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Formulas are derived for cross sections for inclusive (p, Z++) and (p, p' ir+) reactions; these are
shown to depend on the pion self-energy in the nucleus, and the production and decay vertices of
the b,++. The pion self-energy includes both nucleon excitation (NN ) as well as delta excita-
tion (DN ) in the nucleus. The pion-nucleon couplings in the transition vertex as well as in the
self-energy are written using relativistic pseudovector coupling; results are compared with a non-
relativistic reduction. The distortions of the continuum particles are included in a distorted-wave
Fermi gas" approximation. Calculations are made for the excitation spectrum of the nucleus, do/des,
and the angular distribution in the (p, 4++) reaction, for proton beam energies from threshold to
3 GeV. For the (p, p'ir+) reaction cross sections are calculated for the proton spectrum and the
distribution der/dA Ap'dE~idE at fixed values of the proton and pion angles and a fixed value of
F„I. The latter essentially gives the excitation energy spectrum of the nucleus. Many interesting
features are seen in these spectra. The differences in results using relativistic pion-nucleon coupling
and its nonrelativistic reduction are shown to increase with the beam energy. Around 400 MeV,
there is little difference in the cross sections but at 1 GeV and beyond the difference becomes large,
changing both the magnitude and shape of the distributions. The inclusion of distortions reduces
the magnitude of the cross section but leaves the shape unchanged.

PACS number(s): 25.40.Ve, 14.20.Gk, 21.65.+f, 24.10.Jv

I. INTRODUCTION

A wide variety of nuclear reactions at intermediate en-
ergies can be well described using nucleons, pions, and
deltas as the "elementary" degrees of freedom [1]. Using
this approach one can obtain a quantitative description
of various nuclear reactions induced by pions and nucle-
ons, though the precise form of the delta-nucleus inter-
action remains a major uncertainty in these descriptions
[2, 3]. In the past few years there has been great inter-
est in performing experiments where the 6(1232) isobar
is produced explicitly; the aim is to directly measure the
nuclear efFects in isobar production. Since the 6 is a spin-
isospin excitation of the nucleon, much of this experimen-
tal work has been done with charge-exchange reactions
which show strong selectivity for 6 excitation. Measured
inclusive energy spectra of neutrons in (p, n) reactions [4],
and tritons in (sHe, t) reactions [5, 6], on targets ranging
from i2C to 20spb have shown broad bumps around 300
MeV excitation energy with large cross sections. They
correspond to excitation of a nucleon in the target nu-
cleus to a delta isobar. Similar 6 excitations have also
been seen in heavy-ion charge-exchange reactions [7] like
(i C, 12N) (160 16 N) and (20Ne 20 F).

In the above experiments, 4 is produced in the nu-
clear environment, so the relevant measurements are not
made on an isolated delta, or its decay products (nucleon
and pion). Thus these data are suited to explore the
real delta-nucleon hole (AN ) excitations in nuclei and
thereby the collective aspects of these modes. To date

probably the most dramatic result in these reactions is
the observed shift in the position of the 6 peak, relative
to the position of the same peak on a hydrogen target. It
is generally interpreted as a manifestation of the effect of
6-nucleus collective dynamics, though this interpretation
is not firm [8]. To resolve this question a second gener-
ation of experiments have been done recently at KEK
and Saturne [9], where the triton in (sHe, t) and neutron
in (p, n) reactions are seen in coincidence with various
charged particles like x+, pp, vr+p, etc. The data where
the ++p are measured in coincidence do not appear to
show any shift from the free 6 peak.

Another class of intermediate energy reactions are
those where the b, appears as one of the final reaction
products, and its properties can therefore be measured
directly. In a few cases the presence of the 4 can be
inferred by measuring the recoiling nucleus, as in the pi-
oneering experiment on the 6Li, (p, 6++)6He reaction at
Saturne [10]. A second type of reaction measures the ejec-
tile nucleus on proton targets, as in the experiments on

p( He, t)A++ or p( C, B)6++ reactions, carried out at
Saturne and Dubna [5—7, ll]. These measurements are
suitable for studying the delta-nucleus interaction in the
continuum and the transition interaction pp —+ nL++.

Furthermore, as the 4 is a spin-isospin 3/2 excita-
tion of the nucleon with large momentum mismatch and
with an excitation energy of roughly 300 MeV, 4 pro-
duction reactions provide a way to study spin-isospin
modes in nuclei which correspond to single or double
spin-isospin flip at large momentum transfer. In situa-

47 1701 1993 The American Physical Society



1702 B. K. JAIN, NEELIMA G. KELKAR, AND J. T. LONDERGAN 47

tions where the final nuclear spectrum has only a single
particle-stable state one explores the exclusive transition
density corresponding to this state; otherwise the data
determine the transition density inclusive of all particle
bound states. Inspired by such a strong physics poten-
tial of the (p, b,++) reaction extensive theoretical efForts
have been made to understand its reaction mechanism
and identify a consistent theoretical framework for an-
alyzing the data [12—14]. It has been found that this
reaction proceeds in one step and the measured cross
sections can be adequately described in the framework of
the distorted-wave Born approximation (DWBA). It has
also been found that, due to very large momentum trans-
fer ( beam momentum) involved in the excitation of a
bound proton in the initial state to 6++ in the contin-
uum in the final state, the "target excitation" amplitude
in the (p, 6++) reaction contributes little beyond 1 GeV
beam energy [15].

Another way to study experimentally the (p, 4++) re-
action is to detect directly the 4++ through coincidence
measurement of its decay products p and m+. This pro-
cedure has the great advantage that the reaction ean be
performed on any target nucleus. The experiments would
lead to inclusive measurements because here the residual
nucleus can be in any state, including particle-unstable
states. The data would explore the full spin-isospin re-
sponse of the nucleus in the momentum transfer domain
beyond about 300 MeV/c.

The energy transfer to the nucleus in these inclusive
measurements can vary from small to very large by choos-
ing different energies of the outgoing delta. This response
could be very difFerent from that in the (p, n) or (p, p')
reactions, where the relation between energy and mo-
mentum transferred to the nucleus follows the free one-
nucleon dispersion relation. The nature of the response
could also be different because as an unstable resonant
state, the 6 has a mass distribution. For a given en-
ergy transfer, this leads to an integral over a range of
momentum transfer to the nucleus.

In the present paper we have studied the inclusive
(p, A++) and (p, p'sr+) reactions in nuclei. Guided by
previous theoretical work [12—14] we assume that b, ++
excitation proceeds in one step and only the excitation
of the projectile proton contributes (i.e. , we neglect the
"target excitation" contribution arising from excitation
of a target nucleon to a 6). The p ~ 6++ transition
is described by the one-pion relativistic pseudovector La-
grangian with appropriate form factor at the vertex. The
distortion of the continuum proton and the delta are de-
scribed in the eikonal approximation which, as has been
shown recently by Kelkar and Jain [16], compares well
with the exact solution of the Schrodinger wave equation
in the present case. The response of the nucleus is de-
scribed by a "distorted-wave Fermi gas model" [17]. The
pion propagator in the nuclear medium is written rela-
tivistically. Calculations are made for various differential
cross sections with a proton beam which goes from low
energy, around 400 MeV, to 3 GeV. For comparison we
have also used nonrelativistic expressions for the coupling
of the pion.

We have used the longitudinal contribution from vr ex-

change to describe the spin-averaged p —+ 4++ transi-
tion. We have not included the tranverse contribution
from p exchange. The detailed experimental studies by
Wicklund et at. [18] clearly demonstrate that pion ex-
change gives a very good fit to the free (p, 6++) reac-
tion over a wide kinematic region. The spin-averaged

(p, 4) data are reproduced rather well by a model which
includes vr exchange but subtracts off the contributions
from small impact parameter [12, 19]. In our calcula-
tion we use a Landau-Migdal term to incorporate short-
ranged repulsion in the hadronic interaction; this should
give a very good approximation to the spin-averaged
(p, 6) reaction.

A second reason for omitting p exchange is that at-
tempts to include this in the pp ~ nA++ reaction
have obtained very unsatisfactory results. A recent de-
tailed study by Jain and Santra [20] and earlier work by
Dmitriev, Suskov, and Gaarde [12] both showed that the
experimental data on this reaction are better described
by one-pion exchange only. Thus either the strength of
the pNA coupling, fz~~, is considerably weaker than is
usually assumed, or some additional amplitude tends to
cancel the contribution from the p. Finally, (d, 2p) ex-
periments by Ellegaard et at. [19] suggested a very large
transverse component in the NN —+ N6 reaction; how-
ever Sarns and Dmitriev have shown [21] that the large
transverse contribution arises from deuteron distortion
effects, and thus would not be present in our reaction. In
view of these facts we have not considered p exchange in
the spin-averaged p —+ 4++ transition.

In our model, the (p, p'sr+) reaction is produced by
the decay of the 4++. Since the isobar is produced with
large kinetic energy, we assume that nuclear distortions
do not significantl affect the mass distribution of the 6
or its subsequent decay into p and sr+.

Before concluding this section we note that the final
state in the (p, p' 7r+) reaction contains at least three free
particles. In principle we must consider the interaction
between the final p' and sr+ with each other, and also
their interactions with the recoiling nucleus. However,
if we restrict ourselves to experimental situations where
the available energy of the p'sr+ system is in the range
of the delta mass, the dominant efFect of the interaction
between p' and 7r+ is the production of the 4++. In that
ease the remaining final state interactions can also be
described reasonably well by considering the interaction
of the 6++ with the recoiling nucleus. Thus our model
calculations on the (p, p'sr+) reaction, presented in this
paper, should be applicable in the kinematic region when
the invariant mass of the p'sr+ system is close to the
central mass of the 6++ (1232 MeV). Because of this the
preemission pion diagram also would contribute little to
the (p, p'sr+) reaction in the region of the applicability of
our model.

In Sec. II we give the formalism for inclusive (p, 6++)
reactions. Initially we derive expressions for the transi-
tion amplitude using plane waves for the proton and delta
and further include the effects of distortion. We discuss
the results and study the behavior of various cross sec-
tions and thereby the response of the nucleus at incident
proton energies from threshold to 3 GeV. We also study
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the missing mass spectra for the inclusive (p, b,++) re-
action which show trends similar to that in the exclusive
(p, 6++) reaction

In Sec. III we study the inclusive (p, p'sr+) reaction.
The formalism is similar to that for the (p, b,++) re-
action, and the cross section is written in terms of the
one-pion-exchange interaction, delta propagator, its de-
cay vertex, and the nuclear response. In both cases we
compare results using the relativistic and nonrelativistic
pion-nucleon couplings. We calculate the inclusive pro-
ton energy spectrum for the (p, p'ir+) reaction. As our
work is exploratory in nature, we also study the other
possible differential cross sections in difFerent kinematic
regions, which may prove useful in planning future ex-
periments.

II. INCLUSIVE (p, Lh++) REACTIONS

A. Formalism

In an inclusive (p, 4++) reaction on the nucleus, the
nucleus is left in any state consistent with the kinematics.
The cross section for the inclusive (p, 6++) reaction on
a spin-zero nucleus is written in terms of the transition
amplitude, T„p, where n is the excited state of the nucleus
and 0 the ground state of the target nucleus, as

Here E„and E~ are the energies of the incident proton
and outgoing delta and ~ = E~ —E~ is the energy trans-
ferred to the nucleus. In DWBA the transition matrix
T„o has the form

T„p(k~, k„)

ri, Q++ ) V .(i)T+ . ~(i) p, 0

Here g's denote distorted waves for the proton and delta.

(4)

T and S are the isospin and spin transition operators,
respectively, for the transition 1/2 k 3/2. In Eq. (3)
H~~~ is the nuclear pion-nucleon coupling vertex,

F(t)~ q.
mar

(5)

If the nucleon in the nucleus is excited to a 6, the pion-
nucleon vertex H ~~ is replaced by H ~~. The rela-
tivistic version of the above interaction will be considered
later. w and q are the energy and momentum transfer
and t = (w2 —[q[2) is the four-momentum transfer. f (f')
and F(t) (F'(t)) denote the bare coupling and form fac-
tor, respectively, for the vrNN (7rNA) vertex. The values
of the coupling constants are taken as f = 1.0026 and
f* = 2.1562. The form factors F and F' are described
by a monopole form:

2 —rn2
F(t) = (6)

where the cutoff parameter, A, gives a measure of its
extension. On the choice of the values of this parame-
ter there is no definite agreement. However a value of 1
GeV/c or larger seems essential for explaining some fun-
damental nuclear physics phenomena like deuteron prop-
erties [22] (1.0 ( A & 1.4 GeV/c), N —N scattering data
[23] (0.9 ( A ( 1.4 GeV/c), and pp —+ n6++ transition
data [24] (A 1.0—1.2 GeV/c). We therefore use A = 1.2
GeV/c. However, we also present some calculated cross
sections for comparison using A = 0.65 GeV/c, a value
nearer to that obtained with quark models [25] and the
plane-wave Born approximation (PWBA) analysis of the
pp —k nD++ transition data [12].

To evaluate Eq. (2), we first write the distorted waves
in momentum space, giving

V is the spin-isospin interaction which, in the nonrel-
ativistic version of the one-pion-exchange potential, is
written as

V (i) = V(~, q)S+ qH~&~(i), (3)

where V(a, q)S+ q is the transition vertex along with
the pion propagator for the p +6-++ transition, i.e. ,

T„(k~,k )o= dkx'dk&kx'(k&)kz+ (k') x
~ k)„(n, d.++ ) V (i)T+.x(i) p, o), kx

where k', denotes the momentum of the subscripted par-
ticle in the medium. Analogous to q, the momentum
transfer q' corresponding to the local momenta is

q'=k„' —k' .

To simplify evaluation of Eq. (7) we now observe the
following.

(i) The energy region of the beam is around 1 GeV and
beyond. At these energies the local momenta k„' and k&
of the continuum particles do not differ much from their
asymptotic values.

(ii) The momentum transfer, q, in the (p, b,++) reac-
tion is large () 250 MeV/c).

(iii) As shown previously by Jain [14], the momentum
dependence of the transition interaction V in this high
momentum range is weak.

In view of these reasons one can reasonably approxi-
mate the interaction V(u, q) in Eq. (2) by its values cor-

responding to the asymptotic momentum transfer q (=
k„—k~). This approximation factorizes T„p as

(k, k ) =—V( q)(&++IS'. qT' lp)F (—&)
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where

F-p(-g) = n ) .X&.*(r,)X„'„(r,)II.NN(i)~ —(i) 0

) 6(cu —~„) ) IT„pl

with

"'x~'(r)x~, (r)~ .(r) (10)
= -l&(~, q)l' ).~(~ —~ )IF o(—g)l', (12)

n

where the term in the square brackets is the dynamical
structure factor and is commonly denoted by S(q, u).

p„p(r) = n ) b(r —r, )H ~~(i)7 (i) 0 X. Plane-wave description

Now substituting Eq. (9) for T„p we obtain
If we use plane waves for the continuum particles, i.e.

proton and delta, we get

2

S(q, ~) =—).~(~ —~ )IF.o(—g)l =).&(~ —~ ) n ) e''"'H ~iv(i)~ (i) 0
n n z

(13)

In an approximation of nuclear matter to the nucleus
S(q, cu) can be further written as

(14)

3~'
V=Z/pp= s Z.

kF~
(15)

II(w, q), is the pion self-energy in the nuclear medium
and is related to its susceptibility X~(u, q) through

11(q ~) = -lql'x(q, ~). (16)

In the relativistic form we replace (—qz) by p.
In arriving at the final form Eq. (14), we have followed

Fetter and Walecka [26] and also used the identity

S(q, ~) = ——Im II(q, ~),

where V is the nuclear volume. The factor V indicates
that in the nuclear matter description we can only talk
of a quantity per unit volume. For a nucleus of a given
number of protons, Z, and density pp, we can write

where the subscripts denote the NN i and AN i con-
tributions to the self-energy.

In the uncorrelated Fermi gas model for II(~, q), it is
known that unphysical effects arise unless a short dis-
tance repulsion is included in the NN i or AN i state
[3]. Normally this is done through introduction of the
Migdal parameter, g', which supposedly mocks up these
eKects in the calculation of II. In the special case where
g~ ——g& ——g', introduction of the Migdal parameter
modi6es the susceptibility to

»(q ~) x~(q, ~)/[1+ g'(x~+ x~)],

»(q ) x~(& ~)/[1+ g'(x~+ x~)].
2. Distorted-wave description

In order to evaluate the expression P„6(u —u„)IF„pl
including distortions we write the distorted waves in the
eikonal approximation, i.e.,

lim
-. 0

F(n) dn

A Ap + 2g

xi (r) = e'"'D~(r),

where Di, is the modulating function. It is given by

(20)

= P dn +ivrb(n —np)F(np). (17)
F(n)

7l Ap

For the Fermi gas approximation to the nuclear medium,
expressions for II(u, q) have been derived in the literature
[3, 27].

In the present paper we are considering beam energies
up to 3 GeV; at these energies a large amount of the
beam energy remains, even after giving away 300 MeV to
excite the projectile proton to a A. This energy could be
transferred to the nucleus. Therefore, while considering
the self-energy of the pion in the nucleus, we should also
include nuclear delta-hole (AN ) excitations, writing
thereby in Eq. (14)

D~+ (r) = exp
2

V(b, z') dz'
l

(21)

which defines it as the integral of the optical potential
along the trajectory at impact parameter b and up to
the point z. At the high beam energies considered here,
scattering of the interacting particles in the continuum
is predominantly in the forward direction, so the above
approximation should be reasonably good. A recent cal-
culation of the exclusive (p, A++) reaction [16] has shown
quantitatively that this is an accurate approximation. v
in Eq. (21) is the asymptotic speed of the particle.

In the eikonal approximation, the product of distorted
waves for the proton and 4 in Eq. (10) is written as

II(q, cu) = IIiv (q, ~) + II~ (q, ~), XA,~ (r) Xi, (r) = e"'t'e' e" f(b, z), (22)
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b(b) =— 0

hv„
V„(b, z)dz— 1

hv~
V~(b, z)dz

and the factor f(b, z) is given by

f(b )
~( )

o hv~
+«(b «))

hvp

(24)

where the momentum transfer q = (q~, q~~). The sub-
scripts J and

II
denote the two-dimensional components

perpendicular to the z axis and along the z direction,
respectively. The eikonal phase t)(b) is defined as

In situations when V/v for the proton and 6 are equal,
the term in curly brackets vanishes and f(b, z) is unity.
Recent calculations [20] have shown that the assumption
f(b, z) = 1 is in fact quite accurate at the energies of
interest in this paper; for the remainder of this paper,
we therefore assume f(b, z) = 1. With this assumption,
the product of the distorted waves in Eq. (22) depends
only on b; consequently the distortions affect the mo-
mentum transfer only in a plane perpendicular to z. The
rnornentum transfer

q~~
occurs only at the hard collision

p ~ 6++ transition vertex.
Using Eqs. (22)—(24) means that the effect of distor-

tions on Eq. (14) gives

—S(q, iv') = — db db'e'~ ' e'( ( ( )jIm II(b', b, q~~, cu), (25)

where we have absorbed a factor exp[iq~~ (z —z')] to write the Fourier transform of II in momentum space along the z
direction.

To proceed further we follow Ref. [17] and evaluate Eq. (25) in a "distorted-wave Fermi gas model, " and write

II(b', b, qadi, ) = T'~ (b)Tri2(b') d '
q~ e'&' (b b')II(q', ~),

(2vr) ~

where T(b) is the nuclear thickness function. In terms of
the nuclear density p, it is given by

The factor N, rr in Eq. (28) is introduced to ensure proper
normalization.

T(b) = p(b, z)dz.
8. Relativistic pion-nucleon coupling

The Fermi gas pion self-energy II in Eq. (26) js now
evaluated at the momentum q' = (q~~~+q~~~) r~z. The range
of q&, as we shall see, is determined by the distortion
factors. The normalization factors T ~2 in Eq. (26) are
necessary to relate the infinite Fermi gas geometry to our
finite system.

Substituting Eq. (26) into Eq. (25) gives

The above expressions were derived using the non-
relativistic version of the pseudovector pion-nucleon La-
grangian coupling,

N~ q7 xN 0 + Xb.s ' qT XN ' ~)~'

mar m

(31)

They can be easily modified for the relativistic La-
grangian

1—S(q, ~) = — Im
v

d '

(2vr z,11(q —q~, ~)ID(qi) I'

(28)

&.ei = QX'Y '7 7 @N ' '9v4'w + /STAN ' ~v@m)
m7r m~

(32)

where

D(q+ ) db &
'9& beib(b) Tl/2 (b)

d '
(",'.), IL)(q'. ) I'

(29)

where @iv represents the nucleon Dirac four-momentum
spinors and Q& represents the 6 spinor with covariant in-
dex v, and yiv and y~ are the analogous two-component
nonrelativistic wave functions. We obtain an expression
corresponding to Eq. (12) for Q„6(u —cu„) P IT„r)I by
evaluating the p —+ 4++ transition with Eq. (32) and the
self-energy, II, for pions with Z„i. After some algebra one
obtains
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The structure factor S(q, u) is written in the same
form as in Eqs. (14) and (28), using the relativistic ver-
sion of the self-energy derived using relativistic propa-
gators, and the relativistic form of the NN7r and A¹r
vertices. The expressions for these have been derived in
[3, 27].

B. Cross sections

The inclusive cross section for the (p, 6++) reaction in

the center of mass is given by

d 0

d(pz) dA eke

where p is the variable mass of the 6 and p(p~) is

its mass distribution function. We have used the same
parametrization for p(p ) as given in a previous publi-

cation of ours [15]. ~ is the energy transferred to the
nucleus and 0 is the solid angle for the outgoing A. The
transition amplitude has the form as described in Sec.
II A; it contains the self-energy of the virtual pion, the in-

teraction at the b. production vertex, and the pion prop-
agator. The parameters for the self-energy in the Fermi

gas model are chosen as follows: we assume modification
of the mass of the nucleon in the nuclear medium by tak-
ing a nucleon effective mass m* = 0.7miv. The value

taken for the Fermi momentum is kF ——210 MeV/c. The
self-energies are written in terms of susceptibilities with
Migdal parameters introduced to estimate the effects of
short-ranged repulsion. We approximate g& ——gz with
the most commonly used value of 0.7. The double dif-

ferential cross section, d a/dO eke, is constructed by in-

tegrating Eq. (34) over the allowed range of p at each
incident beam energy.

The missing mass spectrum der/d(pz) is calculated by
integrating Eq. (34) over the allowed range of energy
transferred and the allowed angles of the outgoing A.
Using the kinematics appropriate to a nucleus of mass
16 we calculate the above cross sections at proton beam
energies from 400 MeV to 3 GeV.

The distorting potential for the proton, which appears
in the modulating function Di,„of the eikonal approxi-
mation is calculated using the high energy ansatz. As the
main effect of distortion is absorptive in the high energy
region of interest [16]we consider only the imaginary part
of the optical potential. The high energy expression for
the potential V is given as follows:

V(r) = (i + a)W„p(r)/p(0),

I

in the p-N center of mass. The function p(r)/p(0) de-
scribes the radial dependence of the potential in terms of
the nuclear density profile. To evaluate W„, oT is taken
from experimental data of proton scattering on nucleons
[28, 29] and po is taken as 0.17 fm s. With the above
input the proton optical potentials at different energies
are hsted in Table I.

Unlike protons, not much information exists on the
nuclear potential for the isobar. The kinetic energy T~
of the isobar, with a particular fixed mass, depends on
the beam energy as well as the energy transfer (u) to the
nucleus. Therefore in an inclusive reaction, the b, can
be produced with any kinetic energy from zero to a few
GeV. We thus require the 6 optical potential over a wide
energy range.

For T~ ( 60 MeV we refer to the 6-hole model of Hi-
rata et al. [30] for a vr-nucleus interaction in the region
of the (3,3) resonance and take W~ = —45 MeV. For
T~ ) 60 MeV we make use of the high energy approxima-
tion of Eq. (36). The total cross section for the isobar is
the sum of elastic and reaction parts, o~~~ = o +~+of~.
Assuming that the delta and proton elastic dynamics are
not very difFerent, we write cr,

&

—cr,i . Since up to
about T~ = 1.5 GeV it is known that the main reactive
channel in AN scattering is AN —+ NN [29], then using
the reciprocity theorem we write

ZN bN~NN
~

N~
~ ( gy+)1 ('kz

2 I, 2kiv~)
(37)

cr„(T~~) = cr„(Tr,~ + 300 MeV), (38)

where T&~ is the total kinetic energy in the AN center-
of-mass system. There is very little experimental infor-
mation for the region T~ = 1.5—2.5 GeV, so the 6 optical
potentials at these energies are determined by interpolat-
ing between the values for W~ at T~ ——1.5 and 2.5 GeV.
The resultant W~ are listed in Table II.

TABLE I. Proton imaginary optical potential for various
beam energies.

where k~~ is the momentum in the NN center of mass,
with the same energy as that available in the AN center
of mass.

At very high T& (i.e. , above 2.5 GeV), other reac-
tion channels such as AN -+ EA open up, and the
AN —+ NN channel becomes relatively much less im-

portant. Hence at large T~ the above approximation for
0„~ is not accurate. At such energies we assume that
the reaction dynamics for the 6 are the same as those
of the proton at a kinetic energy enhanced by 300 MeV,
s.e.,

where the imaginary part

A kpp7R'„=— 07 PP.
2p&~

(36)

o& is the proton-nucleon total scattering cross section,pN

a is the ratio of real to imaginary parts of the proton-
nucleon scattering amplitude, po is the nuclear density,
and A:„~ and p„~ are the momentum and reduced mass

T~ (MeV)

300
400
500
800

1000
3000

W~ (MeV)

-28.3
-38.9
-50
-83.3
-93.8

-110.5
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T~ (MeV)

& 60
200
400
800

1200
1800
2200
3000

W~ (MeV)

-45
-34.6
-45
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an emission angle in degrees. The te pro on incident energy

part of the self-energy. We see that both the 1 and 3
GeV regions overlap the response for small values of en-
ergy transfer u. The 400 MeV kinematic domain also
s ows some small overlap with the response at low en-

3 GeV beam energies is 70, 150, and 140 /rb/srMeV,
respectively. The cross section at 400 MeV (not shown
in ig. 1) is very small with a peak value of onl 3.6o ony

In Fig. 4 we plot d2cr/dAda as a function of energy
transfer and the angle of the outgoing 6 at incident beam
energy T„=2 GeV. The cross sections fall with increas-

Plane-wave calculations of these cross sections as above
give qualitatively the same results as our distorted-wave
calculations. The difference due t d' t t'o is or ion is essen-
tially just a reduction in magnitude of the cross sections
byafactorof6and7atT =1and2G V,an e, respectively,
and by an order of magnitude at 3 GeV.

Finally, in Fig. 5 we show do/d(p ) as a function of

, an eV. These cross sections are calculated with
re ativistic pion-nucleon coupling but 'th t '

l dwi ou inc uding

slmllal
e e ects of distortions. The cross sections sh t d

' nss ow a rend
simi ar to that observed in the exclusive ( 6++)

e maximum in the cross section occurs at 2 GeV
beam energy and cross sections fall on either side of this
beam energy. Inclusion of distortions produces a reduc-
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FIG. 5.. 5. Differential cross sections for 4++
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III. THE (p, p'7r+) REACTION

A. Farraalisrn

The ++ formed in the (p, A++) reaction on the nu-
cleus can be detected experimentally by measuring its de-
cay pro ucts, the proton and pion, in coincidence. In this
section we develop the theoretical framework and study
the inclusive (p, p'sr+) reaction with a 6++ formed in
t e intermediate state. The formalism for this reaction
is developed along lines similar to the inclusive (p, A++
reaction.

shown s
e cross section for the inclusive 'sr+ r

one-pion-exchange interaction which converts the inci-

vertex, and the response of the nu l
The t

e nuc eus.
e transition amplitude T„o was discussed in Sec. II;

the factorized form of this amplitude with the nonrela-
tivistic reduction of the vrNA vertices has the form

tion in the magnitude of the cross sections but no change
in their shape. The reduction factors from distortions are
approximately a factor of 6 at 1—2 GeV and a factor 8.6
at 3 GeV.

T o = V(q, Ld)(p'~S k T ~A++) (6++~St "Tt
~

/I" (—+ lp/ o( q) (39)

D~ is the delta propagator which in the nonrelativistic form is written as M'—
ltol232M V d i th ing mass of the A. The free width of the resonance is I' = 116

i ies u, q) an „0(—q) are evaluated as described in Sec. II. Takin k
d i o1 o fo th fi 1 tt, ob

(cu —~„) ) ~T„c~ = — ~V(q, ~)~ z (k (1+3cos Oq)) S(q, ~ .
CTp C7&I
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42) tI(~ —~„) ) )T„c( = — (V(q, ~)( ~ R(q, (u)S(q, ~),
'A CT 0'p p

(41)

where R(q, ~) is defined by

3 m2 1 (t —m„+ mz)Rq, ~ = — — t+-
4m„mg q 4m2~

x (m„ t —2m„—2m& + m + m~ t + m —4m„—2(q k —cuE ) ) . (42)

The relativistic form of the 6 propagator is written as C. Results and discussion

(m' —M"')' + I'M' First we calculate the proton spectrum for the
(p, p'sr+) reaction. In Fig. 7 d a/dA p'dEp', as a func-
tion of outgoing proton kinetic energy, T„, is shown for
beam energies of 1, 2, and 3 GeV. The calculations are
done using the relativistic distorted-wave formalism. The
angle of the outgoing proton is Axed at 5'. These results
show a single peak in the cross section at 1 GeV, devel-
oping into two distinct peaks at 2 and 3 GeV. However,
these two peaks do not belong separately to the nucleon
and 6 excitations in the nucleus. Both of them, in fact,
receive contributions from both the nucleon and 4 sec-
tors of the nuclear response. This happens because for
each energy T„of the outgoing proton there is a range
of allowed values of the pion energy, and there is a cor-
responding range of energy transfer u to the nucleus.
This gives rise to contributions to the cross section from
the nuclear response at low w (nucleon sector) as well as
higher w (delta sector) for each value of Tz .

The nucleon and delta response in the (p, p'7r+) ex-
periment can be separated, however, if the measurements
are done in a kinematically complete geometry. In Fig.
8 we show results with Axed angles for the x+ and pro-
ton and a fixed value of the outgoing proton energy. The

(43)

B. Cross sections

The differential cross section for the inclusive (p, p' sr+)
reaction at a given outgoing proton energy is given as

d4o.

dE dA dE„dA„

m2
=

2(2")s "k ).~(~-~ )2 ). IT ol' (44)
n C7p 0'

where u = Ez —E„—E is the energy transferred to
the nucleus. E„and E are the energies and A„and
0 are the solid angles for the outgoing proton and pion
with respect to the incident proton direction. The energy
spectrum for the proton in the final state is calculated by
integrating Eq. (44) over the allowed range of energy of
the pion and the pion angle.

An integral over the pion energies implies an integral
over a range of energy transfer w. The limit on this in-
tegral, i.e., w~~„, at a particular beam energy is taken
as the value of w where the (p, 6++) cross section be-
comes negligible. This ensures that the calculation of the
(p, p'sr+) cross section lies in the region dominated by
6 production in the intermediate state.

0.04

'7T+)X, DW

8 =5

0.03 T (GeV)

1
2
3

)
I

2 0.02
/

"a

b 0.01
I

P

2
0.00

0 0.5 1 1.5
T . (GeV)

2.5

FIG. 7, Energy spectrum of outgoing proton in the
(p, p'n+) reaction, in mb/sr MeV. The outgoing proton an-
gle is 5 relative to beam direction; calculations have been
carried out for incident proton energies I GeV (dot-dashed
curve), 2 GeV (solid curve), and 3 GeV (dashed curve); the
cross sections have been integrated over the energy and angle
of the outgoing pion.

FIG. 6. Schematic diagram for the A(p, p'sr+)A reaction.
The incident proton is excited to A, which decays to nucleon
plus pion. Wavy lines denote hadron-nucleus distortions.

Here Hq is the angle between the vectors q and k~. Using the relativistic interaction at the DNA vertices we get the
following expression for the transition amplitudes:
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0.3
A(p, p'7F+)X, DW

8p =—10,8„=10

cross section d o/dA dA„dE& dE is shown as a func-
tion of pion energy (equivalently energy transfer u), for
incident energy T„=1, 2, and 3 GeV. The angle between
the incident and outgoing protons is kept fixed at —10'
and that of the pion at +10' relative to the beam, i.e. , in
the reaction plane the proton and pion come out on op-
posite sides with respect to the incident beam direction.
The above choice of angles is made because the cross
sections peak for forward pion and proton angles. The
energies of the outgoing protons are Axed at 290, 870,
and 1700 MeV for incident beam energies of 1, 2, and
3 GeV, respectively. These energies of the proton corre-
spond to the positions of the peak in the cross sections,
(f d o/~ dA dA„dE„~) as a function of T~ .

In Fig. 8, as in Fig. 1, two distinct peaks are seen in
the cross section for incident energy 2 and 3 GeV, and
only a single peak at 1 GeV and below. The first peak in
all cases corresponds to quasielastic nucleon excitation in
the nucleus, and the second peak at 2 and 3 GeV is due to
6 excitation in the nuclear response. The enhancement
in the cross section for the second peak arises due to
the delta propagator, D~, in Eq. (41). In the kinematics
considered in this paper, each value of the energy transfer
w to the nucleus corresponds to a certain value of the b,
mass. The region of cu which produces the second peak at
2 and 3 GeV corresponds to the delta mass in the vicinity
of its resonant mass M*. The maximum cross sections at
1, 2, and 3 GeV are 0.1, 0.23, and 0.34 pb/sr2 MeV2. The
calculations at 400 MeV beam energy (not shown) exhibit
a single peak with small cross section 0.012 pb/sr2MeV .

To show in more detail how the second peak grows with
increasing beam energy, in Fig. 9 we show the excitation
spectrum of the nucleus for 1.0, 1.2, and 1.5 GeV beam
energies. At 1 GeV there is little indication of the 6-
response peak, while at 1.2 GeV it develops into a clear

0.15 A(p, p'7F+)X, DW

8,=-10,8„=10

Cxj

C

d

d
I

b

0.10

0.05

Tp (GeV)

0.29
0.40
0.56

0.00
0 200 400

w (MeV)
600

shoulder and then by 1.5 GeV into a distinct bump. A
peak will be observed in this reaction when the energy-
momentum transfer matches the location of the 4 peak
in the nuclear response II~, shown in Fig. 2. For 1 GeV
beam energy the allowed kinematic region does not in-
clude the 6 peak, but with increasing energy the energy-
momentum transfer includes the 4 response peak and a
bump appears in the experimental cross section.

This situation is similar to the inclusive 0' (sHe, t)
experiments conducted earlier on C for beam energies
1.5—2.3 GeV [6]. At 1.5 GeV sHe incident energy a clear
4 peak was not seen in the ( He, t) reaction even though
the energy was sufficient to excite a 6. At 1.5 GeV in-
cident energy the energy momentum transfer in this re-
action does not include the 6 peak; the overlap with the
6 peak in the nuclear response improved with increasing
beam energy.

Finally, we may recollect that all results shown so far
are calculated using a cutofF parameter A = 1.2 GeV/c
for both the xNN and DNA vertices. In Figs. 10 and

FIG. 9. Same as Fig. 8, Solid curve: proton incident beam
energy 1.0 GeV (T„i = 290 MeV); dashed curve: proton in-
cident energy 1.2 GeV (T„i = 400 MeV); dot-dashed curve:
proton incident energy 1.5 GeV (Tz~ ——560 MeV).
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FIG. 8. Differential cross sections for the (p, p'7r+) reac-
tion, in pb/sr MeV, as a function of energy transfer u to
the nucleus. The proton and pion are detected at fixed angles
of 10' on either side of the beam direction. The energies of
the outgoing protons are chosen to correspond to maxima in
the outgoing proton energy spectrum. Solid curve: incident
proton energy 1 GeV (T~i = 290 MeV); dashed curve: proton
energy 2 GeV (T„= 870 MeV); dot-dashed curve: proton
energy 3 GeV (T„l = 1.70 GeV).
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FIG. 10. Sensitivity of the differential cross section, in
mb/sr MeV, in the (p, A++) reaction to the cutoff momentum
A at the N~ vertex. Solid curve: A = 1.2 GeV; dashed curve:
A = 0.65 GeV. Proton incident energy T„= 1.5 GeV and
scattering angle 8~ = 2'.
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FIG. 11. Sensitivity of the differential cross section, in

pb/sr MeV, in the (p, p'sr+) reaction to the cutoff momen-

tum A at the ¹rvertex. Solid curve: A = 1.2 GeV; dashed

curve: A = 0.65 GeV. Proton incident and outgoing ener-

gies T„=2 GeV and T„I = 0.87 GeV, respectively; outgoing

proton and pion angles O„I = —10' and 8 = 10'.

ll we show the sensitivity of the excitation spectra for
the (

' +e (p, p m ) and (p, A++) reactions to the value of
The cross sections are given for A = 1.2 and 0.65

GeV/c. It is observed that the reduction in the value
of A leads to an overall reduction in the magnitude of
the cross sections. This is understandable because the
smaller A gives a form factor which is deficient in high
momentum components, and in the (p, b,++) reaction
these are the momenta which are relevant.

FIG. 12. Differential cross section, in mb/sr MeV, for the

(p, A ) reaction at proton beam energy 3 GeV, using non-++
relativistic pion-nucleon coupling at all vertices, and plane

waves for continuum particles.

our relativistic and static nonrelativistic results we ex-
amine the efFect of the nonrelativistic reduction which

arises in three places:
(i) the p —+ 6++ transition,
(ii) the pion self-energy in the nuclear medium, and

(iii) the 6++ ~ per+ decay.
We first examine the p —+ 6++ transition vertex. As

shown in the Appendix, relativistic coupling for this ver-

tex gives

fI'~iv f'

IV. aZLmIVISXIC VS NONRZLATrvISXrC
COUPLING UERTICES

t' f' ) t —(m +m~)
t, m ) 6m~m~

(t —m2 + m~~)2

4m~~

In 6 production it is common to use the static nonrel-

ativistic reduction of the pion-nucleon interaction vertex,

because of its relative simplicity. At low energies this may

give reliable results; for higher energies, this approxima-

tion can be quite inaccurate. In this section we review

those kinematic regions where the static nonrelativistic

reduction can give unreliable results and we calculate the
extent of the diKerences between relativistic and nonrel-

ativistic calculations.
In Figs. 12 and 13 we show d~o /~ dA for the (p, b.++)

reaction at 3 GeV beam energy, as a function of the en-

ergy transfer w and angle of the A. The two figures

compare the nonrelativistic and relativistic pion-nucleon

couplings using plane waves for the incident and outgoing

particles. The two figures are very difFerent. In. the rela-

tivistic calculations the peak cross sections in the region

of the quasielastic nucleon response are larger than those
for the 4 response; this situation is reversed in the static
nonrelativistic calculations. In addition, the magnitudes

of the calculations are quite difFerent. Similar results are

found at 1 GeV beam energy. For a proton beam energy

of 400 Mev, ho~ever, the relativistic and nonrelativistic

couplings produce similar results.
To understand the large difFerence observed between

while for the static nonrelativistic coupling

/ f* 2q2
(46)

O 2.0
X
L
ill

E

3
C4 g O-

4-
CD

O

3OO 6OO 900 t2OD

G3 (vev)

FIG. 13. Same as Fig. 12 for relativistic pion-nucleon cou-

pling.
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2

[I'~~
[

=
[

—(q + I258 Mevl ) .
(m 3 (47)

Compared to the static nonrelativistic expression, Eq.
(46), which is proportional to q2, the relativistic expres-
sion in this region is signi6cantly larger than the static
nonrelativistic result. For momentum transfers appro-
priate for the (p, 4++) reaction on sO, the ratio of rela-
tivistic to nonrelativistic predictions would be about 2.4,
7.5, and 22 for proton beam energies of 1, 3, and 7 GeV,
respectively. The static nonrelativistic approximations
would then significantly underestimate these cross sec-
tions, and would also predict a dependence on momen-
tum transfer not seen in the relativistic calculations.

To exhibit the difference due to relativistic and non-
relativistic expressions for the pion self-energy, in Fig. 14
we show der/den dA for the (p, b,++) reaction at 8~ = 2'
and 3 GeV beam energy. The two curves correspond to
the relativistic and nonrelativistic versions of the pion
self-energy II(w, q). In both cases we use the nonrela-
tivistic p ~ b,++ transition vertex. We see that the

We show in the Appendix that the relativistic and non-
relativistic results agree when E/m 1, and when
k/m 0 for both nucleon and isobar. While these condi-
tions may be met near the delta threshold, they are likely
to be strongly violated for proton beam energies of 1 GeV
and higher. For real pions the final factor in Eq. (45) is
the square of the relative pion-nucleon momentum in the
isobar rest frame. Inclusion of nucleon recoil in Eq. (46)
would restore some of the agreement between relativistic
and nonrelativistic descriptions of this process, but there
may still be substantial disagreement between relativistic
and nonrelativistic results for proton beam energies of 1
GeV and higher.

As an illustration, consider the region of very small
energy transfer w to the nucleus. For proton incident
energies of 1 GeV, 3 GeV, and 7 GeV the momentum
transfer q is 217, 100, and 56 MeV/c, respectively, for a
isO target. For these kinematics Eq. (45) can be approx-
imated as

P.O

1.5

3
1.0

0.5

0,0
500

~ (Mev)
1000 1500

FIG. 14. Sensitivity of the nuclear excitation spectrum
in the (p, D++) reaction to the treatment of pion self-energy
in the nucleus. Both curves use static nonrelativistic A¹r
coupling. Solid curve: nonrelativistic evaluation of pion self-
energy; dashed curve: relativistic form of pion self-energy.
Incident proton energy T„= 3 GeV and 4 scattering angle
0~ = 2'.

nonrelativistic approximation to the self-energy is good
at small u when it receives contributions from nucleon
particle-hole (NN ) excitations only. The second peak
in d2o/dA ~ at higher energy transfer, which is mainly
due to 6-hole (AN ) excitations, is significantly overes-
timated in the nonrelativistic approximation to the pion
self-energy. Thus combining the above effects of the non-

relativistic approximations to the p —+ 4++ vertex and
the pion self-energy, we can straightforwardly understand
the significant differences observed between the relativis-
tic and nonrelativistic calculations shown in Figs. 12 and
13.

For the (p, p'sr+) reaction we have the additional decay
vertex of the isobar into proton and pion. In the static
nonrelativistic reduction this vertex gives a contribution
of (4/3)k, while in the relativistic case the same vertex
gives

(ms + m~~ —m2)2
m. —

24m~
2m —(m„+m~) = —m .

4
3

Thus whenever k is very large ()) m ) the nonrela-
tivistic form of the vertex significantly overestimates the
cross sections. Calculation of the proton energy spectra
d cr/dA~ dE~ at each E„ involves an integral over the
pion energy E„.The values of E and their allowed range
become larger as the beam energy increases.

V. SUMMARY'

We have outlined the formalism for the inclusive
(p, A++) and (p, p'sr+) reactions and calculated the
cross sections for them. These reactions provide an op-
portunity to study the response of the nucleus over a wide

I

range of energy and momentum transfer. The shapes of
the calculated cross sections reflect the behavior of the
nuclear response in various situations.

In the (p, 4++) reaction, we observe the excitation
of the 4 isobar in the nucleus for beam energies of 2
and 3 GeV. At 1 GeV no such 4 excitation is observed
despite the fact that the excitation energy is sufficient
to produce a A. We showed that this occurred because
of the mismatch between the energy-momentum trans-
ferred to the nucleus in this reaction, and the position of
the nuclear response in the (q, w) plane. However, the
quasielastic nucleon peak is observed at all beam ener-
gies. As a function of the 4 missing mass, cross sections
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for the inclusive (p, A++) reaction reach a maximum
value at 2 GeV beam energy.

As the experimental observation of the 6++ in the
inclusive (p, 6++) reaction requires a coincidence mea-
surement of its decay products (proton and pion), we
calculated cross sections for the (p, p'sr+) reaction at
different kinematics which should be useful for planning
future inclusive experiments.

The inclusive proton energy spectrum in the (p, »i'sr+)

reaction, unlike the inclusive spectra in (p, p') and

(p, 6++) reactions, do not show separate peaks due to
quasielastic nucleon and quasielastic b, excitation in the
nucleus. This occurs because a particular energy of the fi-

nal state proton in the (»2, p' sr+) reaction can correspond
to various energies of the intermediate 6 and hence vari-
ous values of energy transfer. Therefore the energy spec-
trum of the proton has contributions from the nucleon
and delta-hole excitations in the nucleus for all values of
E„.However, in (»i, p'7r+) reactions the two branches of
the nuclear response can be separated, if the proton and
pion are detected at fixed angles and measurements are
made at a fixed value of the proton energy. The nucleon
and 6++ sectors in this case are well separated.

The results of our models underscore the importance of
using relativistic approximations at all possible stages in
calculating cross sections. We showed that nonrelativis-
tic forms of transition vertices not only gave incorrect
estimates of the magnitudes but even failed to predict
the correct shape of the cross sections.

Finally, we showed that inclusion of distortions in these
reactions reduce the magnitude of the cross sections but
do not change the shape of our calculated results.
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APPENDIX: RELATIVISTIC AND
NONRELATIVISTIC m AND & VERTICES

The coupling of pions to nucleons and 4 is defined
through the Lagrangians which (assuming pseudoveetor
NNvr coupling) have the form

f—
mar
f' —v

~DNw = @~T@N ov4'
mm

(A1)

Here @ is the pion isovector field, 4iv is the nucleon
spinor, 4~& is the Rarita-Schwinger field for the 4 isobar,
and T is the isospin transition operator for the 1/2 —+ 3/2
transition. Frequently nucleon and 6 transitions are de-
scribed using the nonrelativistic reductions of these ver-
tices,

Hg y~ = i cT ~ eIt ~ @,
mar

f4

HdNm =2 S qT
m fr

(A4)

In Eq. (A4), S is the spin transition operator analogous
to T.

The nonrelativistic reductions of these couplings
should be generally valid whenever the nucleon or iso-
bar momenta are small relative to their rest masses, and
when energy transfers at the vertices are also small. For
our calculations neither of these conditions holds; we are
looking at proton incident kinetic energies of 1 GeV or
greater, and for production of 6 near the resonant mass
the energy transfer at the b,¹rvertex is generally large.
In order to quantify the accuracy of the nonrelativistic
approximations, we derive kinematic equations which re-
late relativistic and nonrelativistic amplitudes as they
contribute to various calculated cross sections.

First we calculate the relativistic N¹r amplitude. If
we evaluate the term of Eq. (Al) to a cross section for un-
polarized nucleons, we square the amplitude and average
over spins which gives

II'iviv (t) I
=—

2 ) . 1(&~ ~ &)I'
SPinS

774~m'.

= f'-
(A5)

As is well known, the relativistic K¹rvertex depends
on the energy u and momentum eI carried by the pion.
When the pion energy is small relative to its three-
momentum this vertex just reduces to the nonrelativistic
forra,

2
II'aviv (&)( = ——,q'

m.'
(where we have neglected nucleon recoil momentum
terms in the nonrelativistic reduction).

For the LNm vertex, squaring the amplitude from Eq.
(A2) and averaging over spins gives

[I'~iv (&)I =—
2 ). I{»

spins

( f g+ „I'f +
~

„„) (A6)
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where

D& (k~) = g+" —q~P"P —2k~~kr /3m' + (k~P —k~P") /3m~

Evaluation of Eq. (A6) gives

3 (m~ j ( mmmm~ j ( m~ )
1 ( f' ) ms~+ m2 —t1+3qm j 2m@m+

(m' —m„'+ t) '
2m~ )

(A7)

Expanding the four vectors in Eq. (A7) gives

1 ( f* E~E~ —k k~
ll'~~ (t)l = ——

I
1+

3 (m mmmm+

( 2 2 cuEg —kg q'
X (d

(A8)

The static nonrelativistic reduction of the ANvr vertex
can be shown to give a contribution

( f" l 2qz
Il'~~~(t) I~R —

I m j 3'
Equation (A8) reduces to the NR values whenever
E/m 1 and k/m 0 for both nucleon and isobar; for
example, production of a real isobar near threshold would
satisfy this requirement. For real pions the last term in
Eq. (A7) is the square of the relative pion-nucleon mo-
mentum in the isobar rest frame; in this case replacing
the pion momentum q by the relative 7r Nmome-ntum
will give a reasonable approximation to the relativistic
result.
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