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Study of a strongly damped collision between heavy ions
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We present a dynamical analysis of deep inelastic collisions between two Mo ions at E, . = 14.7
MeV/nucleon using two different models. The first, a microscopic model, is based on the Landau-
Vlasov equation which includes a two-body residual-interaction collision term. The second model
is based on a macroscopic approach which uses collective shape degrees of freedom and a one-body
dissipation mechanism. The results of our microscopic calculations show good qualitative agreement
with experimental data.
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I. INTRODUCTION

In recent years a considerable effort has been devoted
to the study of heavy ion collisions at intermediate ener-
gies. Experiments performed in this energy range show
that one is dealing with highly dissipative processes.
Therefore, the results of the analysis of the empirical data
depend strongly on the assumed mechanism of the dis-
sipative process. It is then very important to study the
first and second moments of the experimentally observed
distributions using diferent approaches to the process
of energy dissipation. In this paper we present an in-
vestigation of deep inelastic scattering for the reaction

Mo + Mo at a center-of-mass energy of 14.7 MeV
per nucleon. Most of our calculations were performed
using a semiclassical microscopic model where we solve
the Landau-Vlasov equation using a phenornenological
collision term [1). We use a method described in Ref. [2]
to determine the second moments of several experimen-
tally interesting distributions. For comparison we have
also performed calculations of the first moments using a
classical macroscopic model which is based on a shape
parametrization of the mean field [3] and includes one-
body wall and window dissipation.

The standard starting point for a quantum microscopic
description of a collision between heavy ions is the time-
dependent Hartree-Fock (TDHF) formalism or its ex-
tended version which includes the Boltzmann collision
term.

The semiclassical microscopic approximations to
these extended mean-field theories in a form of a
Boltzmann-Uehling-Uhlenback (BUU), Vlasov-Uehling-
Uhlenback (VUU), Boltzmann-Nordheim-Vlasov (BNV),

or Landau-Vlasov equations are relatively easier to solve
and have been extensively used to describe various prop-
erties of nucleus-nucleus collisions [1,4].

Since the extended TDHF formalism and its semiclas-
sical analogs are all based on a mean-Geld approach,
they are unable to adequately reproduce the experi-
mentally observed large widths of distributions of many
physical quantities. Various methods have been devel-
oped to incorporate fluctuations and many-body cor-
relations into mean-field theories, as, for example, the
time-dependent generator-coordinate method [5], the
variational approach with time-dependent observables
[6], stochastic TDHF [7], etc. Relatively recently the
Boltzmann-Langevin equation, which can be derived
from the stochastic TDHF formalism [7], has been stud-
ied in the semiclassical formalism. In these calculations a
fluctuating Langevin force is added to the Boltzmann col-
lision term [8,9]. This method is very promising but rela-
tively complicated and computationally time consuming.
A similar approach has been used by the authors of Ref.
[10], and recently some numerical simulations have been
performed [11].Two different ways of calculating disper-
sions have been used in Ref. [2]: a semiclassical analog
to the variational treatment of Balian and Veneroni [6]
and a method of restoring classical many-body correla-
tions in Vlasov and Landau-Vlasov dynamics. This last
approach is used in the present paper to calculate second
moments of various distributions.

The motivation for using a classical macroscopic tra-
jectory calculation with one-body dissipation to de-
scribe the reaction Mo + Mo at the energy of 14.7
MeV/nucleon stems from the success of this model in
predicting fusion and incomplete fusion cross sections
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[12] and in analyzing many of the observed properties of
strongly damped collisions in the low-energy regime (be-
low 10 MeV/nucleon) [13,14]. Several methods have been
developed to evaluate second moments for these kinds
of calculations in the framework of collective transport
models [9]. The most commonly used are based on the
Fokker-Planck equation [9, 15] or on Monte Carlo simula-
tions. Because of the unsatisfactory agreement between
the macroscopically calculated first moments and the ex-
perimantal data, we did not proceed with an evaluation
of the second moments within this framework.

In Sec. II we describe the microscopic and macroscopic
models used in our investigation. Next, in Sec. III, we dis-
cuss the first moments of various distributions and com-
pare the predictions of the microscopic and macroscopic
models. Section IV is devoted to an analysis of second
moments obtained from the microscopic model. Finally,
we summarize our results and present our conclusions in
Sec. V.

II. THEORY

&f p+ V,f —V—„UVp f = I„ii.
t m (2)

The collision term is calculated using an effective
nucleon-nucleon cross section which is consistent with the
requirements of energy and momentum conservation and
with Pauli blocking [1]. The effective nucleon-nucleon
cross section is deduced from the free, energy-dependent,
cross section according to

erat free

where Y(p) is a density scaling factor suggested by
Lejeune et al. [16]. The Landau-Vlasov equation is
solved by expressing the distribution function f(r, p, t)
as a linear combination of the distribution functions for
a large number N of pseudoparticles:

N

f(r, p, t) = ) m, (r, p) f, (r, r, , p, p, , t). (4)

The pseudoparticle distributions are expressed as uncor-

In this section we summarize the ingredients of the
microscopic and macroscopic models which we use.

The microscopic approach has its origins in the Wigner
transform of the TDHF equations of motion. Including
only terms up to second order in h, leads to the Vlasov
equation for the one body distribution function f(r, p, t):

~f p+ V'„f——V,UVp f = 0.
Bt m

Here r and p represent the space and momentum coor-
dinates. The single-particle potential U is treated in a
self-consistent manner. If, in addition to the one body
potential U, one includes the residual two-body interac-
tion by incorporating a collision term I, ~~, one may write
the Landau-Vlasov equation in the form

related isotropic Gaussian wave packets:

1
I'

f (r r' p p t) =-
2m a'J

(r —r, )2
x exp

20
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The centroids of the Gaussian wave packets are given by
r, (t) and p, (t). The widths of these Gaussian wave pack-
ets are kept constant in time and are determined by re-
quiring that the binding energy and mean square radius
of the ground-state nucleus are correctly described [1].
The decomposition of the distribution into Gaussians is
useful for numerical calculations since it assures a smooth
distribution of density within the nuclear system. It cor-
responds to an extension of the Thomas-Fermi approxi-
mation and therefore accounts for some of the quantum
effects at the level of that approximation. The weight
factors m; in Eq. (4) are treated in the Thomas-Fermi
approximation and are given by a step function

m, = O(ey —e, ), (6)

where ey denotes the Fermi energy and e, represents the
mean single-particle energy for the pseudoparticle state.
The positions and the momenta of the N pseudoparticles
are chosen randomly at time t = 0 within the available
phase space determined by using Eq. (6). The dynami-
cal evolution of the system is obtained by following the
semiclassical trajectories of these pseudoparticles. For
the self-consistent mean field we use a simplified Skyrme
interaction consistent with the compressibility modulus
r = 200 MeV [1, 17].

It is important to note that in the microscopic I andau-
Vlasov approach there are no more free parameters which
could be adjusted for a given reaction and energy.

The Landau-Vlasov equation is an equation for the av-
erage one-body distribution function. The fIuctuations
and many-body correlations are washed out, and frag-
ments mass or charge distributions cannot be directly
obtained from the solution of Eq. (2). Zielinska-Pfabe
and Gregoire [2] have suggested a random sampling of a
one-body distribution to construct "events" which were
analyzed from the point of view of mass and charge dis-
tributions. This procedure, which is described below,
is a way to reconstruct many-body correlations from
the knowledge of the dynamical evolution of the one-
body distribution. A very similar approach has been
used more recently by Bonasera et al. [18], who looked
at fragment formation within the one-body Boltzmann-
Nordheim-Vlasov model.

Thus, to determine the dispersions of various quanti-
ties, such as mass or charge, we employ a procedure which
restores the classical many-body correlations which are
missing from the Landau-Vlasov approach. This method
of restoring many-body correlations (RMBC) [2] treats
the transport equations for the dispersions in a statisti-
cal fashion. It has been successfully used to determine
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the mass and charge distributions for isO+isO reaction
[21

The main procedure is as follows: Let Z„andN„bethe
numbers of protons and neutrons in the projectile and Zq
and Ni the corresponding numbers in the target nucleus.
Among all pseudoparticles we now randomly choose Z„
and Zi Gaussians which at time t = 0 correspond to
the proton distribution in the projectile and target, re-
spectively. Similarly, we choose N„and Ni Gaussians
which belonged to the neutron distribution in the pro-
jectile and target, respectively, at t = 0. We then follow
their trajectories as determined by the Landau-Vlasov
equation and identify them as belonging to the projec-
tilelike fragment or the targetlike fragment on the basis
of their positions at a given time t. In this procedure we
discretize the occupation probability of these Gaussian
states to 1 or 0, which corresponds to selecting a single
Slater determinant out of a mixture of very many Slater
determinants. This procedure is repeated for a very large
number of combinations of Gaussians. Thus we simu-
late, in a statistical ensemble, the classical many-body
correlations which are missing from the Landau-Vlasov
formalism.

In the macroscopic approach we have performed a
trajectory calculation in which we described the nu-
clear shape by using the parameterization of Blocki and
Swiqtecki [3]. In this model a realistic description of the
nuclear shape during the collision process is accomplished
by using six collective variables. Three of these degrees of
freedom correspond to the relative motion (p), the neck
degree of freedom (A), and the mass asymmetry (b,). The
other three correspond to the rotational degrees of free-
dom: the orbital angle (0) and the intrinsic angles of
rotation for the two participating ions (Pi and P2). To
determine the time evolution of these variables we solve
a system of coupled Euler-Lagrange equations of motion
[12, 19]:

Fcons Fdiss

dt Bq, oiq,
(7)

For the symmetrical system Mo+ Mo we choose
0 and are left with five collective variables

(qi, q2, qs, q4, qs) = (p, A, 0, Pi, Pz). The kinetic energy
T is written as

where T,~ are the components of the inertia tensor for the
collective motion and are determined using the Werner-
Wheeler approximation to irrotational fiow [20, 14]. The
parameter-free Werner-Wheeler inertia tensor which is
close to the one given by hydrodynamical model has been
very successfully used in the past [14]. For I, Ii, and I2
we use shape-dependent rigid-body moments of inertia.
In Eq. (7), F' "' represents the components of the con-
servative forces and F "' those of the dissipative forces.
The conservative forces consist of the nuclear proximity
and surface interactions [21] and of the Coulomb interac-
tion. The Coulomb interaction has been calculated using
the method of Beringer [22]. The one-body dissipative

1'- . . 121 21 2T= —) T, qq + IO + Iig—i + Izg2—, —2: "'' 2 2 2
4 jg

force consists of two parts, both linear in the collective
velocities: the wall friction [23] and the window friction
[24]. The forms and details of nuclear proximity and
surface interactions, and the wall and window dissipa-
tion tensors are all standard and have been also used by
many authors [12—15] before. Similarly to Landau-Vlasov
model, the macroscopic method uses no free parameters.

III. RESULTS FOR THE FIRST MOMENTS

Using both models described in the previous section
we studied the collision of ssMo + ssMo at an incident
center-of-mass energy of 14.7 MeV per nucleon. Both
of these parameter-free models allow us to follow, in de-
tail, the time evolution of the colliding system and deter-
mine scattering angle and energy loss. When the Landau-
Vlasov equation is solved one obtains the positions and
momenta, at any time t, of all of the pseudoparticles
which in turn determine the neutron and proton distri-
butions of the entire interacting system. One may there-
fore calculate the position, momentum, kinetic energy,
and potential energy of the system at any time, Sim-
ilarly, using the macroscopic model, it is also possible,
at any time, to determine these quantities. Thus, both
models give us full information about the average values
of various measurable quantities. However, since both of
these models are based on mean-field approaches, they
only contain information about the mean values (i.e. , first
moments) of the observables.

It has been suggested [25, 26] that the one-body dissi-
pation rate as determined by the wall formula is too large
by a factor of about 3. This is attributed to the neglect of
quantum effects in this approach. Therefore, in this pa-
per we also included some results from the macroscopic
model where the one-body wall dissipation rate has been
reduced by a factor of 3 as described in [19].

In Fig. 1 we show the calculated reaction times for the
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FIG. 1. Reaction time as a function of the relative angular

momentum (in units of h) for the reaction Mo + Mo at
E, = 14.7 MeV per nucleon. The solid line represents the
results obtained with the macroscopic model. The dashed line
was also obtained with the macroscopic model but with the
strength of the one-body wall friction reduced as described
in the text. Finally, the dot-dashed line shows the results
obtained with the microscopic I andau-Vlasov model.
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~8Mo + SMo reaction as a function of incident angular
momentum. The reaction time is determined here as the
time from the moment when the ions touch in the en-
trance channel to the moment when their density distri-
butions separate again in the exit channel. The solid line
represents the results from the macroscopic model with
full wall dissipation; the dashed line represents the results
of the macroscopic model calculation with the one-body
wall dissipation rate decreased as described above. Fi-
nally, the dot-dashed line represents the reaction times
determined using the microscopic Landau-Vlasov model.
Note that for peripheral collisions the microscopic calcu-
lations give longer reaction times than the macroscopic
calculations. This occurs in part because the macroscopic
calculations allow for dissipation due to the exchange of
particles before the nuclei touch (the window friction).
This friction damps out some of the relative motion and
has the eKect of reducing the reaction time because the
nuclei are stopped before much overlap has occurred.
Furthermore, in the macroscopic calculations there is a
problem in getting a smooth transition of the inertias as
the system changes from two separate nuclei to a single
body. This difficulty leads to an overestimation of the
dissipated energy for grazing collisions. Also, we see that
for highly dissipative central collisions the reaction times
obtained from the microscopic calculations are shorter
than those obtained from the macroscopic calculations.
This is again caused by the stronger friction used in the
macroscopic model. The e6'ect of friction on the reaction
time is clearly demonstrated by the shortening of this
time that is obtained by reducing the strength of the
wall dissipation in the macroscopic calculation (dashed
line).

The total kinetic energy (TKE) of the outgoing frag-
ments is shown in Fig. 2 where the results of the macro-
scopic calculations and the microscopic calculations are

compared with the experimental data of [27] (the dot-
ted line). Again, the solid line represents the results of
the macroscopic model; the dot-dashed line represents
the TKE determined with the microscopic model. Both
calculations indicate that the reaction is overdamped for
small impact parameters. It is interesting to note that
the experimentally determined TKE indicates that these
reactions may not be overdamped. For more periph-
eral reactions the macroscopic calculations yield a much
larger energy dissipation than the microscopic model.
For this range of large impact parameters the microscopic
calculations agree very well with the experimental data.

The deHection function for the above reaction was
studied and the results are presented in Fig. 3. Here, the
solid line represents the results of the macroscopic model,
the dashed line represents the results of the macroscopic
model with reduced one-body wall friction, and the dot-
dashed line represents the scattering angle determined
using the microscopic model. The microscopic calcula-
tion was performed only for angular momentum / larger
than 200. Below this value the reaction time increases
very rapidly (see Fig. 1), which makes the computing
time inhibitly long. We observe that for central col-
issions the model predicts too much energy dissipation
and the interacting ions get to a state of "quasifusion. "
We believe that the reduction of the free nucleon-nucleon
cross section [16] which determines the Boltzmann colli-
sion term [1] might not be sufficient for the high density
overlap which occurs for low impact parameters. Ex-
perimental results from [27] are also shown in Fig. 3
as a dotted line. The authors of this reference used a
parametrization of the deHection function suggested by
Wolschin and Norenberg [28] to calculate the deflection
angle as a function of angular momentum or energy loss.
The Landau-Vlasov results agree better with the experi-
mental results than do the macroscopic results. The de-

800

700 150

500

400-

300

100

I

100 200 300 400

Angular Momentum ( fi)
FIG. 2. Total kinetic energy of the outgoing fragments

as a function of their relative angular momentum (in units
of h) for the reaction Mo + Mo at E, =14.7 MeV.
per nucleon. The solid line represents the results obtained
with the macroscopic model. The dot-dashed line shows the
results obtained with the microscopic Landau-Vlasov model.
The dotted line represents the experimental results discussed
in the text.
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FIG. 3. Deflection function 'for the reaction Mo+ Mo
at E,.~. = 14.7 MeV per nucleon. The solid line represents
the results obtained with the macroscopic model. The dashed
line was also obtained with the macroscopic model but with
the strength of the one-body wall friction reduced as described
in the text, The dot-dashed line shows the results obtained
with the microscopic Landau-Vlasov model. The dotted line
represents the experimental results discussed in the text.
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flections predicted by the macroscopic model correspond
to too negative scattering angles. The large deflections
observed in the macroscopic calculations are caused by
longer reaction times and are consistent with the results
presented in Fig. 1.

IV. SECOND MOMENTS

One of the most interesting features observed in heavy
ion reactions is the existence of large dispersions in
observables such as mass, charge, or scattering angle.
Hence, we study the second moments of these observ-
ables using the microscopic RMBC model discussed in
Sec. II. We use this procedure to determine the mass dis-
persion, the charge dispersion, and the dispersion in the
scattering angle for the ssMo+ssMo reaction studied in
Sec. III.

To study the dispersions we first calculate the variances
in mass, charge, and scattering angle for various impact
parameters. We then construct dispersion plots (contour
plots of double difFerential cross sections) for the charge
dispersion, the mass dispersion, and the dispersion in the
scattering angle (Wilczynski plot). For example, for the
mass distribution we have

d 0'

dE dA min

(@ @b)&

exp
2+Z b

(A —Ab)z
2 7

2+A b

where the integration is over the impact parameter, E is
the TKE, A is the mass number of a projectilelike frag-
ment, and Eb is the mean value of the TEE for a given
impact parameter b. Ab is the mean value of the mass
for a given impact parameter b, and o@ b and cr~ b are
the variances in the TKE and the mass of the projectile
for a given b. The normalization constant C is chosen
so that the total deep inelastic cross section is given by
o = jb "bdb, with b;„=5.5 fm and b~~„=11.5 fm.

The double differential cross sections d& && and && &o
are determined in a similar fashion.

The Wilczynski plot (&& &o) for the reaction
Mo+ Mo at E, m = 14.7 MeV per nucleon is shown

in Fig. 4. We use ten contours for the range of cross sec-
tions from 0 to 230 mb/(MeV deg). The most important
feature of this plot is the shape of the ridge as it bends to
negative angles for large energy losses. The double dif-

2
ferential cross section && && is shown in Fig. 5 where we
have again used ten contours to display the range 0—66
mb/(MeVA). The shift of the mean of the distribution
from the expected value of 98 results from a mass loss
caused by the evaporation of pseudoparticles from the
hot nuclei. It is clear from this figure that for highly
dissipative reactions the dispersion is enhanced. This is
also evident in Fig. 6, which shows the double differential
cross section &@ && in the range 0—70 mb/(MeV Z). This
graph also shows a shift in the mean due to evaporation.

To compare our calculated dispersions with the experi-
mental results of Ref. [27], we need to determine the vari-
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FIG. 4. Wilczynski plot ( zz ze) for the reaction
Mo+ Mo at E,.~. = 14.7 MeV per nucleon obtained by

Landau-Vlasov and RMBC methods. The maximum value at
the peak was 230 mb/(MeV deg).
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FIG. 5. Double difFerential cross section (zz zz) for the
reaction Mo+ Mo at E,.~. = 14.7 MeV per nucleon ob-
tained by using Landau-Vlasov and RMBC methods. The
maximum value at the peak was 66 mb/(MeV A).

ances cr@ b and o~,b as functions of the TKE loss (TKEL).
The procedure used here is equivalent to making cuts in

t;he plots for &&&& or &&&& at; a given value of TKEL
and finding the first and second inoments of these dis-
tributions. For example, the average value of the mass
number and its variance for a given value of TKEL are
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d2FIG. 6. Double diiferential cross section (zz zz) for the
reaction Mo+ Mo at E,.m. = 14.7 MeV per nucleon ob-
tained by using Landau-Vlasov and RMBC methods. The
maximum value at the peak was 70 mb/(MeV Z).

and

& Ex + (zz sw) &

A dE dA E=TKEL

(10)

t Qw(A —A) (gl gx) )
+A (.dE dA)

+A (11)
E=TKEL

Here the summations are performed over the cuts
E=TKEL. A similar procedure is employed to determine
the 6.rst and second moments of the charge distribution.
Since we were not able to perform microscopic calcula-
tions for very central collisions where one could expect
an enhancement of dispersions, the method of finding
the dispersions for a given TKEL described above could
lead to some underestimations for large values of TKEL.
We have also found that since the values of the widths
of TKE are large, the dispersions in mass and charge for
TKEL which are comparable with these widths are spuri-
ously enhanced by the results obtained for larger TKEL.
For this reason we did not calculate mass and charge
dispersions for TKEL below 75 MeV.

Since in the Landau-Vlasov formalism the positions of
all pseudoparticles are known at any time, we also deter-
mine for each collision the number of neutrons or protons
which are exchanged during the reaction and compare
this quantity to the variances determined by the RMBC
method.

Figure 7 shows a&2 as a function of TKEL for the
Mo + Mo reaction which we studied. The dots with

error bars show the experimental data from Ref. [27], the
solid line is the RMBC prediction, and the dashed line
is the number of exchanged nucleons. Our results do not
agree with the experimental analysis especially for large

FIG. 7. Mass variance as a function of total kinetic en-

ergy loss for the reaction Mo+ Mo at E,.~. = 14.7 MeV
per nucleon. The data points represent experimental results
from Ref. [27]. The solid line is the RMBC prediction, and
the dashed line is determined from the number of exchanged
nucleons as discussed in the text.
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FIG. 8, Charge variance as a function of total kinetic en-
ergy loss for the reaction Mo+ Mo at E,.~. = 14.7 MeV
per nucleon. The data points represent experimental results
from Ref. [27]. The solid line is the RMBC prediction, and
the dashed line is determined from the number of exchanged
nucleons as discussed in the text.

TKEL where the experimental mass variances are very
large. It is also clear from this figure that the number
of nucleons exchanged during the reaction (dashed line)
exhibits the properties of collective transport theories,
in other words, a proportionality to the mass variances.
This relationship is expected as long as the drift is small.

The charge variance is shown in Fig. 8 along with the
number of exchanged protons. Once again the solid line
is the RMBC result, the dashed line is the number of
exchanged protons, and the dots with error bars are the
data from Ref. [27]. Here the variances predicted by the
RMBC method are closer to the experimental results, but
there is still a systematic discrepancy for small TKEL.

Finally, in Fig. 9 we show the mass variance, as deter-
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FIG. 9. Mass variance plotted as a function of time.
The reaction is Mo + Mo at E,.m. = 14.7 MeV per nu-
cleon with an impact parameter of 8.5 fm obtained by using
Landau-Vlasov and RMBC methods.

mined by the RMBC method, plotted as a function of
time for the reaction Mo+98Mo at E, ~ = 14.7 MeV
per nucleon and impact parameter of 8.5 fm. The large
peak at around 100 fm/c for the RMBC result is a sign of
dynamical correlations which occur during the collision
and which die out with time.

V. SUMMARY AND CONCLUDING REMARKS

We have studied the reaction ssMo + ssMo at E,
14.7 MeV per nucleon with both microscopic and macro-
scopic mean-field theories. For the microscopic model we
used a Landau-Vlasov semiclassical approach which in-
cludes a residual interaction in the form of a two-body
collision term. For the macroscopic model we used a
collective model approach which included one-body wall
and window dissipation. Both of these models were
used to study the reaction time, TKE, and scattering
angle as functions of the incident angular momentum.
Additionally, within the framework of the microscopic
Landau-Vlasov model we have calculated the dispersions

in charge, mass, and scattering angle, using the method
described in Ref. [2].

We have demonstrated that the reaction times ob-
tained with the macroscopic model for more central colli-
sions are much longer than predicted by Landau-Vlasov
calculations. This is because the wall friction was too
strong, mainly during the initial stages of the reaction.
This made the deHection angle too negative as compared
to the experimentally observed values. The scattering
angles obtained with the Landau-Vlasov model which
contains a residual-interaction collision term agree much
better with the experimental results.

We would like to stress here that for central collisions
the experimentally determined TKEL of the outgoing
fragments was systematically smaller than that predicted
by both the microscopic and collective models. In other
words, both theoretical models predict considerably more
dissipation for central collisions than is experimentally
observed. Therefore, in the case of the macroscopic ap-
proach some reduction of the one-body wall friction is
necessary. In the case of the microscopic model we be-
lieve that a further reduction of the free nucleon-nucleon
cross section is important, especially for the high density
overlap.

We found that for large TKEL the Landau-Vlasov
dynamics with a two-body collision term and with the
RMBC method underestimates the large and exponen-
tially increasing mass variances deduced from experi-
ments presented in [27]. The inclusion of quantum me-
chanical Huctuations might be quite important, especially
for central collisions.

The calculated charge variances are larger than the
observed ones (except above a TKEL of 300 MeV). The
agreement with the experimental charge variances might
be improved by including a further refinement of the
isospin interaction term [29] in the Landau-Vlasov for-
malism.
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