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A comprehensive analysis is made of the experimental information on Gamow-Teller beta decay
for the light (A & 18) nuclei. Experimental data on half-lives, Q values, and branching ratios are
tabulated. Experimental log ft values and beta-decay matrix elements are deduced from these data.
The one-body-transition densities necessary to predict the beta-decay matrix elements are then
calculated using a recently constructed shell-model Hamiltonian operating in the first four major
shells. Using these parameters, effective Gamow-Teller operators are deduced for the Op shell from
a least-squares fit to 16 experimental matrix elements. The effective operators are used to calculate
83 decay matrix elements. Some specific decays are discussed.

PACS number(s): 23.40.Hc, 27.20+n

I. INTRODUCTION

Nuclear beta decay involves aspects of the weak,
strong, and electromagnetic forces and historically has
provided more information on these fundamental build-
ing blocks of the nucleus than any other nuclear process.
The simplest beta-decay observable is its rate. For al-
lowed decays the decay rate amounts to a measure of the
sum of the Fermi (vector) and Gamow-Teller (axial vec-
tor) transition strengths. The Fermi transition strength
is nearly independent of nuclear structure; nevertheless
the study of pure Fermi superallowed 0+ —+ 0+ transi-
tions has yielded extremely important tests of the con-
served vector current hypothesis and the standard model
[1—3]. The Gamow-Teller transition strength B(GT), on
the other hand, is highly dependent on nuclear struc-
ture and on renormalizations of the axial-vector coupling
constant due to effects of the nuclear medium. An im-
portant ongoing subject in nuclear physics is to disen-
tangle these two eEects and to understand them both.
To this end, systematic studies of B(GT) in light nu-
clei have been made by Wilkinson [4—6] for A = 6—21
nuclei and Brown and Wildenthal [7, 8] for A = 17—39
nuclei. These studies show clearly the value of a system-
atic and comprehensive consideration of B(GT) values
for a range of related nuclei. It is our purpose to ex-
tend the 1s0d study of Brown and Wildenthal to nuclear
states with dominant shell-model configurations in the
08, Op, and Opls0d shells, where the last group excludes
states which are predominantly 1sOd states and as such
covered by the Brown-Wildenthal compilation. Our for-
malism and procedures follow closely after those used by
Brown and Wildenthal. We collect all the experimen-

II. WEAK-INTERACTION FORMALISM

A. General

Historically, the P decay rate —the most fundamen-
tally important P observable —is usually not quoted,
instead the ft value, or the logft value, is formed from
the observed partial half-life t and the phase-space factor

f —also called the Fermi integral. Thus [10]

(2.1)

The partial half-life t is related to the total half-life tip~
of the decaying body in question via

t = ti)2/b„, (2.2)

where 6„ is the branching ratio for the level with partial

tal data necessary for the extraction of transition rates
and calculate the necessary P and P+/EC phase-space
factors so as to provide a consistent set of logft values
and transition strengths. We consider all known decays
to bound states and include decays to particle-unbound
states when they can be readily extracted. This compi-
lation has some overlap with the compilation and study
of Raman et al. [9] which focused on 39 mixed Fermi
and Gamow-Teller transitions in A ( 55 nuclei. A good
general reference for beta decay on which we rely —in
addition to the classic papers of Wilkinson and the 1s0d-
shell studies of Brown and Wildenthal already cited —is
the beautifully written and erudite book of Behrens and
Biihring [10].
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(r) = (fll ) .411&)/v'»'+1 (2.4)

and for the Gamow-Teller operator it is

(«) = (fll ) .~"t~+ lli)/v'» + 1 (2.5)

where f andi refer to all the quantum numbers needed to
specify the final and initial states, respectively, 6 refers
to P+ decay, ty = z(r~ + ir„) with t+p = n, and J; is
the nuclear initial-state spin. The sums in Eqs. (2.4) and
(2.5) are over all nucleons. The matrix elements are re-
duced in J but not in T. The phase and reduced matrix
element convention follows Edmonds [ll]. It should be
remarked that because of the Coulomb energy, nuclei are
tilted in binding energy such that the proton-rich side is
less bound than the neutron-rich side in isobaric multi-
plets. Thus, all Fermi decays are P+/EC transitions.

It is convenient to define transition strengths for the
Gamow-Teller and Fermi processes via

B(GT) = (9A/9v) («) (2 6)

half-life t. The constant K is given by

2vrs(ln 2)hK = = 1.230618 x 10 erg cm s,m5C4e

(2.3)

where 5 = h/2n, with h being Planck's constant, m, is
the electron mass, and c is the speed of light. In Eq.
(2.1), gv and gA are the weak-interaction vector and
axial-vector coupling constants for free nucleons.

The nuclear matrix element of Eq. (2.1) for the Fermi
operator is

where the constant K/(gv)z = 6139 is a global evalua-
tion by Dubbers [14] of all available data. We note that
consideration of the eight best-known superallowed 0+
~ 0+ decays gives 6147 + 7 s for this constant [2].

B. The phase-space factors for P+ decay
and electron capture

X. Zeta decay

and for the diffuseness of the actual nuclear charge dis-
tribution [15]

b~ = 1+ 1.8 x 10 Z —1.2 x 10 ZWp, (2.ii)

where, as is customary in P decay, Z is the atomic number
of the daughter. The Fermi and Gamow-Teller phase-
space integrals are related by [1]

bv = fv/fA = 1 + —oZ(WpR) — (WpR) (2.12)

for P+ decay. In these equations Wp, the maximum P+
energy, and R, the charge radius for a uniform charge
distribution, are in natural units and R is given by

The phase-space integrals fA and fv are calculated us-
ing the parametrization of Wilkinson and Macfield [12]
which —within the context of its definition —is accurate
to O. l%%uo. Not included in the definition of the Wilkinson-
Macefield phase-space factor fwM for Gamow-Teller de-
cay, but recommended by Wilkinson [1,15 are correction
factors for "outer" radiative processes [16

6R = 1 + 4.00 x 10 Z[1 + 0.22 ln(1.36/Wp)]
+3.60 x 10 Z (2.io)

and R = rpA /386. 16 (2.13)

B(F) = (r) = [T(T+ 1) —T, T,~]b,y(l —b, ), (2.7)

where b,f allows transitions between analog states only.
The quantity (1 —b, ) corrects for the imperfect over-
lap between the initial and final states. Following recent
evaluations [2] we adopt

(2.14)

Then

with the purely phenomenology parametrization [1]

rp = 1.614 —0.1067(ln A) + 0.005456(lnA)
+6.112/(A —1.76) fm.

~c = 0.0025 + 0.0020 (2.8) fA = bRbvfwM, fv = bvfA. (2.i5)

For the Gamow-Teller decay, this correction is small com-
pared to other uncertainties such as those in the nuclear
wave functions and is ignored.

Our calculation of the P+ phase-space factor uses the
parametrization of Wilkinson and Macefield [12]. Our
formalism and evaluation of electron capture (EC) fol-
lows the review article of Bambynek et aL [13]. Nuclear
size effects and other corrections are slightly different for
the Fermi and Gamow-Teller phase-space factors —now
denoted fA and fv, respectively [1, 12]. Taking this dif-
ference into account we arrive at our operational defini-
tion relating the transition strengths to the fAt value for
Gamow-Teller (axial vector) decay:

8. Plectron capture

ln 2
A, (s ') =(ln 2)t '= ) n C f'. (2.16)

The sum extends over all atomic subshells from which an
electron can be captured. For closed shells n~ = 1; for a
partially filled shell n is the fractional occupancy of the
shell. C is the combination of matrix elements allowed
for the subshell x, and f' has the form

For Z + 1 ~ Z decays we must consider both electron
capture (labeled as EC or e) and P+ processes. The total
electron capture probability from all atomic shells is [13]

6139+ 7

(fv/fA)B(F) + B(GT)
(2.9) f.' =

2 g.'P.'B* (2.17)
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In Eq. (2.17) q is the neutrino energy released in the
capture and is given by

qz = Q(e) Ez ER Erecoil~ (2.18)

f = [&KqK—PK+ riLlqL1PL1BL1 +'''].@ 2 2 2 2

2
(2.19)

For the light nuclei under consideration here, only the
K and L1 subshells will give non-negligible contributions
and Eq. (2.19) is complete as it stands. Thus for electron
capture we have the exact analog of Eq. (2.9)

where Q(e) is the atomic mass difference between initial
and final states (and as such contains effects due to the
change in electron binding energies). E is the binding
energy of an electron in the 2: subshell in the daughter
nucleus, ER is the rearrangement energy, and E„„;iis
determined from the momentum balance. All energies
are in units of mec2 (natural units), Pz is the electron
radial wave function amplitude at the nucleus (r = 0),
and B takes account of the effects of electron exchange
and overlap. For allowed decays C is independent of the
subshell z [13] and can be replaced by B(F) + B(GT)
(it is assumed that f' is the same for Fermi and Gamow-
Teller decays) and the phase-space factor becomes

Note that the extraction of M(GT) for unbound states
is inherently less accurate than for bound states.

In those cases where an R-matrix (or roughly equiv-
alent) approach has not been made, we make a simple,
very approximate estimate of the effect of the 6nite width
of the level and use this estimate to correct f and to
augment its uncertainty. Penetrability factors and inter-
ference between resonances are neglected and we assume
a simple Breit-Wigner shape for the resonance and an

E& dependence for the integrand of f Th. en, for a
level of width I' and averaging f over an interval of +21',
we define a "corrected" f = f(1 + 6fr ) where f is eval
uated at the peak of the resonance (Ep = E& ) and 6fr
=6(I'/Eg)~. We then calculate M(GT) using f and add
A fr to the other uncertainties in quadrature. This ap-
proximation is only useable for I' « E&, its main use is
to estimate the magnitude of any possible effect due to
the unbound nature of the final state.

C. The Gamow- Teller matrix element

We follow Brown and Wildenthal [7] and define an ex-
perimental Gamow-Teller matrix element in terms of the
experimental transition strength:

6139+ 7

[bvB(F) + B(GT)] ' (2.20) M(GT),„p ——[(2J, + 1)B(GT),„p]'i2, (2.22)

where we arbitrarily assume the same relation, Eq.
(2.12), between the Fermi and Gamow-Teller phase-space
integrals as pertains in P+ decay. It should be empha-
sized that t, is the partial half-life for the EC process to
the level in question.

The above result for f', Eq. (2.19), is that given by
Bambynek et aL However if the total EC rate is desired
it is not necessary to include the B factors —at least for
light nuclei. This is so because they represent effects that
redistribute the process amongst the different subshells
but do not change the total rate [17].

In practice, when both are allowed, we combine the P+
and EC processes by replacing f~ in Eq. (2.9) by

f~+ = f~(~+)+ f' (2.21)

We then use it in conjunction with the partial half-life
for the combined P+ and EC processes.

8. Decays to unbound states

When the final state is unbound against the emission
of nucleons or nucleon clusters, complexities arise which
can greatly increase the difficulty of extracting M(GT)
values from the experimental data [18—20]. Consider P
decay into a region of the continuum which, in general,
consists of overlapping resonances which decay by parti-
cle emission. Because of the interference between these
overlapping resonances the branching ratio, log ft value,
and P-decay matrix elements cannot be rigorously de-
fined for a given level (resonance). Barker [18] developed
an B-matrix approach which is appropriate to this situa-
tion and it was used to analyze the sHe [19], sLi, sB [20,
21), sLi [22, 23], and isN [24, 25] decays which we present.

M(GT) = v12 ( 1)T' T'
l

— '
l

A
Tzf ATz —Tzi j

x ) q (jllsll j')D (2.24)

where AT, = T,f —T„and

& = Igw/gv I

= 1 264 + 0 002 (2.25)

is obtained from the same global evaluation which yielded

K/(g~) [14]. The sum is over all possible single-particle
transitions j ~ j' of the model space, (jllsllj') is the
reduced single-particle matrix element of s (—:zcr) for
this transition calculated in the model space with the
operator specific to free nucleons, and it is assumed that
higher-order corrections to this matrix element can be
represented by the multiplicative factor q~~l. In general,
the one-body-transition density D~~ is obtained from
shell-model wave functions for an operator with rank in
spin and isospin space of 6J and AT, respectively, via

(fill [& (j) x a(j')l '
[(2AJ + 1)(24T + 1)]1~' (2.26)

where the matrix element is doubly reduced (spin and

where

B(GT)e„p ——[(6139+ 7)/ate„p] —bvB(F)th. (2.23)

Our convention is that M(GT) is positive and experi-
mental and theoretical quantities are denoted by sub-
scripts of "exp" and "th," respectively. The matrix ele-
ment M(GT) is the quantity used to relate experiment
and theory. Its theoretical definition is [7]
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isospin) and for Gamow-Teller decay 4J = AT = 1. For
a single-particle transition such as isO(P+/EC) isN taken
as (vpiyz) ~ (npig2), ~D~~

~

= 1. The single-particle
matrix elements are given by Table I of Ref. [7] which,
for the four possible Op-shell transitions, gives

2j 2j'

1 1
1 3
3 1

3 3

—1
—2v2

2v2
~io.

S=) sg, L=) II, P=) pg
k k k

(2.27)

defined by Brown and Wildenthal [7, 8]. In Eq. (2.27),

The effect of the nuclear medium can be expressed via
the three independent q~~' (q~'~ = q~~~) or, equivalently,
via the deviations from the free-nucleon values of the
matrix elements of the operators

tion are assigned either to the Op-shell configurations
(Os)4(op)+ 4 or (predominantly) to the cross-shell con-
figurations (Os) (Op)+ '"(1s0d)"". For A = 6—9, all
the decays considered theoretically are Op-shell transi-
tions and are treated with the interaction labeled P(5—
16)T. This interaction is the result of a least-squares
fit of the 15 Op-shell two-body matrix elements (TBME)
and two single-particle energies (SPE) to 86 level bind-
ing energies in A = 5—16 nuclei. The Op-shell decays with
A = 10—15 were treated with the P(10—16)T interaction
which results from a similar fit to 51 A = 10—16 level
binding energies. The D~~ of the cross-shell A = ll —18
decays were calculated with an interaction which encom-
passes the lowest four major shells —Os, Op, ls0d, and
Oflp —and is designed to treat a given nba excitation
of a Ohw (Os) (Op) "'"(1s0d)"'" configuration. It re-
sults from a least-squares fit to 216 level binding energies
in the A = 10—22 region. We shall refer to these three
interactions collectively as the WBT interaction. Which
of the three is actually used can be deduced from the A
and conFigurations for the transition in question.

p = v'8vr [Yf l C3 s]f l (2.28)
IV. THE EXPERIMENTAL DATA

For free nucleons only the first of these three operators
has a nonzero matrix element for the Gamow-Teller op-
erator. The nuclear medium induces nonzero values for
the other two and we can express the deviations from the
free-nucleon single-particle matrix elements by [7]

22

22
b33

22

= qy y
—1 = b, —4bi + 4b„,

22
=q3 &

—1 = b, —bt —2b„,
22

=q33 —1 = b, + 2bl + ~gbp.
22

(2.29)

A
b(A) = 6(A = 16) ~—

16) (2.30)

We adopt P = 0.35 which is the value assumed by Brown
and Wildenthal in their 1sOd-shell fit and is close to the
value which would be inferred from Towner's theoretical
Op results for b, at A=5 and 15 which would give P =
0.36.

It is clear that, in general, the quenching factors b~~~ for
the three single-particle transitions can be expected to
be different.

We expect some mass dependence in the b correction
factors since the renormalizations are theoretically some-
what difFerent for the particle states in A=5 and the hole
states in A=15 [26]. Assuming a smooth A dependence
for the 6 correction factors, we follow Brown and Wilden-
thal [7, 8] and parametrize it in the form

The decaying nuclei we shall consider are listed in Ta-
ble I and the experimental data from which the M(GT)
can be extracted for specific decays are collected in Ta-
ble II. Table III contains the experimental log f~t and
M(GT). The sixth column of Table III contains the
matrix elements, M(GT)g„„calculated with the free-
nucleon operator, i.e. , from Eq. (2.24) with the q~~ fixed
at unity. The next (seventh) column contains the matrix
elements, M(GT), ir, calculated with efFective Gamow-
Teller operators. We now consider the determination of
these effective operators.

V. THE EFFECTIVE GAMOW- TELLER
MATRIX ELEMENTS

= (g~/gv) 3(N, —Z, ) (5.1)

Empirical Op-shell values for the b„b~, and b„of Eq.
(2.29) were obtained from a least-squares fit of Eqs.
(2.22), (2.24), and (2.30) to the 16 strongest and most re-
liable decays connecting states assigned to (Os)4(op)+
configurations. The strongest is defined relative to the
Gamow-Teller sum rule [47] which relates the summed

P and summed P+ B(GT) values for a given initial state
to the neutron number N, and the proton number Z, of
the initial state

) [B(GT—,i ~ f) —B(GT+,i ~ f)]
f

III. THE SHELL-MODEL CALCULATIONS

Calculations of the one-body-transition densities of Eq.
(2.26) were carried out with the computer code oxBAsH
[27]. Recently derived interactions of Warburton and
Brown [28] provided the Hamiltonians. The initial and
final states for the A = 6—18 region under considera-

where the sum is over all possible final states. Thus,
following Brown and Wildenthal [8], the fits are made
to M(GT) values which are normalized by dividing both
experimental and theoretical values by

W = ~gx/gv ~
[(2J' + 1)3(N~ —Z, )] ~ for N, P Z, .

(5.2)
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From the sum rule of Eq. (5.1), the upper bounds on the
quantities

R(GT) = M(GT)/W (5.3)

are of the order of unity. The 16 transitions included in
this fit are labeled by pg (@ = 1—16) in the last column
of Table III. It can be seen in Table III that for six of the
P decays (p5—6,p10—13) included in the fit, there are
mirror P+ decays also available. There is a well-known
asymmetry for mirror decays which can be traced to the
different binding energies in the finite well of the neutron
(P ) and proton (P+) [1]. The proton in P+ decay is less
bound and thus its wave function has a longer tail and its
overlap with the tightly bound final state is, in general,
poorer than for the neutron in P decay. Thus M(GT, +)
is generally smaller than M(GT, —) and it is more fitting
to compare M(GT, —) to calculations —such as ours—
which ignore these binding energy effects.

In order to obtain some assessment of the dependence
of the effective operators on the shell-model interac-
tion used to obtain the D~~', the shell-model calculation

and least-squares fit was also performed with the (8—16)
TBME interaction of Cohen and Kurath [52]. The results
of the two fits are given in Table IV. The entry L&h is the
root-mean-square (rms) deviation between the theoreti-
cal and experimental R(GT). Thus there is a 4'Fo devi-
ation relative to a sum rule of unity. In the final fits the
quantity 4th was added in quadrature to the experimen-
tal errors in order to give proper weight to the individual
datum. It is seen that the two interactions give results
which are equal within the uncertainties with which they
are determined. From the first listed fit we see that bi

and b„are consistent with zero. This can also be inferred
from the uncertainties which result for the second-listed
fit. They are also consistent with the "final-fit" values
obtained by Brown and Wildenthal [8] from their fit to
1s0d shell data; these values (for A = 16) are b, (s-s) =
—0.186(13), b, (d-d) = —0.204(9)) bi(d-d) = +0.0029(22),
b„(sd) = +0.014(7), where the latter is an average value
for b„(s-s) and b„(d-d). Again, the uncertainties result-
ing from the fourth-listed fit illustrate this consistency.
The fundamental calculations of Towner [26] for the Op

orbits give A = 16 results of b, = —0.189, bi = +0.013,

TABLE I. Decaying nuclei under consideration. All are ground states except the N 0 state.
Atlgq and AQ are the uncertainties in the least significant figures of tlg2 and Q, respectively. All Q
values are from Ref. [29]. The spin-parity and isospin assignments are from Ref. [30]. The P-decay
half-lives are also from Ref. [30] unless otherwise noted in the last column.

Decay

S(P-)'H
H(P ) He

'He(P )'Li
Be(EC) Li
He(P ) Li

'Li(p )'be
'B(P+)'Be
Li(P ) Be
'c(P+)'B
10C(p+) 10B

"Li(P )"Be
11B (p

—)11B
1lC(p+) 1lB

"Be(P )"B
''B(P )'c
"N(P+)"c
13B(p

—
)1+

"N(P+)"c
"o(P+)"N
14B(p

—
) 14C

"c(P-)"N
14O(p+) 14N

"c(P-)"N
"o(P+)"N
"c(P-)"N
"N(P-)"o
"N (P-)"o
»N(P —)»o
"Ne(P+) 'F
"c(P-)"N
"N(P-)"o

2J'

1+
1+
p+
3
p+
4+
4+
3
3
0+
3
1+
3
0+
2+
2+
3
1
3
4
Q+

Q+
1+
1
p+
4
0
1
1
p+
2

2T'
(sec)

6.166E+02
3.887E+08
8.067E—01
4.604E+06
1.110E—01
8.403E—01
7.70E—Ol
1.783E—01
1.265E—01
1.9290K+01
8.5E—03
1.381E+01
1.2234E+03
2.13E—02
2.020E—02
1.1000E—02
1.736E—02
5.979E+02
8.55K—03
1.28E—02
1.807E+11
7.0606E+01
2.449E+00
1.2224E+02
7.47E—01
7.13E+00
1.571
4.174E+00
1.093E—01
9.5E—02
6.24E—01

16
9

15
6

15
9
3
4
9

12
2
8

12
22
20
16
16
24
5
8

13
18
5

16
8
2

69
4
6

10
12

(keV)

782.346
18.596

3507.76
861.835

10653.7
16003.71
17978.5
13606.0
16497.9
3647.82

20675
11506.1
1982.20

11707
13369.4
17338,0
13437.2
2220.45

17766.2
20644

156.472
5143.064
9771.68
2753.95
8012.1

10419.1
10539.5
8680

14536
11810
13899

2
90
17
71
71
12
19
25
10
80
64
83
15
13
10
11
27
95
21

5
80
80
53
43
23
23
15
50
36
20

Ref.

[14, 31]
[32)

[35]

[36]

[37]
[36]

[38]

[39]
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TABLE II. Experimental data for specific decays. Unless otherwise indicated in the last column, the spin-parity, energy,
and branching ratio information is from Ref. [30]. The index k orders states of given J,T in energy. b,Ef and b, b are the
uncertainties in the least significant figure for the energy Ef of the final state and the branching ratio 6„ to it, respectively.
P' is the percentage electron capture contributing to the decay. No entry for b,fr means the final state is bound, an entry
of R means the data was subject to an R-matrix analysis (and b„and log fz are estimates), and a numerical entry indicates
application of the approximate prescription discussed in the text.

Reaction

S(P-)'H
H(P ) He

'He(P )'Li
rBe(EC) Li

He(P ) Li

Li(P ) Be

sBy+)'Be

Li(P ) Be

'C(P+)'B

"Li(P-)"Be
(P

—
)iiB

1+(P+)11B
''B (P )'B

"B(P-)"C

"x(p+)"c

isB(P- )1+

"N(p+) "c
"o(p+)"x

14B(P—
)1+

2J7f

(i)

1+,1
1+,1
0+ 2
3 1
3 1
0+,4
p+ 4
p+ 4
p+ 4
4+ 2
4+ 2
4+ 2
4+,2
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
0+,2
0+ 2
3,5
1+ 3
1+,3
1+,3
3 1
p+ 4
p+ 4
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
3 3
3 3
3 3
3 3
3 3
1,1
3 3
3 3
3 3
3 3
3 3
3 3
4,4

2T
(f)

1+~,1

3z )1
1~ )1

4+ Q

4+,0
3$ )1
5~,1
11 )1
5,1

a 1

3$ )1
5~,1

1$ )1

lg )3

31 )1

p+ p

0+,0
4+ p

2+,0

1» )1
3$ )1
5~ )1
12,1
32 1
11 1
11 )1
3$ )1
5~ )1
12 1

32 '1

21

(keV)

0
0
0
0

477.612
981

~3080
~ 5150

9060
3120

16800
3120

16800
0

2429.4
2780
7940

11283
11810

0
2361

~2800
718.35

2154.3
320.04

6791.80
7977.84
9876

0
0

5000
0

4438.91
7654.20

10300
0

4438.91
7654.20

10300
12710
15110

0
3684.507
?547
8860
9897

0
0

3502
7376
8918
9476

10360
6093.8

0
0
0
0
3
0

~80
~80
~90
130

130

0
13

120
80
24
20

0
5

5
10
30
42

8
0
0

20
0

31
15

300
0

31
15

300
6
3
0

19
3

20
5
0
0
2
9

11
8

50
2

100.0
100.0
100.0
89.61
10.39
84.0

2.4
~91
~7
88
~9
50.0
29.2
15.6
1.5
1.1
2.6

60
17
11
98.54
&0.08

9.2
&0.03

4.00
3.1

100.0
99.1
&0.9
97.22

1.283
1.5
0.08

94.55
1.898
2.7
0.46
0.31
0.0044

92.1
7.6
0.094
0.16
0.022

100.0
89.2
9.8
0.18
0.61
0.16
0.02

81

Ab„

&1
&1
&1

6
6
1

20
15

r 15

18
30
30

5
2
2

10
6
5

14

7
0

30

0

30
40

3
2

60
32

15
12
15
8
8

20
3
7
0

22
20
9

14

9

log f~

0.234
—5.533

3.003
—3.410
—4.112

5.045
4.37
3.90
2.43

~5 4Q

1.85
~5.38

2.00
5.765
5.355
~5.31

4.04
~3.63

2.84
5.950
5.604
5.548
1.757

—0.706
6.609
3.389
3.037
1.594
0.512
5.462
4.316
5.748
4.912
4.004
2.783
6.053
5.388
4.733
3.988
2.967
0.906
5.759
5.094
4.064
3.563
3.055
0.895
6.099
5.606
4.886
4.518
4.364
4.099
5.925

0.000
0.000
0.000

100.0
100.0

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.029
2.154
0.000
0.000
0.000
0.000
0.230
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.002
0.007
0.190
0.000
0.000
0.000
0.000
0.000
0.194
0.000
0.000
0.001
0.001
0.001
0.002
0.000

&fr
(%)

0.00
R
R
R
R

0.02
3.79

0.00
0.00
2, 73

0.03

0.00
b

0.00
b
0.00
0.00

0.00
0.64
0.03

0.01
0.04
0.52
0.01
0.01

Ref.

[31]
[32]

19]
19]
19]
20]
20, 41]
20]
20, 41]
[34]
[22]
[22]
[42]
[22]
[22]
[43]
[43]
[43]
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TABLE II. (Continued).

Reaction 2JQ )2T
(i) (f) (keV)

AEf
(%%uo) (Fo)

&fr
(Fo)

Ref.

"C(P-)"N
"o(P+)"N

'C(P ) N

' O(P+)' N

1eC(P
—

) ieN

"N(P-)"o

"N'(P-) 'M
17N(P —

)17O

"Ne(P+) "F

"C(P-)"N

"N(P-)"o

4
4

0+ 2
0+2,
0+2,
1+,3
1+,3
1 $3

1+,3
1+,3
1 1
0+ 4
0+ 4
4,2
4,2
4,2
4,2
0,2
1 3
1,31,3
1 )3
1 3
1 3
1 3
1 3
1 3
1 3
1,3
1 3
0+,6
0+,6
2,4
2,4
2,4
2,4
2,4
2,4
2,4
2,4

6~,2
4~,2

11 1

6~,0
2~,0
4~,0
22,0
2~,0
1~,1
3g )1
32 1

12 1
1] y1

3$ yl

32 1

12 1

33 1

34 )1
13 1
1$ )3

2] y2

4z, 2

22 2

42,2

0~,2
23 2
43,2
24 y2

6728.2
7341.4

0
0

3948.10
5298.822
7300.83
8312.62
8571.4
9049.71

0
3352.8
4320.4
6129.89
7116.85
8871.9
9585
7116.85
3055.36
4552
5378
5939
3104
4640
5488
6037
8075
8200
8436

11192.9
1734.8
2614.2
4455.54
5530.24
6198.22
6351.3
6880.45
7619
7771.07
8039

13
31

0
0

20
14

2
3

12
7
0

26
27

4
14

5
11
14
16

2
2
4
3

20
11
9

10
100
10
23

10
29
40

6
27
3

50
2

8.6
(11
100.0

0.61
0.054

63.2
0.0074
0.041
0.013
0.034

100.0
83.8
15.5
66.2
4.8
1.06
0.00120
9
0.34

38.0
50.1
6.9
0.48

16.54
59.2

7.8
7.3
1.7
4.0
0.64
9

72
47.8

2.7
1.2
1.9

13.0
6.8
44
1.8

0
1
2
8
8
5
2
3
0

17
17
6

7
5
2
6

13
13
5
7

14

2
9
3
9

14
7

10
10

2
3
8
5
5
2

5.832
5.738

—2.208
3.221

-1.981
3.526
2.377
1.408
1.062
0.191
1.557
3.606
3.148
3.454
2.943
1.527
0.993
3.012
3.993
3.378
2.943
2.586
5.087
4.758
4.550
4.404
3.758
3.753
3.620
2.087
5.171
4.983
5.048
4.800
4.630
4.589
4.441
4.215
4.166
4.076

0.000
0.000
0.000
0.007

64.2
0.000
0.000
0.000
0.000
0.000
0.099
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.002
0.002
0.003
0.007
0.007
0.008
0.087
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.01
0.02

0.00
R

0.06
0.04
0.08
0.00
0.39
0.04
0.01
0.20

10.41
0.23
0.00

0.00
0.00
0.00
0.00
0.00

[24]
[3g]

[441

[»]
[39]
[39]
[39]
[»]
[39]
[39]
[40]
[4O]
d

d
d
d
[45],d
d
[45],d

The P decay is allowed so that 2J = 1,3, or 5 . This broad structure could very well be a composite due to two or
more overlapping resonances.

The 3 fr correction for this decay is too large to be meaningful. A correction for the finite width of the level and any possible
interference effects has not been made.' AEf is our estimate.

See Sec. VIB12.

and 6„=+0.048. The least-squares results are in poorer
agreement with these values —especially that for 6„.
However, the disagreement is not severe as can be in-
ferred from the third-listed 6t of Table IV. We use the
results of the fourth-listed Bt in Table IV together with
the WBT interaction in our calculation of the effective
M(GT) M(GT),g of Table III simply because they hap-
pen to reproduce the M(GT)e„& for isO(P )isN. This
decay is strongly emphasized because the Opqy2 —+ Op~y2

quenching factor of Eq. (2.29) is considerably more sen-
sitive to b~ and b„ than the other two possibilities.

The M(GT) of the cross-shell transitions involve
Gamow-Teller operators for both the y and 1sOd shells.
In principle, effective operators for both shells could be
determined from a least-squares fit to the M(GT),„~ of
Table III. However, in practice, there is not enough data
of suKcient quality nor do the cross-shell interactions
model the data with suKcient precision to allow such
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TABLE III. Comparison of experimental and theoretical Gamow-Teller matrix elements for A &18 decays. The nota-
tion th(free) and th(eff) refers to M(GT) values calculated using the "free nucleon" and "effective" Gamow-Teller operators,
respectively.

Reaction

S(P-)'H
'H(P ) He
He(P ) Li
Be(EC) Li

He(P ) Li

sLi(P ) Be

B(P ) Be

Li(P ) Be

'C(P+)'B

1 lL (P
—

)
11Be

11B (p
—)11B

11+ {p+)
11B

''B (P )'B

"B(P-)"C

"N(P+) "C

13B(P
—

)1+

"N(P+) "C
"o(p+)"N

14B(P
—

)14C

"C(P-)"N

2 JQ

(i)
1+,1
1+,1
0+,2
3 1
3 )1
0+,4
0+ 4
0+,4
0+ 4
4+ 2
4+ 2
4+,2
4+ 2
3 3
3 3
3 3
3 3
3 )3
3 3
3 3
3 3
3 3
0+,2
0+ 2
3,5
1+,3
1+,3
1+,3
3 1
0+,4
0+,4
2+,2
2+)2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
2+,2
3 3
3 3
3 3
3 3
3 3
1 1
3 3
3 3
3 3
3 3
3 3
3 3
4,4
4,4
4,4
0+ 2

2T
(f)

1+, ,1

31,1
lq, l

31,1
5~,1
lx, l
5,1
dl
dl

3g )1

11 '3

32 1

3$ )1

0+ 0

0+,0

0+ 0
4+ 0
0+,0

1~,1
3~,1
5q, l
12 '1
32,1

1~,1
11 1

3$ j1

5~,1

12 1

32,1
5,1

2g y2

6, ,2
4~,2

(keV)

0
0
0
0

478
981

3080
5150
9060
3120

16800
3120

16800
0

2429
2780
7940

11283
11810

0
2361
2800

718
2154

320
6792
7978
9876

0
0

5000
0

4439
7654

10300
0

4439
7654

10300
12710
15110

0
3685
7547
8860
9897

0
0

3502
7376
8918
9476

10360
6094
6728
7341

0

log f~t

3.024(1)
3.058(1)
2.910(1)
3.300(1)
3.534(3)
4.166(8)
b
b
b
b
b
b
b
5.310(24)
5.064(54)
b
b
b
b
5.274 (72)
5.48(15)
5.62(22)
3.048(1)
3.661(3)
5.585(35)
5.937(30)
5.575(33)
4.231(57)
3.598(2)
3.794(45)

&4.66(18)
4.071(2)
5.114(14)
4.137(87)
4.19(22)
4.118(3)
5.151(7)
4.343(64)
4.37(17)
3.52(17)
3.30(15)
4.034(6)
4.452(46)
5.331(93)
4.595(82)
4.95(14)
3.671(2)
4.080(11)
4.547(89)
5.56(22)
4.66(10)
5.09(11)
5.73(22)
4.124(56)
5.01(19)
4.804(27)
9.049(3)

M(GT)
(exp)

3.100(7)
2.929(5)
2.748(4)
2.882(4)
2.678(8)
0.647(6)
0.43(10)
0.43(15)
2.24(50)
0.364(25)
6.0(25)
0.340(25)
5.9(25)
0.347(10)
0.425(24)
0.21(5)
0.44(8)
2.40(40)
5.98(64)
0.361(30)
0.287(51)
0.246(56)
2.344(2)

(1.14
0.256(11)
0.119(4)
0.181(7)
0.838(55)
1.480(9)
0.943(18)

&0.336(75)
1.258(7)
0.379(6)
1.17(12)
0.43(6)
1.184(4)
0.361(3)
0.914(68)
0.56(10)
2.37(46)
1.78(88)
1.506(10)
0.931(49)
0.339(36)
0.787(74)
0.524(83)
0.788(8)
1.429(18)
0.835(85)
0.259(65)
0.729(84)
0.446(56)
0.214(54)
1.519(97)
0.55(12)
0.694(22)
0.002(0)

M(GT)
th(free)

3.096
3.096
3.031
3.187
2.901
0.566
0.562
0.250
4.106
0.507
4.318
0.507
4.318
0.573
0.519
0.394
0.450

d

0.573
0.519
0.394
2.721
0.891
0.684
0.351
0.197
0.259
2.084
1.689
0.095
1.558
0.434

e
2.135
1.558
0.434

e
2.135
2.071
0.409
1.989
0.943
0.294
1.307

e
0.891
1.989
0.943
0.294
1.307

e
f

1.613
0.529
0.652
0.167

M(GT)
th(eff)

3.096
2.630
2.747
2.493
0.506
0.454
0.203
3.514
0.456
3.694
0.456
3.694
0.500
0.478
0.333
0.350

d
d

0.500
0.478
0.333
2.284
0.783
0.553
0.292
0.135
0.213
1.783
1.395
0.047
1.284
0.400

e
1.760
1.284
0.400

e
1.760
1.756
0.322
1.626
0.797
0.306
1.041

e
0.778
1.626
0.797
0.306
1.041

e
f

1.31?
0.419
0.529
0.183

Ref. or
Remark

[31],a
[32],a
pl
p2
p3
p4
[19]
[»]
[19]
[20]
[20, 41]
[20]
[20, 41]
p5,a
p6,a

a
ad
a)d
[30, 43]
[43]
[43]
p7

cl
c2
c3)a
p8
p9,a
[34],a
plo
pll
a,e
a

a,e

p12
p13

e
pl4

e
f
c4
c5
c6
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Reaction

'"o(P+)"N

"c(P-)"N

"o(P+)"N
"c(P-)"N

"N(P-)'Q

"N (P-)"o
17N(P

—
)17O

~~Ne(P+) ~~F

"c(P-)"N

"N(P-)'sO

2Jg,2T
(i) (f)

0+2,
0+2,
1+,3
1+ 3
1+,3
1+,3
1+,3
1 1
0+
0+,4
4,2
4,2
4,2
4,2
0,2
1,3
1 3
1 3
1,3
1 3
1,31,3
1 3
1 3
1 3
1 3
1 3
0+,6
0+,6
2,4
2,4
2,4
2,4
2,4
2,4
2,4
2,4

2+1,0

11 1

6,0
21,04,0
22,0
21,0
11,1
31,1
32,1

12 1

11,1
31 '1
32,1
12 1
13 1
14 ) 1
15 )1

21 )2

22 '2
4,2

01,2
23 2

43,2
24 )2

(kev)

3948
5299
7301
8313
8571
9050

0
3353
4320
6130
7117
8872
9585
7117
3055
4552
5378
5939
3104
4640
5488
6037
8075
8200
8436

11193
1735
2614
4456
5530
6198
6351
6880
7619
7771
8039

TABLE III.

log f~t

7.284(7)
3.138(16)
4.114(6)
6.897(47)
5.185(53)
5.337(67)
4.049(38)
3.644(1)
3.556(11)
3.832(48)
4.486(5)
5.115(36)
4.355(29)
b
4.254(98)
7.082(77)
4.419(17)
3.864(15)
4.367(33)
6.453(64)
4.601(23)
3.867(15)
4.426(17)
3.970(21)
3.970(21)
3.853(27)

&3.284
&4.945

4.103(76)
5.164(10)
6.161(57)
6.337(63)
6.100(60)
5.124(26)
5.178(34)
5.320(45)
5.616(50)

(Continued).

M(GT)
(exp)

0.018(0)
2.119(39)
0.972(6)
0.039(2)
0.283(17)
0.238 (18)
1.047(46)
0.889(5)
1.306(16)
0.952(53)
1.001(5)
0.485(20)
1.165(39)
0.145
0.585 (66)
0.032(3)
0.684(13)
1.296(22)
0.726(28)
0.066(5)
0.569(9)
1.369(22)
0.588(13)
1.196(79)
0.580(58)
1.819(91)

(1.087
~0.264

0.696(61)
0.355(4)
0.112(8)
0.091(7)
0.120(9)
0.373(12)
0.350(14)
0.298(16)
0.211(12)

M(GT)
th(free)

0.167
2.665
1.206
0.129
0.098
0.019
2.397
1.032
1.461
0.664
0.949
0.327
2.001

g
1.126
0.251
2.038
0.563
0.263
0.251
2.038
0.563
0.263
2.205
0.289
0.455
0.632

0.838
0.311
0.106
0.391
0.009
0.387
0.100
0.207
0.176

M(GT)
th(eff)

0.183
2.189
0.990
0.056
0.116
0.034
1.966
0.889
1.140
0.559
0.820
0.271
1.643

g
0.943
0.159
1.634
0.439
0.201
0.159
1.634
0.439
0.201
1.777
0.247
0.378
0.537

0.651
0.258
0.101
0.333
0.045
0.324
0.086
0.187
0.168

Ref. or
Remark

p15
C7
c8
C9
c10
cll
p16
c12
c13
c14
c15
c16
g
[38],a
c17
c18,a
c18,a
c19
c17
C18,a
C18,a

c20,a
c21,a
c22)a
c23)a
c24,a
c25,a
c26,a
c27)a
c28,a

See the discussion in Sec VI B.
For decay to an unbound level, log fzt is not well defined. An estimate is 6139/B(GT).
The P decay is allowed so that 2J = 1,3, or 5 . This broad structure could very well be a composite due to two or

more overlapping resonances.' This is predominantly a 2)uo and/or 4M state.
The configuration of this state is unknown.

s This is predominantly a 3~ state. Note that the b„nd alog f~ values of Table II result in a M(GT),„~ value about 2 of the
value of Table III, thus implying considerable interference effects in the R-matrix analysis of Ref. [24].

a procedure. However, to illustrate the consistency of
the data with the effective operators obtained here for
the Op shell and previously [8] for the 1sOd shell, a least-
squares fit was made to 44 R(GT) with 6, for the Op
shell as a variable and the other six effective operators
fixed at the sd values. The 44 datum consisted of the 16
Op shell R(GT) used in the fits already described and 28
of the strongest and most reliable cross-shell transitions—labeled c@ (g = 1—28) in Table III. The result of

the fit is 6, = —0.189(23) in satisfactory agreement with
the results of Table IV. In this Gt it was found that an
assignment of Ath = 0.053 to the 28 cross-shell datum
combined with 4th= 0.038 —determined in the Op-shell
fit —for the 16 Op-shell datum gives y~ = 1.0 for the 44
combined datum. That is, on the average, the cross-shell
matrix elements are determined with an absolute error

40Fo greater than the Op shell R(GT). Again, to assess
the role of the interaction in this determination of the Op-
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TABLE IV. Least squares fits to 16 Op shell M(GT).

Fixed
VfBT interaction

Variable
(8—16)TBME interaction

Variable

none b, = —0.1847+0.0256
br, ———0.0027+0.0193
b„= 0.0075+0.0245

0.041 b = —0.1708+0.0240
0.0060+0.0208

b„= —0.0013+0.0239

0.038

b), bp ——0.0

b~, b„at Ref.
[26] values

b, = —0.1821+0.0234

b, = —0.1907+0.0255

0.039

0.042

b, = —0.1727+0.0221

b, = —0.1776+0.0255

0.036

0.042

b~, b„at sd
values

b, = —0.1852+0.0230 0.038 b, = —0.1749+0.0221 0.036

shell quenching factor, the procedure was repeated with
the MK3 [53] version (also operating in the first four ma-

jor shells) of the Millener-Kurath interaction [54]. The
result of a least-squares fit to the same 44 R(GT) was

b, = —0.194(23). In this fit a Aqh of 0.084 for the 28
cross shell R(GT) combined with a 4th of 0.036 for the
Op shell to give a y of 1.0; i.e., in this application, the
MK3 interaction has a theoretical error about 60% larger
than that of the WBT interaction.

VI. COMPARISON OF EXPERIMENT AND
THEORY

A. General

We display omnibus comparisons between theory and
experiment via plots in which the y axis represents

1.0

R(GT)~„r and the 2: axis R(GT)f~«or R(GT)«Thus
perfect agreement is represented by a diagonal starting
at (x, y)= (0,0) and passing through (1,1). The first of
these (Fig. 1) shows R(GT),„~ vs R(GT)~„, for the 16
Op-shell decays discussed in the preceding section and la-
beled by pg in Table III. The fact that —on the average—these decays are quenched is clearly shown. The re-

sult of a one-parameter straight-line fit is indicated by
the "best" fit passing through (x, y) =(1,0.82). In Fig. 2

we display the same 16 decays but with R(GT),g rather
than R(GT)r„, on the y axis. Now the "best" fit is the
diagonal and there is less scatter about it. In Fig. 3 we

display a comparison of the (8—16)TBME and WBT re-
sults for these 16 points. The good agreement is evident.

We now consider the 28 cross-shell decays discussed in

the preceding section and labeled in Table III. A com-
parison of R(GT),„~ and R(GT),g is given in Fig. 4.

0.8
1.0

0.6
0.8

0.4
0.6

0.2
0.4

0.0
0.0 0.2 0.4 0.6 0.8 1.0

R(GT) WBT ("Free —nucleon" )

FIG. 1. Comparison of the experimental and "free nu-
cleon" values of R(GT) for 16 Op-shell decays. A diagonal
line passing through the (2:,y) point (1,1) represents perfect
agreement. The "best fit" line through the 16 points passes
through (1,0.82). The error bar is the theoretical uncertainty
Aqq which is assumed independent of R(GT) and is discussed
in the text.

0.2

0.0
0.0 0.2 0.4 0.6 0.8

R(GT) WBT ("Effective" )

FIG. 2. Comparison of the experimental and "efFective"
values of R(GT) for 16 Op-shell decays. A diagonal line pass-
ing through the (x, y) point (1,1) represents perfect agree-
ment. The error bar is the theoretical uncertainty Ath which
is assumed independent of R(GT) and is discussed in the text.
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FIG. 3. Comparison of the WBT and (8—16) TBME "ef-
fective" values of R(GT). A diagonal line passing through the
(x, y) point (1,1) represents perfect agreement. The figure is
a visual display of the good agreement of the two predictions.

The theoretical uncertainty of Eqh = 0.053 is indicated.
Recall that this is an absolute uncertainty assigned to all
datum. Only 10 of the 28 decays have R(GT),g values
considerably larger than this uncertainty. This highlights
the difficulty of obtaining meaningful predictions for the
majority of the cross-shell decays of Table III. However,
as discussed earlier, the uncertainty 4&h obtained for the
decays of Fig. 4 is competitive with that obtained for the
significantly stronger Op-shell decays of Fig. 2. Our final
comparison is for the MK3 and WBT predictions and
is shown in Fig. 5. This figure displays generally good
agreement within the uncertainties of 6th(MK3) = 0.084
and Aqh(WBT) = 0.053. Two noticeable exceptions are

1.0

FIG. 5. Comparison of the WBT and MK3 "effective" val-
ues of R(GT) for 28 cross-shell decays. A diagonal line passing
through the (z, y) point (1,1) represents perfect agreement.
The figure is a visual display of the generally good agreement
of the two predictions and highlights the two cases of poor
agreement. These two cases and the one labeled 0 are dis-
cussed in the text.

the two decays of ~ Be and C. These are singled out
for discussion in Sec. VIB4 below.

B. Discussion of some specific decays

The neutron decay

Our evaluation follows that of Wilkinson [31. By
choosing K/(gv ) and A from a global evaluation 14] we
ensure that M(GT),„~ and M(GT)r, «will agree within
the uncertainties. For comparison of these parameters
evaluated from pure neutron data and from neutron plus
0+ —+ 0+ Fermi decays see Refs. [14] and [2].

0.8 8. The triton decay

0.6

0.4

0.2

lj

0 0 w ~

0.0
I I I

0.2 0.4 0.6 0.8
R(GT) WBT ("Effective" )

1.0

Our evaluation follows that of Simpson [32] with small
changes due to changes in tqy2 and Q. The ratio
M(GT),„~/M(GT)q„, is 0.946 6 0.002 so that the Osqy2
correction factor 6e, is 0.054 + 0.002. As remarked by
Simpson [32], there are a large number of calculations of
this reduction and a consensus is that they get it about
right —certainly within the uncertainties in the calcula-
tions. An example is the recent result of Towner [26] of
bp, ——0.076.

8. He(P ) Ii, Ii(3 ) Be, and B(P+) Be

FIG. 4. Comparison of 28 cross-shell experimental and
"effective" values of R(GT). A diagonal line passing through
the (x, y) point (l,l) represents perfect agreement. The er-
ror bar is the theoretical uncertainty A~b which is assumed
independent of R(GT) and is discussed in the text.

For these mass-eight decays, more detailed analysis via
the R-matrix theory have been made [18,20, 19, 21] than
for any other decays. There are two points of interest
to mention here. First, we have assumed all M(GT)
to be positive. Then the relative signs of the reduced
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widths amplitudes in the R-matrix analysis are definite
and can be compared to experiment. This is discussed
in Ref. [20] and utilized in Ref. [21]. Second, we have
taken the values of M(GT),„~ for sLi and sB decays to
the JA. , T = 2+&, 0 and 2&, 0 levels from Ref. [20). These
values are 0.36 and 0.34 for the lower level and 6.0 and
5.9 for the higher level. The values of Ref. [21] are 0.23
and 0.24 and 4.0 and 3.7, respectively. The difference
is mainly due to difFerent constraints on the R-matrix
parameters. Associated with the Barker treatment [18,
21] are "intruder" 0+ and 2+ states at ~7 and 9 MeV,
respectively. In the treatment of Ref. [20] these states
appear somewhere above 20 MeV. Thus, which treatment
is preferred will ultimately depend on where these —as
yet unknown —states are found. In the meantime the
difference between these values can be taken as a measure
of the uncertainty in this particular analysis.

4. 'Si(P-)'-ae

3.44 12092
5

23 5.98 11810

2.40 11283
1.34 11055 ]1/2

2.55 t 05 I 8
33/p

0 35 7845 -"2

0.49 5674
3/2

This is a complicated decay with broad, overlapping,
unbound resonances as final states. An interpretation
of the experimental data —P -delayed neutron and n
spectra —can use some guidance from shell-model pre-
dictions. In Fig. 6 we compare the known spectrum
of sBe &~, 2s, and

&
states to the P(6-16)T pre-

dictions. Also shown are the experimental M(GT) and
the predicted M(GT), ir. It is on the basis of this com-

parison that we have assumed 22 for the anomaly at

7940 keV. The predictions indicate a missing 2 state in
the 5—7 MeV range. In the (Os) 4(0p) s model space, the
Be states at 10—12 MeV have the same symmetry as

the Li ground state and thus contains the bulk of the
Gamow-Teller strength [54]. There seems to be ample
strength seen experimentally in this energy region but it
is not at all clear how this strength should be apportioned
amongst the theoretical possibilities. The general agree-
ment shown in Fig. 6 is impressive, however it should not
be taken too seriously. It is expected that 2hw states will
commence in the 6—8 MeV region. These may well cause
a considerable shift in the distribution of Gamow-Teller
strength.

0.33 3382

0.48 3287% ) 0 2] 2780
i+0.43 2429

0.50 306
0.35

P(6-16)T EXPERIMENT

FIG. 6. Comparison of the reported Gamow-Teller decay
[22) Li(P ) Be to the predictions of the WBT interaction For
each level F (in keV) and M(GT),„z or M(G), ir are given
as well as the spin-parity and index k.

S. "Be(p )"B and -~aC(p )~slV

The decays to the B
&&

and N 1~ states are consid-3+

ered together here because these are the two final states
for which there is a large difference between the WBT and
MK3 calculations as indicated in Fig. 5. For the Be ~
iiB(2 ) decay, M(GT), ir is sensitive to the Op-shell part
of the interaction and reasonable changes —relative to
the accuracy with which the (2ji2j2[V~2js2j4) (TBME)
are determined —can bring it into agreement with ex-
periment. For instance, if the MK3 [= (8—16)TBME]
value of the ofF-diagonal (31~V~33) of 3.548 MeV is sub-
stituted for the WBT value of 2.442 MeV (determined
in the least-squares fits of Ref. [28] with an accuracy of

+0.65), then M(GT), ir for the i Be ~ iiB(zz ) decay
changes from 0.213 to 1.033 as compared to M(GT)e„~ =

0.838. Reasonable changes in the MK3 interaction could
also bring its prediction for this decay into agreement
with experiment.

For the isC ~ isN(1+i) decay, M(GT), ir is predicted
rather well by the WBT interaction and extremely poorly
by the MK3 interaction. Unlike the Be case, it was
found that this difference appears to be a complex func-
tion of both the Op-shell and cross-shell interactions; we
have found no simple explanation for it.

This discussion of decays to the ~ B 2 and N 1+&

states brings up the obvious point that it would be advan-
tagous to include Gamow-Teller matrix elements in the
least-squares fits used to determine effective interactions.
Such a project —similar in spirit to the Op-shell fit to
energy levels and electromagnetic properties of van Bees,
Wolters, and Glaudemans [46] —is being contemplated.
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6 12~e(P—)12~

Experimentally, the branching ratio for decays to all
bound states is 99.1 6 0.4 % [34]. We assume decays
to the 2+1 and 0+1 states are negligible because they are
second-forbidden and isospin-forbidden decays, respec-
tively [48]. The first-forbidden decays to the 21 and 11
states —the only other levels below the neutron thresh-
old —were calculated with the WBT interaction with
effective operators [49] and were found to be quite weak
with branching ratios of 0.015 and 0.012 %, respectively.
The unusual weakness of these decays is due to poor over-
lap of the 12B 11 and 21 states with the first-forbidden
P operator acting on the 12Be 0+1 state (rather than to
the relative kinematics of allowed and forbidden decays).
The decay to the 1+1 state gives the most deviate point
in the comparison of Fig. 2. One possible reason for
a weaker decay than predicted is that the 12Be ground
state has more "intruder" admixtures of the & 25~ type
than the 1+1 state of 2B as has been previously discussed
[50, 51]. This, then, would be an effect similar to the
speculated deviation of the iiLi ground state from a Ohw

character. Note that M(GT),„~ for the iiLi —+ iiBe
decay shown in Table III is also considerably less than
M(GT), g.

14 ~(p —)14~

A common query of any Op-shell interaction is "Does it
reproduce the famous vanishing [R(GT) = 6x10 ] of the
strength for the decay of 14C to the 14N ground state?".
For the WBT interaction we have a predicted M(GT), g
= 0.183 [Not;e, because of the very strong interference
effects which cause this small value, M(GT), ir is actually
larger than M(GT)g„, .] This corresponds to R(GT),ff =
0.059 which is close enough to the Ati, (= 0.039) obtained
in the fits so that we can claim a successful passing of this
test. For comparison, the (8—16)TBME interaction gives
R(GT),ir = 0.055 for this transition.

8 12~(P—)12/ a~it 12~(P+)12/

The deformed C 0&+ state at 7654 keV is presumably
chiefly a 4hcu state similar to the sO Oz state at 6049
keV. The large M(GT) for the decay to this state is a
challenge for the shell model which has as yet not been
addressed in a quantitative way. The significant overes-
timation of the M(GT) for decay to the C 0&+ state at
10300 keV suggests that the low-lying 0+ model states of
Ohw, 2', and 4hu configurations have intermixed to a
considerable degree. It would be desirable to have more
accurate experimental branching ratios for the decays to
the (J&,T) = (1+1,0) 12710- and (1+1,1) 15110-keV lev-
els since we expect these to be relatively pure Ohcu states
which should provide good tests of the Op-shell interac-
tion.

g ie1V*(P )is 0

Evidence for a branch of (9 + 2)% for the isN(0 ) ~
isO(li ) transition is given by Champagne et aL [38].

The evidence is not compelling, nevertheless we have
adopted this branch in order to give a point of reference
for the calculation. As seen in Table III, we actually
would predict a somewhat larger branch.

10. 1~1V(P )1~0

The z i and
& &

states of 0 are only separated by
84 keV in the WBT calculation and their wave functions
appear to be confused. Experimentally the &i state has
a relatively large 0 + n spectroscopic factor, S„+(1@3/2)
= 0.23 and the z state has S~+(Ipsy2) = 0.05 [30] while
the WBT interaction reverses these two factors. The
same fault is shared by the MK3 interaction. This re-
versal appears to be seen in the Gamow-Teller strengths
also as can be seen in Table III. However the sum of
the M(GT) for these two states is fairly well reproduced
by both calculations. In order to illustrate this point
graphically, this sum (actually the average of the sums
for i~N and the mirror decays of Ne) was included in
the least-squares fits resulting in the plots of Figs. 4 and
5. A calculation of these decays was made as a func-
tion of the 1ps12 SPE and indeed the S+(lpsy2) and the
M(GT) could be simultaneously reproduced quite well
with a lowering of the lp3g2 single-particle energy by

1 MeV.

11 is C(P—)is1V

The low-lying energy levels of the WBT (0+1)hw spec-
trum of isN are shown in Fig. 7 together with the avail-
able experimental information [30, 40]. Pravikoff et al.
[40] reported P branches of (72 + 10)% and (9 + 7)%
to the states at 2614 and 1735 keV (see Table II). The
first of these establishes the 2614-keV level as 1+. If the
branch to the 1735-keV level is actually as large as 9%
then the 1735-keV level almost certainly has J = 1+
also. This situation is labeled in Fig. 7. On the other
hand, if the P branch to the 1735-keV level is zero or
close to zero —as is allowed to somewhat more than
one standard deviation —then its p-ray decay modes of
nearly equal branches to the first three states (see Fig. 7)
would suggest the 2+ alternative of those offered by the
comparison shown in Fig. 7. (We reject as very unlikely
the possibility that the 2614-keV level is 12 and the 1+&

level is unobserved in the P decay. ) This alternative is
labeled Qa in Fig. 7. For definiteness we have chosen this
latter alternative in Table III where the limits on log f~t
shown for the decay to the 1735-keV level correspond to
one standard deviation in the branching ratio, i.e. , to b„( 16%.

Can calculations of p-ray branching ratios with the
WBT interaction help to distinquish between the alter-
natives Qa and ? To a limited extent, the answer is
yes. The B(Ml) calculated with a free-nucleon operator
is strong [1.25 Weisskopf units (W.u. )] for a 1+ —+ 2+1

transition and weak (0.11 W.u. ) for a 1+& —+ li transi-
tion. The former is more in keeping with the p branch
of 26% (Fig. 7) for the 2614 —+ 1735 transition since this
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calculate this fraction to be P = 0.17. The branching
ratios for the 7619- and 8039-keV levels were derived by
Zhao et al. [45] in a manner which is independent of this
fraction. A multiplicative factor of 0.875 was ascertained
and applied to the branching ratios listed in Ref. [30]
for the other six listed states in order to incorporate this
value of P„.

VII. SUMMARY OF THE EFFECTIVE
OPERATOR

This study can be viewed as a continuation to A = 1 of
the A =17—39 Gamow- Teller study of Brown and Wilden-
thal [7, 8]. That study used the W interaction appropri-
ate to the lsOd shell. The present study uses the WBT
interaction which is an extension of the W interaction
appropriate to the Op shell and to cross-shell OplsOd con-
figurations as well. As discussed in Sec. V and illustrated
in Fig. 2, the strong Op-shell decays are well reproduced
with an effective operator which is essentially a simple
quenching of the "free-nucleon" operator by 1 —b, (p-
p)(A/16)0 ss. The least-squares fit gives small values for
bi(p-p) and b„(p-p). These values are consistent with zero
and with the values obtained for these two parameters in
the lsOd study [8]. With bi(p-p) and b„(p-p) fixed at the
1s0d values, we find b, (p-p) values of —0.185 + 0.023
from a fit to the Op-shell data and —0.189 + 0.023 from
a consideration of 44 Opls0d datum. These values are
not very different from the b, (s-s) and b, (d-d) values [8]
of —0.186 + 0.013 and —0.204 + 0.009 respectively. In
fact, a phenomenological quenching factor of

(A1
q, =1 —0.19~ —

~q16)
(7.1)

FIG. 7. Comparison of the (0+1)fuu spectrum of N to
the experimental energy-level data. The p-ray branching ra-
tios (from Ref. [40]) of the 1735- and 2614-keV levels are
indicated. The energy-level comparison is absolute, i.e. , the
WBT prediction is that the 2~ state is 36 keV less bound that
the N ground state (which however has J = 1 ). Our as-
sumed identification of the experimental levels at 1735 and
2614 keV is indicated by the dashed lines labeled Qa. An
alternate possibility is labeled . A more accurate deter-
mination of the P branching ratio to the 1735-keV level is
needed to choose between these two alternatives which are
discussed in the text.

would most likely need to be a strong Ml decay in order
to compete with the higher-energy E1 transitions to the
lower states. We do not consider these E1 transitions
because they are notorously diKcult to calculate accu-
rately and because we have not as yet tested the WBT
interaction as to its predictive abilites for this observable.

is "w(p-)"o

An unknown experimental quantity in this decay is the
fraction proceeding to unbound states in addition to the
five listed in Table II. Using the WBT interaction, we

is a good approximation to both the least-squares fits
and is thus applicable to the nuclei studied from A =
3 to 40. We hasten to emphasize that this quenching
factor is purely phenomenological. One should not at
this juncture conclude anything from the A dependence
which, in any case, is poorly determined. To illustrate
this latter point, the least-squares fit to the 16 Op-shell
datum was repeated with P = 0.0 in Eq. (2.30) using the
1s0d values for bi(p-p) and b„(p-p). The result is b, (p-

p) = —0.15+ 0.02. In this fit a 6th of 0.045 is obtained.
This is not appreciably worse than the value of 0.039
obtained with P = 0.35. Perhaps the most interesting
conclusion from Eq. (7.1) is that there appears to be no
evidence for a "shell" effect at A = 16 from our analysis.
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