pion exchange radiative corrections within the
NAm (L =1) system. (B)—(E) have NN, NA, AN, AA intermedi-
ate states. (F) is the pion pole contribution to the axial vector
matrix element vanishing at k =0. Single dashed lines are
pions.
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The (NA7) radiative corrections of Fig. 5 are readily
calculated using the factors of Appendix B. Integrals
over the virtual pion momentum get their major contri-
butions from ~2/R ~500 MeV/c, and have converged
by ~4/R. The resulting corrections, summarized in
Table I, sum to

DG, /G NAm)=dG ,/G ,—dZ sq

=+40.208—0.275=—0.067 (3.3)

dominated by 17% (Nw) and 10% (Aw) wave-function
renormalizations of the nominal three-quark nucleon
state. We have used a bag radius of 0.8 fm. The correc-
tions get rapidly more severe as the bag radius is reduced
and reach 0.52—0.66= —0.14 for R =0.6 fm. The indi-
vidual corrections dG , /G 4, and dZ sq are no longer in
any sense small and perhaps it is better to write

DG, /G, =(1+dG , /G ;) /(1+dZ sq)—1

=1.52/1.66—1=—0.08 (3.4)

which reduces the correction to G, and leaves a perhaps
believable perturbation correction. The legitimacy of
these pionic radiative corrections has already been ques-
tioned because of the elastic decoupling of the pion radia-
tive modes from the soliton. We will return to this ques-
tion in the subsection following our calculations using
MIT bagged quarks as meson sources. We turn now to
pion radiative processes which are not included in the
(N A7) system.

B. Other pion radiative corrections

The single pion emission amplitude of Fig. 5(F) in
which the virtual pion is annihilated by the axial current
is known from Nambu’s analysis [22] to contribute only
to the induced pseudoscalar coupling, but not to the axial
vector coupling because it vanishes at zero momentum
transfer where G 4 is defined. The surviving purely pion-
ic radiative corrections involve quark excitations, includ-
ing 28 quarks or a g-g pair, plus an L =0 or L =1 pion,
and are listed in Figs. 6 and 7. All these processes con-
nect the bare nucleon to intermediate quark states out-
side the (N A) multiplet and are not included in the previ-
ous calculations, or in the soliton calculation. There are
hazards of double-counting perturbative g-g amplitudes
which should be included as part of meson states. Such a
situation can be recognized when axial vector mesons are

1
]
D

77N

/ \
A—*—B

c 2 /I' D "‘\

FIG. 6. One pion exchange radiative corrections with L =0
pions and quark excitations. Heavy lines are 1P, ,, quarks and
15,28 antiquarks.
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F“/ s,/ /a

FIG. 7. One pion exchange radiative corrections with L =1
pions and quark excitations leading out of the NA system and
not included in Fig. 5. Heavy lines are 2S quarks and
1P, ;,1P;,, antiquarks.

considered, as in the Broniowski and Banerjee extension
of the sigma-pion-quark soliton to include the vector and
axial vector mesons. The contributions of individual pro-
cesses to dG 4, /G 4 and to dZ sq are listed in Table I. We
do not go into the calculational details which are
straightforward, and just report the result for all the ex-
tra pion radiative corrections

DG , /G 4(extra pion)=dG /G ,—dZ sq

=0.14—0.08=0.06 , (3.5)

which almost completely cancels that contained in the
(NAm) processes, leaving a net pionic radiative correc-
tion of —1%. This is of course much smaller than our
ability to calculate. As in the previous subsection, we
later select those processes of Fig. 7 which survive elastic
decoupling from the soliton, as legitimate radiative
corrections. We turn next to radiative processes involv-
ing both the pion and the sigma meson.

C. Sigma-pion radiative corrections

The Birse-Banerjee chiral soliton has a vacuum value
for the sigma field equal to —f .. They settle on a cou-
pling strength g,,, =5 which gives an external quark
mass M, =465 MeV. There is an essentially nonpertur-
bative defect in the soliton interior where the sigma field
switches from + f_ to — f_ giving an interior quark mass
M, (r) which can be much smaller than M, and even
negative, so the quarks are relativistic and approximate
the massless MIT bag modes. Our initial sigma-pion ra-
diative corrections will take account of fluctuations of the
sigma field on the vacuum background — f .. Such calcu-
lations are admittedly suspect, but provide necessary
orientation for later calculations where the effect of the
soliton field will be taken into account.

Following Birse’s Egs. (1.4) and (6.2), we have the in-
teraction Hamiltonian for the MIT bag quark source and
the sigma-pion transition axial-vector current. Another
ingredient of the calculation is a mass for the asymptotic
sigma field fluctuations which Birse takes as 1 GeV, fixing
the meson potential strength. We now present the results
of unmodified perturbation theory for sigma-pion and
then sigma-sigma processes. Following these two subsec-

Zl
D Ip"‘\\ E o:.

FIG. 8. Sigma-pion transition radiative corrections. (A) and
(B) have L(sigma)=0, L(pion)=1, no quark excitation. (C) has
a 2S5 quark. (D) and (E) have L(sigma)=1, L(pion)=0, and
1P, ,, quark and 1S antiquark excitations. Double dashed lines
are sigmas.

tions, we discuss the soliton radiative corrections which
survive elastic decoupling.

Figure 8 contains the sigma-pion diagrams that con-
tribute to dG , /G 4. None of these diagrams involving a
sigma-pion transition via the axial vector current have
accompanying wave-function renormalizations. The pro-
cesses involving all possible time-orderings and all quark
contributions like Figs. 8(A) and 8(B), with an L =0 sig-
ma transformed to an L =1 pion and no quark excita-
tions, dominate and make a large correction

DG, /G ,[Figs. 8(A) and 8(B)]=+0.232 .  (3.6)

This diagram is directly analogous to the meson contribu-
tion in the soliton calculation, where the hedgehog static
sigma and pion configurations contribute a large positive
G ,(m)=+0.81. The modification of naive perturbation
theory necessary for this particularly important process
will be discussed in a later subsection.

Other processes which have quark excitation, g-g exci-
tation, or L =1 sigma and L =0 pion with 1P,,, quark
excitation, contribute +0.049 for a total sigma-pion
correction

DG, /G 4(o-7)=+0.281 . (3.7)

D. Sigma radiative corrections

Radiative corrections involving only a scalar sigma
meson with L =0 or L =1 and all possible L =0 and
L =1 quark excitations, are listed in Figs. 9 and 10. Of
these, all diagrams with an L =0 sigma and 1S quarks,
Figs. 9(A) and 9(B), can be ignored because they contrib-
ute equally to dG , /G 4, and to dZ sq and therefore con-
tribute nothing to the net correction DG , /G ,. This is
obvious from the spin and isospin independence of the
sigma coupling, or from the fact that these sigma-
exchanges can be absorbed into the 1S quark wave func-
tion without change of the spin or isospin or, consequent-
ly, of the axial coupling. The remaining diagrams all in-
volve either an L =0 sigma and 2S5 quark or 1P antiquark
excitations, or an L =1 sigma plus 1P quark. Diagrams
with an L =1 sigma and 1S quark plus 1S antiquark do
not contribute.

The remaining sigma diagrams are easily evaluated and
we simply state the result
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FIG. 9. Sigma exchange radiative corrections with
L(sigma)=0. (A) and (B) do not contribute. (C)—(K) have 2§
quark and 1P, ,, antiquark excitations.

The dominant contribution of (—0.086) comes from the
L =0 sigma exchange with excitation of a 1P, ,, anti-
quark in the Z process of Figs. 9(H) and 9(I). All the oth-
er processes contribute fractions of 1%, but the direct
corrections dG , /G, are predominantly negative, and
reinforce the wave-function renormalization contribu-
tions which dominate. All these fragmentary contribu-
tions combine to (—0.027).

The sum of all these radiative corrections—Egs. (2.12),
(3.3), (3.5), (3.7), and (3.8)—constitutes the radiative
correction to G 4 for the MIT bag model coupled pertur-
batively to QCD and to the linear (o-7) chiral restoring
interaction. The net result

DG 4,/G 4= —0.265(gluons)—0.067(N Am)+0.06()
+0.281(07)—0.113(0)
=—0.105 (3.9)

should be applied to Eq. (1.1) to reduce G, from 1.09 to
0.975. There are severe cancellations in the contributions
of Eq. (3.9) whose magnitudes sum to 0.72. The cancella-

YW /)

FIG. 10. Sigma exchange radiative corrections with
L(sigma)-1 and 1P, ,,, 1P;,,, 25 quark and 1S antiquark excita-
tions. (C) and (D) do not contribute.

tions can be believed qualitatively but the resulting mag-
nitude cannot be taken seriously for at least two reasons.
One is that no direct connection has been built into the
gluon and meson corrections, so their cancellations must
be somewhat fortuitous and can be easily destroyed by a
different choice of the QCD a,. But also, the very ex-
istence of a soliton means that at least the sigma-quark
interaction cannot be treated perturbatively.

Before we leave the MIT bag model for the Birse-
Banerjee soliton model, it is interesting to see what the
successes and failures of perturbation theory are, based
on Birse’s nonperturbative results. It is amusing that at
least the N A contribution is very close to the 7% reduc-
tion of Eq. (1.6) and, even though they have quite
different origins, the perturbative result is not misleading.
Birse’s result contains no semblance of the extra 7 contri-
bution of +0.06 or of the extra o contribution of
—0.113. The o-7 transition contribution of 0.232 from
Figs. 8(A) and 8(B) is a failure of perturbation theory to
produce Birse’s meson contribution of 0.81/1.09=0.74.

In the next subsection we bring our perturbative treat-
ment of meson field fluctuations into accord with the soli-
ton as source and, in the process, make a substantial
reduction in the radiative corrections involving sigmas
and pions.

E. Radiative corrections to the soliton

Soliton matrix elements of functional derivatives of the
Lagrangian with respect to the meson fields

(Sol|dL /3¢|Sol )
are equations of motion for the soliton and vanish for

(Sol|¢|Sol) =9, ,

the soliton configuration. If we go further and investigate
fluctuations 8¢ on the soliton background, the same func-
tional derivative serves as the source of the 8¢ and van-
ishes in the soliton matrix element, decoupling the fluc-
tuations from the soliton. This conclusion is also con-
tained in the explicit equations of motion of Ren and
Banerjee [14]. Correspondingly, a large number of ampli-
tudes in the radiative corrections will vanish. Every soli-
ton pion or sigma vertex which leaves the soliton unexcit-
ed will go to zero. Going through the figures, we see that
all the amplitudes of Fig. 5 will be zero, which is only to
say that NAw radiative corrections are already counted
in the Birse calculation. The amplitudes of Fig. 6 remain
and will be taken at their MIT bag value. Amplitudes
7(A), 7(D), 7(E), 7(F), and 7(G) with 15-1S MIT bag ver-
tices are set to zero, as are the previously dominant o -7
transition amplitudes of Figs. 8(A) and 8(B) now included
in Birse’s (0.81), and the amplitudes 9(C), 9(D), 9(G),
9(H), and 9(I).

What remains after decoupling elastic radiative transi-
tions from the soliton are much reduced meson radiative
corrections and a correction to the axial vector coupling
constant replacing the MIT bag result Eq. (3.9):
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DG ,/G 4=—0.265(gluons)+0(NAm)—0.078(r)
+0.049(o-7)—0.026(0)

=—-0.32. (3.10)

IV. DISCUSSION

A. Nonleading QCD contributions

The TE gluon radiative corrections have included only
the lowest energy magnetic dipole contribution with
o(TE1, Ng =1)=2.744. The dominant contribution to
DG , /G 4 comes from the wave function renormalization
necessitated by a gluonic nucleon component with a
(TE1, Ng =1) gluon plus three S(Ns=1) quarks. It is
easy to check only one convergence property of the per-
turbation sequence without being led into prohibitive
computational complexity, and that is to calculate contri-
butions for other radial excitations with Ng,Ns > 1. Not
surprisingly, we find that the diagonal elements in these
arrays dominate the nondiagonal by an order of magni-
tude. The convergence is even more rapid for the
Ng =Ns =1 leading term which dominates Figs. 2(B) and
2(C) by two orders. The Ng =Ns =2 term dominates the
Ng =1, Ns =2 by one order and is the one quoted in
Table I for the contribution of Fig. 2(F) to dZ sq. Similar
conclusions apply to the Z graphs of Figs. 2(J) and 2(K)
where the term with Ng =Ns =Np =1 gives 95% of the
rapidly convergent diagonal sum. To explore the contri-
bution of higher multipoles would require the full angular
momentum formalism and is not feasible with our tech-
nique of projection operators. Our general experience is
that the leading diagonal term dominates other contribu-
tions at the 90% level, a precision which exceeds our
ability to calculate.

B. Other corrections

Model predictions are also subject to corrections from
the current quark mass and from recoil effects [23],
which can easily overwhelm the radiative corrections
which are our primary interest. We quote radiative
corrections only for zero quark mass because in our limit-
ed explorations we have found them to be insensitive to
this parameter. We have included recoil only in the
(NAm) contributions, and there only in the energy
denominators. Recoil effects in the energy denominators
reduce the contribution of these diagrams to DG, /G ,
by thirty percent.

Recoil effects will be the only contribution to the elasti-
cally decoupled radiative modes which have been com-
pletely omitted in going from radiative corrections for
the MIT bag to those for the soliton. It probably is not
worth any great effort to refine the small radiative correc-
tions involving inelastic transitions in the source, but it
would be interesting to refine our treatment of elastic
decoupling to include leading recoil effects.

C. Constituent quark model

In the work of Weinberg [24], Peris [25], and Rosenfeld
and Rosner [26], based on the chiral constituent quark

theory of Manohar and Georgi [27], a very different view
of nucleon structure leads to a calculation of the leading
1/N, correction to the axial vector coupling constant.
Here we point out differences between the constituent
quark model and the relativistic chiral quark bag model
of the nucleon. In their work a constituent quark Q with
mass M, =360 MeV is formed in the chiral phase transi-
tion in which the sigma field assumes the value (—f )
everywhere. Rosenfeld and Rosner find that the constitu-
ent quark has the Dirac coupling g ,(Q)=1 and a Dirac
magnetic moment fit to the nucleon magnetic moment by
choice of M. Peris calculates one-loop (o, 7) radiative
corrections to g 4(Q) in leading log approximation using
the linear 0 model and finds a renormalization

g4(Q)=1— e 4.1)

g

and with M, =4=nf_ gets g ,(Q)=1—0.2 and a nucleon
axial coupling

G,=5/3g,(Q)=1.3. 4.2)

Weinberg uses the Adler-Weisberger sum rule for pion
scattering from the constituent quark, together with the
dominance of w+d over wtu scattering to argue for a
similar reduction. Peris also shows that the calculations
are equivalent provided 7mQ scattering is dominated by o
production through a one pion exchange Primakoff-type
process. All these calculations indicate a radiative reduc-
tion of g,(Q) at the 10-20% level. There remain
confinement effects and center-of-mass effects contribut-
ing further 10% reductions. In addition, Peris states that
gluon exchange specifically does not renormalize g ,(Q)
in the leading-log approximation.

The two points of view could hardly be more different.
The bag model starts with a reduction of g ,(q) due to
confinement, then a positive contribution from the
mesons due to the reduction of ¢ inside the bag, and fol-
lows with reduction due to gluon exchange involving in-
dividual quarks and quarks in interaction with spectators
dominated by Figs. 2(B) and 2(C). The chiral soliton
quark bag model does not manifest the Adler-Weisberger
sum rule at the quark level, but only at the nucleon level.
Furthermore, by working with a static source, the bag
model has very soft form factors which provide low
momentum cutoffs before the logarithmic divergences of
Peris are ever encountered.

D. One phase model

The chiral soliton quark model can be brought into
closer accord with the constituent quark model of
Manohar and Georgi and the work of Weinberg and
Peris at small cost and substantial benefit, as indicated by
Ren and Banerjee [28] and in earlier work [29]. At a
smaller value of g,,, =4 rather than 5 as used by Birse,
the interior o field remains near its vacuum value of —f
and does not flip over to +f, at » =0. As a result the
quarks have  almost their  asymptotic mass
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Mq=g,,. /=373 MeV everywhere and must be
confined by the bag. The o and 7 fields differ little from
their asymptotic values and can sensibly be treated in
perturbation theory. The hedgehog soliton calculation is
then replaced with a perturbatively corrected MIT bag.
The radiative corrections of Eq. (3.9) are relevant with

just two modifications. The meson contributions must be
reduced by a factor of (%)2 to account for the changed
coupling strength, and the gluon correction must be
corrected by a factor of 0.62 to go from Mg =0 to
Mg =373 MeV in the calculation of the dominant TE
1S-1S matrix element. The resulting correction to G 4 is

DG, /G 4(Mq =373 MeV)=—0.265(0.62)+(—0.067+0.06+0.281—0.113)(0.64)

=—0.06 .

The axial matrix element g, is increased from 0.653 to
0.80 and the nucleon axial coupling becomes

G,=30.8(1—0.06)=1.25 . (4.4)

If true, the benefits of being able to use constituent
quarks in a bag, and perturbation theory on a simple vac-
uum background are enormous. The whole intractable
problem of radiative corrections to the soliton would be
avoided. There are still substantial differences with the
work of Weinberg and of Peris, who ignore spectator in-
teractions, do not depend on confinement for cutoffs and
have no gluon radiative corrections following Manohar
and Georgi who recommended a gluon coupling much
smaller than that of Donoghue and Johnson, which is the
one used here. The Adler-Weisberger sum rule, which
depends upon PCAC and the Goldberger-Treiman rela-
tion, will be satisfied at the nucleon level but not at the
quark level.

V. CONCLUSIONS

Gluon and meson radiative corrections to the nucleon
axial vector coupling constant have been calculated in the
relativistic chiral quark model. Second-order perturba-
tive processes of Figs. 2-10 have been included. The
dominant contributions to the radiative corrections are
made by the processes of Figs. 2(B) and 2(C). These are
transverse electric gluon exchanges which mix a (three-
quark plus gluon) component with the usual three-quark
nucleon state with a probability of order 0.23«,, depolar-
izing the quarks and reducing the axial vector coupling
by 0.30a,. Another significant process is the sigma-pion
transition of Figs. 8(A) and 8(B) which is a positive con-
tribution tending to cancel the gluon contribution. The
degree of cancellation is difficult to calculate precisely not
only because of the uncertainty in the gluon coupling
strength but primarily because of a sensitivity of the sig-
ma and pion couplings to the soliton backgrounds. Re-
cent work by Mattingly and Stevenson [30] determines
the gluon coupling in perturbative QCD even at very low
momentum transfers and supports a value near 0.8 for
in bag calculations, which puts the gluon part of the cal-
culation under control. A heuristic calculation of the
effect of the soliton background on meson couplings indi-

[

cates that meson corrections must be substantially re-
duced, because the soliton is elastically decoupled from
meson radiative modes. The meson radiative corrections
that remain involve inelastic transitions on meson emis-
sion and absorption. Calculated in the MIT bag approxi-
mation these corrections are predicted to be
insignificantly small. An improved treatment of these
corrections to the chiral soliton quark model leads into
recoil corrections to elastic decoupling and to inelastic
transition amplitudes requiring excited states of the soli-
ton. We have showed that the relevant amplitudes are
very small as calculated with MIT bag sources, leaving
the dominant TE gluon correction to reduce the axial
coupling as much as 30%. Agreement with experiment is
only qualitative. Applied directly to Birse’s result, G, is
reduced from

to perhaps

(0.98+0.81)(1—0.3)=1.25,

but it is still necessary to rationalize this correction with
the Banerjee and Broniowski vector meson soliton result
which already agrees with experiment.

Finally, we are led to the Manohar-Georgi constituent
quarks bag-confined in a model-dependent way as the
most tractable basis for calculating radiative corrections
to the axial vector coupling constant. The corrections
are small and the agreement is encouraging.
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APPENDIX A: BAG MODEL DIRAC SPINORS

The bag model Dirac spinors for massless quark and
anti-quark states, with bag radius equal unity, are the fol-
lowing.

S states: gq[S]=(U,ioc?V)y (for quarks), g[S]
=(o?V,iU)Y (for antiquarks), with y a Pauli spinor,
X=io,x an antispinor, and U(r)=Nj,(wr), VI(r)
=Nj,(wr) where w[1S5]=2.043, N[1S5]=0.6403; and
®[25]=5.396, N[2S5]=1.538.
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1P,,, state: q[P,,]=(U,—ioc?V)o?x, q[P;] G(TEI)=(‘/?17»a/2)(N/\/Z))‘/§j1(cor)(’?x€g) ,
and V[P, ,] =1.089j,(3.811r). G(TM1)=(Vakr,/2)N /V2w)V3
1P, state: q[P;,,]=(U,io-?V)E-Py and g[P;)] X{&,[2j(wr)—1j,(0r)]+P(E,?)j,(wr)
=(o?V,iU)e-PY with U[P;,,] =1.065j,(3.203r) and (&5 water)] g Phlen)
V[P;,,]1=1.065/,(3.203r). The projection operator for
the spin-3 vector-spinor £-P =(e?—oPo-€/3)3/ V2 is
a convenient but redundant representation involving a
three-component polarization vector € and a two-
component Pauli spinor Y. The six states must be
; . 5
::ilghted with a further factor of £ in the P;,, propaga- N2g, =9.097, wpp=2.744; N2y =21.190, Oy
In addition, we note gluon TE1 and TM1 modes: =4.493 .

where a=gcp /4m=0.8 is the nominal value of the

a

gluon coupling, A, are the Gell-Mann SU(3) matrices, €

g
is the gluon polarization vector, and

APPENDIX B: MATRIX ELEMENTS

The table of matrix elements .
I. TE matrix elements with a common factor V'al,/2 removed, for massless quarks in a bag of unit radius. y are
Pauli spinors, ¥ antispinors:

(q1S|H(TE)|q1S)=0.4929x} 0 -€,X; ,

(g2S|H(TE)|q1S ) =0.656)/ (2S)0-€,x,(1S) ,

(O|H(TE)|q1S,gP, ;) =—0.3255¥ (P, ;)0 -€,x,(1S) ,

(O|H(TE)|q18,gP; ;) =—0.2093% " (1P3,,)(2€,-€, —io-€, X €, )x;(1S) .
II. Axial vector matrix elements with H,, =0 ,7,:

(q1S|H,|q18)=0.6530x/ 0, 7.X; ,

(g2S|H,|q1S )= —0.1390x} (2S)o,7,x,(1S) ,

(q2S|H, |25 )=0.4091x /o, 7.X; ,

(0|H,|q1S,gP, ,, ) =0.4695% T (P, ,,)o,7,x:(1S) ,

(0|H,|q2S,qP, ;) =0.4150% * (P, ,)0,7,x,(2S) ,

(0|H,1q18,gP;,,) =0.1985% *(P; ,)(2€,2—io €, X2)7,x(1S) ,

(0|H,|q28,qP; ;) =0.1265% " (P;,)(28,-2—io-€, X2)7,x(2S) ,

(qP\,,|H,|gP,,,)=—0.2641% (P, )0, 7,X (P, ) ,

(gP,,,|H,|gP3,,) =+0.2897% [ (P3,)(28, -2 —ic €, X2)T,X /(P ) ,

(gP;3,,|H,|qP3,,) =X (P3,,)(—0.7066 4 —0.2923B)7,% ;(P3,,) ,

where
A=(&-P*o,&P),
B=(€i-P+U-?UZU-?€f-P) ,

both averaged on 7.
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