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Model fits were made to the cumulative distribution of all known levels (with spins J <10) in ''*Sn
below an excitation energy of 4.1 MeV identified in a variety of experiments, and simultaneously to the
density of J =0 and J =1 resonances inferred from neutron capture and total cross-section measure-
ments in ''*Sn+n. Neither the back-shifted Fermi-gas model nor the constant-temperature model pro-
vides a satisfactory fit over the entire energy range. The generalized superfluid model, with a level-
density parameter and spin-cutoff factor that are both energy dependent, does give a good fit, and the re-
sulting best-fit parameter values are consistent with those found in other applications of this model.

PACS number(s): 21.10.Ma, 27.60.+j

I. INTRODUCTION

The densities of excited nuclear levels have been a
matter of concern and study for over 50 years going back
at least to 1936 when the Fermi-gas model (FGM) was
put forth by Bethe [1]. Ericson [2] realized 30 years ago
that there was difficulty in fitting the densities of both
low-lying bound states and high-lying unbound states (in
the neutron resonance region) with the FGM, which, for
fundamental reasons, was thought to be applicable only
to the higher-energy regions. At that time it was believed
that the constant-temperature model (CTM) [2,3] could
give a good representation of the experimental data below
the neutron separation energy (S, ). An analysis by Gil-
bert and Cameron [4] attempted to treat the two regions
separately with these two models, with an ad hoc method
of joining the two level-density curves tangentially at
some point determined by the available data and sys-
tematics. The Gilbert and Cameron procedure contained
four parameters and was considered cumbersome by
many users who, therefore, preferred the back-shifted
Fermi-gas model (BSFGM) [5] with only two parameters.
A practical set of parameters was supplied by Dilg et al.
[6], who analyzed the level densities of 220 nuclei by
fitting the BSFGM two-parameter formula to two data
points for each nucleus, namely, the cumulative number
of bound states at some energy and the density of s-wave
resonances at S,. More recently, von Egidy, Bekhami,
and Schmidt [7,8] have concluded, on the basis of fits to
all known bound levels up to a certain energy and to the
resonance-region level densities of 87 nuclei, that both
the BSFGM and the CTM formulas work equally well in
reproducing experimental densities. The predictive
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power of the parameters supplied in Ref. [8] is tested here
in the case of !1%Sn.

A nearly “complete” level scheme (see Table V of Ref.
[9]) for the bound states of ''°Sn up to an excitation ener-
gy of 4.3 MeV has recently been established from detailed
studies of the '%Sn(n,n’y) and the !'®Sn(n,y) reactions
combined with all previous studies of levels in this nu-
cleus. This scheme consists of 81 levels up to 3.9 MeV
and 112 levels up to 4.3 MeV. The density of s-wave res-
onances (at S, =9562 keV) has also recently been inferred
as p(S,)=21700+6600 MeV ! [10]. It is now possible
to test, over an extended excitation energy region in
1165y, the ability of various models to simultaneously fit
the densities of both bound and unbound states.

This paper is organized as follows. Section II presents
the results of fits using either the BSFGM or the CTM;
these fits are relatively poor when compared to the data
over the entire energy range. As shown in Sec. III, better
fits were obtained to the same data with the phenomeno-
logical version [11,12] of the more recent generalized
superfluid model (GSM) [13,14]. In Sec. IV, the data are
also compared to a microscopic calculation with this
newer model. The conclusions are given in Sec. V. The
expressions needed for the calculation of the level densi-
ty, taking into account the shell model, collective, and
superfluid effects, are given in the Appendix.

The three level-density expressions considered here are
sufficiently similar that a less than perfect fit, suitable for
most practical applications, can be achieved with any one
of them if the data are readily available. The differences
then lie in the details. Obviously, the utility of a model is
greatly enhanced if it has correct predictive powers.
Despite five decades of effort, the respective model pa-
rameters have not been established precisely enough,
from either global systematics or theory, that predictions
of level densities can be made a priori in a reliable fashion
over an extended energy region for a given nucleus.
Studies similar to that reported here help establish these
parameters.
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II. FERMI-GAS
AND CONSTANT-TEMPERATURE MODELS

A. BSFGM formulas and fits

The first model tested was the back-shifted Fermi-gas
model, which has been used before in several global anal-
yses of experimental data (see, for example, Refs. [6—8]).
In the fits discussed below, it was assumed that the level
scheme for !!%Sn is complete up to an excitation energy of
3.9 MeV, and possibly 4.1 MeV. The total number N of
bound states up to 3.9 MeV, N(3.9), is 81; N(4.1)=97;
and N (4.3)=112. There are definite indications that lev-
els are being missed above 4.1 MeV. All three upper lim-
its (3.9, 4.1, and 4.3 MeV) were used in the fitting pro-
cedure. The influence of the nine lowest-lying levels was
also tested by fitting with and without them, on the
grounds that a statistical model does not pretend to de-
scribe these levels. The conclusions drawn are valid re-
gardless of which subset of levels was included in the fit.

Following von Egidy, Bekhami, and Schmidt [7,8], the
formula for the level density (in units of MeV ™!) of the
BSFGM,

exp{2V/[a (U —E )]} f(J])
24V 20a'HU —E|)*"*

ptUJ,m)= , (1)

was used, where U is the excitation energy, E, the energy
shift parameter, and a the level-density parameter. If un-
equal parity ratios can be ignored,

p(UJ,m)=3p(U)f(J) . ()

The distribution of spins J for the excited levels is given
by [4]
flh=e ‘12/202_6, —(J+1)?/202
~ L el — U+ 12207, 3)
20

where o2 is the spin-cutoff parameter, which may be en-
ergy dependent. The thermodynamic temperature ¢ is
defined by (see Eq. (9) of Ref. [S])

U—E,=at?. 4)

The staircase plot of the cumulative number of bound
states (see Fig. 1) and the neutron-resonance density were
fit simultaneously with Eq. (1) and its integral. The
least-squares-fitting procedure was similar to procedure
A described in Ref. [7]. Basically, the x? value defined by
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is minimized. In Eq. (5), pexp @and pyc are, respectively,
the experimental and calculated density of J =0 and 1
states (of both parities) at S,,, and N (E;) is the integrated
level density up to level i. The values of a and E,; were
kept close to those recommended by von Egidy, Schmidt,
and Bekhami [8] on the basis of their global survey.

The density p(S, ) of s-wave neutron resonances at S,
(which is the measured quantity that is usually tabulated)

is not known directly, but has been inferred [10] from a
Hauser-Feshbach-Moldauer analysis of neutron capture
data in the 20—450-keV region and total neutron cross-
section data in the 20-1400-keV region. The inferred
value of 2170046600 MeV ™! is fairly reliable because
data on 10 stable isotopes of tin were analyzed in an
internally self-consistent manner. In particular, for those
tin isotopes for which directly measured values are avail-
able [15], the inferred densities are consistent with mea-
surements. The weight for this datum was taken as
the experimental uncertainty to force better agreement
with this data point, but the full uncertainty was taken
into account in determining the uncertainties in the fitted
values. Essentially the same results were obtained using
both a (1.5)7! (see Ref. [7]) and a (Vi )~ ! weighting fac-
tor for the bound states, where i is the index of the ith
level. The latter was used to give sufficient relative
weight to the more widely spaced levels at low excitation.
The energy-independent value of o was taken from Eq.
(3) of Ref. [8].
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FIG. 1. Staircase plot, based on Table V of Ref. [9], of the
cumulative number of levels N as a function of excitation ener-
gy. The solid curves are least-squares fits with different models
[(a) back-shifted Fermi-gas model, (b) constant-temperature
model, and (c) generalized superfluid model] to this data (in the
region 2.5-4.1 MeV) and to the density of J =0 and 1 states
just above the neutron separation energy (9.562 MeV). The
dashed curves are fits to the bound states alone. The same in-
formation is shown twice; with a linear ordinate on the left and
logarithmic on the right. See also Table 1.
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For illustrative and testing purposes, E; was set equal
to 1.55 MeV [deduced from the C, value given by Eq.
(10) of Ref. [8] and A(pairing)=2.996 MeV], and a search
was made to find the best a value. The results with a
(Vi )7 ! weighting factor are shown by the solid (with res-
onances) and dashed (without) curves in Fig. 1(a), and are
also given in Table I. The fitted values (in MeV ') of
12.8 (with resonances) and 13.0 (without) are consistent
with 13.1 from systematics [8]. However, it can be seen
from this figure that the fit is poor in the 2.5-4.1-MeV
bound-state region.

B. CTM formula and fits

The bound states alone and the bound states plus reso-
nance density were also fit with the constant-temperature
model formula relating the nuclear temperature 7 (which
is different from the thermodynamic temperature ¢ [see
Eq. (4))) to the level density

(U—E,)
T

1
plU)=— exp

T (6)

This formula has long been known [2-4] to provide a
reasonably good fit to the low-lying bound states. The re-
sults are shown in Fig. 1(b). The parameters of the fit
along with the level density in the resonance region cal-
culated from these parameters are given in Table I. The
value of E, was set at 0.37 MeV; this central value was
based on the C, value given by Eq. (10) of Ref. [8] and
A(pairing)=2.996 MeV. The fitted T values of 0.77 and
0.81 MeV are again close to 0.75 MeV from systematics
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[8]. While the fit (dashed curve) to the bound states alone
seems to be quite good, the density at S, is now underes-
timated by a factor of 3—4. Forcing agreement at S, re-
sults in a poor fit (solid curve) for the bound states [see
Fig. 1(b)]. However, this fit can be improved, as shown
later in Fig. 3(b), by changing E|,.

All the previous conclusions are consistent with the
discussions found in Ref. [4] and in other more recent
analysis [16]. To calculate the level density in the energy
gap between the known bound-state cluster of levels and
S, —a region in which it is very difficult to be certain
that all levels of specified J7 values have been identified
experimentally, not to mention all levels with all permis-
sible J7 values—Gilbert and Cameron [4] suggested an
ad hoc method of joining the results of the CTM and the
FGM. The prescription for obtaining a level-density re-
lation with the appropriate continuity properties is dis-
cussed at some length in their paper and also in Ref. [16].
On the other hand, von Egidy, Bekhami, and Schmidt
[7,8] have concluded that both level-density formulas ap-
pear to fit the two energy regions equally well for 87 nu-
clei in the mass range 20 < 4 <250. If true, either formu-
la is a valid representation for bridging this energy gap
and can be employed safely in many applications that re-
quire a good level-density formula as input. However, in
their analysis, the number of bound states (in an even-
even nucleus) exceeded 44 (45% of the number in the
current analysis) in only two cases ("*®Gd and '*®Er), and
in both cases the upper energy limit for the bound states,
2.1 MeV, was only ~50% of the current case (4.1 MeV).
(As a fairer comparison, the upper energy limits of the

TABLE 1. Best-fit parameters from least-squares fits with the back-shifted Fermi-gas model (BSFGM) and the constant-
temperature model (CTM). The fitted data are the 97 bound states in 116Sn below 4.1 MeV (from Table V of Ref. [9])
minus the first nine levels up to 2.5 MeV. Fits were made with and without the information on the density p of s-wave
neutron resonances at the neutron separation energy S,. The BSFGM has two parameters a and E,; [see Eq. (1)]. The CTM
also has two parameters Ey and T [see Eq. (5)]. The spin-cutoff parameter o 2 of Eq. (3) was taken as 15.1 from Ref. [8].
The quoted uncertainties in the a and T values and the ranges of x* and p(S,) are derived from attempting similar fits to
81 bound states below 3.9 MeV and 112 below 4.3 MeV while also taking into account, where necessary, the uncertainty in

the density of resonances.

2

Source  Resonances a(MeV™!) E; (MeV) Ey(MeV) T (MeV) X p(SH(MevV)
Experiment 21700 £ 6 600
BSFGM yes 12.8753 1.55 230-490 17 000 - 28 300
BSFGM no 13.0+ 0.6 1.552 95 — 455 18 000 - 38 000
CT™M yes 0372 0.771+0.01 600 -1 300 14 300 - 18 700
CT™M no 0372 0.81+0.01 60 — 80 5500-7 000

#Value recommended in Ref. [8]. Fits were also made with E, and E, values that fall within the bounds given in Ref. [8].
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known bound states in the analyses of 18G4, 168Er, and
1165 represent 35, 27, and 43 %, respectively, of the cor-
responding S, values.) For the specific case of ''Sn, it
can be concluded from Fig. 1 and Table I that, while
staying within the bounds of previously established sys-
tematics, it is difficult, if not impossible, to either extra-
polate the BSFGM down from the resonance region to fit
the bound states or extrapolate the CTM up from the
bound states to reproduce correctly the level density in
the resonance region. Two-parameter BSFGM fits, with
and without resonances, were consistently below the
bound-state data, and the CTM fits were above.

III. GENERALIZED SUPERFLUID MODEL

A. Introduction

The CTM and the FGM are simple models that were
first put forward many decades ago when nuclear physics
was in its infancy. They ignore concepts such as pairing
correlations, shell effects, and collectivity, all of which
were introduced in later years. All three of these con-
cepts have been incorporated into the generalized
superfluid model, which has been developed over the last
20 years [13,14]. For easy comparison to experimental
data, a phenomenological version of this model was put
forward by Ignatyuk and co-workers [11,12]; this version
is now applied for the analysis of the '°Sn data.

To take pairing correlations and collective effects into
account, it is necessary to use in Eq. (2) the following ex-
pression for the total level density:

P =P U i U U”) )

where the effective excitation energy U’ is defined below.
The quantity pg,(U) is the level density of quasiparticle
excitations in a Bardeen-Cooper-Schrieffer- (BCS) type
theory, which includes pairing correlations that produce
the superfluid characteristics of this model. The quantity
K,inr( U) takes into account the collective enhancement of
the level density resulting from vibrational excitations.
The rotational enhancement factor «,.(U) was set to uni-
ty because !'°Sn is a spherical nucleus. The expressions
needed to calculate p,(U), Ky, (U), and k,,(U) are given
in the Appendix.

[f( U,_Econd)SEO(Z’ A)]
(U'—E
for U'<U,, .

a(4d) i1+

cond )

a(U,Z, A)=

acr

Here a( A) is the asymptotic value of a at high excitation
energy; the dimensionless function f(U) determines the
energy behavior of a at lower excitation energies; the con-
densation energy E 4 is defined by Eq. (A6) of the Ap-
pendix; and 8ey(Z, A) is the shell correction in the nu-
clear binding energy. The method for determining U,
corresponding to ¢, is described in the Appendix; for

The influence of pairing correlations on the level densi-
ty is a function of the thermodynamic temperature t.
One of the basic parameters of the GSM is the pairing-
correlation function A, which is directly related to the
critical temperature ¢, (of the phase transition from the
superfluid state to the normal state) by [11,12]

t..=0.567A, . (8)

Above t,, the energy dependence of the GSM level densi-
ty differs from that of the BSFGM by a shift of the exci-
tation energy, as given in Eqgs. (A2) and (A6) of the Ap-
pendix. Below f_, this energy dependence is similar to
that of the CTM.

To account for possible deficiencies in the global pa-
rametrization of the collective enhancement factors and
pairing correlation functions, an additional shift in the
excitation energy, 8, Was added to the phenomenologi-
cal GSM [12]. The excitation energy U’ of Eq. [7] is
defined as'

U'=U+nAy+840 » )

where U is the true excitation energy of the nucleus,
n =0, 1, or 2 for even-even, odd, or odd-odd nuclei, re-
spectively, and 8, is discussed again below.

The main difference between the normal and superfluid
phases is connected with their differing spectra of quasi-
particle excitations. In the normal phase, the quasiparti-
cle energies are given by

E, =I|E

ap —Epl,

. (10a)
where E, and Ej are the single-particle and Fermi ener-
gies, respectively. In the superfluid phase, the quasiparti-
cle energies are given by

Ep=V (E,—Ep)+A}.

a (10b)

These differences strongly affect all thermodynamic prop-
erties of the nucleus, and, hence, the level density.

B. GSM formulas and fits

In the GSM, the effects of nuclear shell structure cause
a to have an energy dependence given by

for U'2U, ,

168n, U, ~6 MeV. The function f(U) has the form
[11,12]

fU)=1—exp(—yU), (12)

In Ref. [11], U’ was given incorrectly as U'=U —n Ao+ Sgpige-
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where
y=0.404 "1 MeV ! (13)

is given by both the theoretical predictions of the changes
in the level-density parameters and the analyses of experi-
mental data [12,17]. For ''°Sn, the shell correction
8e,=—0.59 MeV (see Ref. [18]) is relatively small, and
the energy dependence of the level-density parameter a is
not very pronounced. Note that a(U,Z, A)=a = a con-
stant for U' = U,.

The current version of the phenomenological GSM has
three parameters @( 4), Ay, and 8. For 4 =50, two of
the three parameters can be determined fairly well from
either systematics or theory and can be evaluated from
the expressions [11,12]

@(A4)=(0.0734+0.1154%3) MeV ™! (14)
and
Ag=124""2 MeV . (15)

The third parameter, 8y,;q, 1S an ad hoc supplementary
shift of the excitation energy often needed to simultane-
ously describe well [12] the density of low-lying levels and
of neutron resonances. Generally, away from doubly
magic nuclei, 8, is ~0.5 MeV. This value and the
a@( A) and A, values given by Eqs. (14) and (15) are useful
as starting values to limit the possible meanderings dur-
ing a multiparameter least-squares search.

As before, the fit to the 2.5-4.1-MeV bound-state data
was carried out to the cumulative number of levels, while
at S, it was twice the density of s-wave neutron reso-
nances, Py, =2p(S,), that was fitted. In fitting the ex-
perimental data, various combinations of one, two, and
three parameters were varied in order to test for the
range and stability of the best-fit parameter values. A

(Vi )™! weighting factor was used for the bound states
and a factor of §; the experimental uncertainty for the
unbound states, just as in the previous fits. Because these
weights do not reflect true experimental uncertainties, the
resulting x? values have only relative significance, similar
to the situation in Refs. [7,8].

With A;=1.114 from systematics [see Eq. (15)], the pa-
rameters @( 4) and 8, were found to be closely coupled,
and the value of @( 4) could not be determined unambi-
guously unless the resonance region was included in the
fit or &gy was constrained. Typical results of least-
squares fits to the bound states of ''°Sn below 4.1-MeV
excitation energy, with or without the inclusion of the
resonances, are shown in Fig. 1(c). The best-fit values of
a(A) and b, along with the calculated density of s-
wave resonances are given in Table II. The @( 4) values
are somewhat higher than the systematics value of 11.2
given by Eq. (14), but the fits of Grudzevich et al. [12] to
both bound-state and neutron-resonance densities of
more than 80 nuclei show similar high values of @( 4) for
nuclei in the tin region. Figure 1 and Tables I and II
show that the GSM is more successful in reproducing the
experimental data in the 1-4-MeV region than either the
BSFGM or the CTM.

When the total number of known bound states in a
medium-weight or heavy nucleus is large (say >50), a
spin and parity (J7) assignment is usually not available
for each and every level. The nucleus under study, !'®Sn,
is atypical in that a preferred J7 value is listed in Table V
of Ref. [9] for each of the 112 levels below 4.3 MeV. As
an additional check of the consistency of the GSM, the
distribution of the experimentally determined spins was
used for the determination of the spin-cutoff parameter

(see Fig. 2). For the 1.5-2.5-MeV interval, the six
known levels imply 02=5.3+1.5, and for the 2.5-3.9-
MeV interval, o¢?=11.4+1.5. Both values differ

TABLE II. Best-fit parameters from least-squares fits with the generalized superfluid model (GSM). The fitted data are
the 97 bound states in 1Sn below 4.1 MeV (from Table V of Ref. [9]) minus the first nine levels up to 2.5 MeV. Fits were
made with and without the information on the density p of s-wave neutron resonances at the neutron separation energy S,,.
The GSM has three parameters @(A), 4, 8y [see Sec. IILB]. The spin-cutoff parameter o % of Eq. (3) is given by Egs.
(A.2) and (A.3). The quoted uncertainties in the a and T values and the ranges of 2 and p(S,,) are derived from attempt-
ing similar fits to 81 bound states below 3.9 MeV and 112 below 4.3 MeV while also taking into account, where necessary,

the uncertainty in the density of resonances.

Source Resonances  d(A) (MeV™!) 4, (MeV) Osnin (MeV) x’ p(S)(MeV)
Experiment 21 700 £ 6 600

GSM yes 12.997 11142 0.67'005 20-310 14900 — 28 200

GSM no 12712 1.114 0.67° 25-255 11100 - 30200

aFrom Eq. [15].

®Held fixed because of the close coupling between &g, and @(A) when fitting only bound states. See Sec. II1.B.
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FIG. 2. Spin-cutoff factors o for the (a) 1.5-2.5-MeV and
(b) 2.5-3.9-MeV energy intervals deduced from fits of Eq. (3) to
the number N (J) of levels with a particular spin (J) value (data
from Table V of Ref. [9]) in that interval.

significantly from the energy-independent spin-cutoff pa-
rameters 02=18.8 and 15.1 given by Eq. (17) of Ref. [7]
and Eq. (3) of Ref. [8], respectively.

The analyses until now ignore parity. However, Table
V of Ref. [9] shows that the parity distribution is clearly
lopsided with 86 7=+ and 26 7= — states in '!°Sn

below 4.3 MeV. (Presumably the numbers of positive-
and negative-parity states with the same spin will become
equal at the neutron separation energy and at higher exci-
tation energies; at any rate such an assumption is implicit
in the models considered here.) As an exercise in dealing
with this unequal parity ratio, fits were made in the ener-
gy range up to 4.1 MeV to the 7= + levels alone and to
the 7= — levels alone. The results of these fits are given
in Table ITI. As expected, the average of the respective
parameters from the fitting of the positive- and the
negative-parity levels separately is very close to the pa-
rameters for fitting all the levels together.

Even though two parameters are involved, the fits
shown in Figs. 1(a) and 1(b) are single-parameter fits be-
cause E, in the case of the BSFGM and E| in the case of
the CTM were constrained, for testing purposes, to the
values recommended in Ref. [8]. The fits shown in Fig. 3
are genuine two-parameter fits to the bound states plus
resonances for all three models and represent the best
that can be currently achieved. Figure 3(b) and the rela-
tive x? values (in parentheses) for the BSFGM (175),
CTM (470), and GSM (90) establish that the GSM fit is
clearly superior over the whole 1-4-MeV range. The cal-
culated p(S,,) values of 21400 (BSFGM), 21 100 (CTM),
and 21600 (GSM) are nearly the same, but the cumula-
tive number of levels predicted at S, [see Fig. 3(a)] are
different mainly because the spin-cutoff parameter o2 in
p(U,J) is different among the GSM, on the one hand, and
the BSFGM and CTM on the other [see Fig. 4(a)].

The comparison of the experimental spin-cutoff param-
eters with those calculated in the phenomenological GSM
[see Egs. (A2) and (A3)] is shown by the dashed curve in
Fig. 4(a). This model gives approximately the same in-
creasing slope with energy as found experimentally, but
the absolute value is a little higher. Possible reasons for
this difference are discussed in the next section.

TABLEIII. Best-fit parameters from least-squares fits with the generalized superfluid model (GSM). The fitted data are
p(S,,) representing the J =0 and J =1 states of either parity at the neutron separation energy S, and (a) only the 74
positive-parity states (b) only the 23 negative-parity states, and (c) all 97 bound states in 116Sn below 4.1 MeV minus the
first seven positive-parity and two negative-parity levels. The GSM has three parameters a(A), 4,, &g [see Sec. IILB].
The spin-cutoff parameter 62 of Eq. (3) is given by Egs. (A.2) and (A.3).

Source Parity acA) (Mev) 4y (MeV) Ognin (MeV) x’ p (S,) MeV)

Experiment 21 700 £ 6 600
GSM (a) Positive only 12.1 1.1142 0.90 40 21 650
GSM (b) Negative only 13.8 1.1142 0.42 10 21 700
GSM Average 13.0 1.1142 0.66 21 675
GSM (0 Both 12.9 1.1142 0.67 90 21 600

aFrom Eq. [15].
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FIG. 3. Best two-parameter fits to the bound-state plus reso-
nance data carried out with different level-density models. The
parameters are a=12.6 MeV~!, E;=1.45 MeV for the
BSFGM; T=0.71 MeV, E;=0.77 MeV for the CTM; and
a=12.9 MeV™!, A;=1.114 MeV (fixed), 8., =0.67 MeV for
the GSM. For the BSFGM and the CTM, the spin-cutoff pa-
rameter o is taken as 15.1; for the GSM it is given by Egs. (A2)
and (A3).

IV. MICROSCOPIC GENERALIZED
SUPERFLUID MODEL

A microscopic calculation of the level density for the
single-particle schemes of the Woods-Saxon potential was
also carried out following the methods outlined in Ref.
[14]. The single-particle energies enter into the calcula-
tion of the necessary thermodynamic functions (including
the energy and entropy) through a summation over the
single-particle levels. A significant difference from the
phenomenological version is that, in the microscopic
model, the pairing-correlation function can be different
for the neutron and proton subsystems. While requiring
more input parameters, the microscopic approach treats
closed-shell and near-closed-shell effects on the level den-
sity in a more individual fashion. Only vibrational
enhancement was included here because !'°Sn is spheri-
cal, and the equations for calculating this enhancement
were the same as those in the phenomenological descrip-
tion (see the Appendix). Because the proton shell is
closed, the proton quasiparticle excitations can arise only
at energies above 6 MeV. Below that energy the neutron
quasiparticle excitations are dominant, but by themselves
they would suggest a smaller level density than is ob-
served experimentally. If the vibrational enhancement is
included, then the comparison to experiment is much im-
proved. The calculated curve runs almost parallel to the
experimental data, but it is shifted to higher energy by
about 0.3 MeV at low excitation energies and by 0.5 MeV
at S, [see the solid curve in Fig. 4(b)]. The microscopic
calculations also reproduce quite well [see Fig. 4(a)] the
limited data on the spin-cutoff parameter.

For comparison, the results of phenomenological cal-
culations are shown in Figs. 4(a) and 4(b) as dashed
curves. Compared to the results of the microscopic cal-
culations (solid curves), the agreement with experiment is
better for the level density and worse for the spin-cutoff
parameter.

The a(A)=11.8-MeV~! and A,=1.22-MeV values
from the microscopic calculations are close to those from
the phenomenological fits. Furthermore, the energy shift
between the microscopic calculation and experiment is al-
most the same as that found in the phenomenological cal-
culation. It may be that this shift simulates the rotational
collective effects that were omitted in both calculations.

The possibility of such an explanation is connected
with the well-known existence of quasirotational bands
based on proton 2p-2h excitations. The lowest band built
on the 0, state at 1.756 MeV was first discovered in
(a,2ny) reactions [19,20], and three higher-lying bands
that had been predicted theoretically [21] have recently
been identified [9]. A total of 14 such quasirotational
states have now been identified up to 4.0 MeV, and they
make a significant contribution to the total level density.
To account for them in the GSM calculations, it would
be necessary to include a rotational enhancement factor,
but the formalism for enhancement caused by bands oth-
er than the ground-state band has not yet been developed.

If our interpretation of the supplementary energy shift
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FIG. 4. Comparison of the (a) spin-cutoff factors o and (b)
level densities p(U) deduced from the data with those derived
from the microscopic (solid curves) and the phenomenological
versions of the GSM (dashed curves). The dotted line in (a)
denotes the energy-independent value used in Ref. [8]. The
solid curve in (b) includes the vibrational enhancement.
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is correct, then the existence of an almost constant ener-
gy shift all the way up to S, implies that the proton rota-
tional enhancement is important to well above 10 MeV.
Investigations of additional nuclei similar to !'Sn (which
has coexisting modes of excitation) will be of interest in
the study of collective enhancement of level densities.

V. CONCLUSIONS

It has been shown that the phenomenological version
of the GSM can successfully fit the bound-state level data
of 11%Sn over a wide energy region and, at the same time,
the level density at S,. The best-fit parameters are in
good agreement with those values determined from either
theoretical considerations or systematics of fits to many
other nuclei.

The BSFGM and the CTM are less successful in fitting
simultaneously the level densities in the two energy re-
gions. The BSFGM has two energy-independent parame-
ters. When fitted to agree with the resonance data, this
model gives a curve that has the wrong slope to ever
agree in detail with the experimental bound-state stair-
case plot for this nucleus. Although the parameters of
the CTM can be adjusted to fit the bound states alone
quite well, these same parameters give an incorrect densi-
ty in the resonance region.

The microscopic version of the GSM in its current
form gives level densities in many nuclei that are sys-
tematically lower than the data by an almost constant
factor. There are good reasons to believe that this
deficiency results from the neglect of rotational collective
effects. It is nevertheless satisfying that the parameters of
the microscopic calculations are found to be similar to
those from the phenomenological version.

The success of the GSM is attributed to the inclusion
of many well-known characteristics of nuclear structure
such as pairing correlations, shell structure, and collec-
tive excitations. The net result is that the level-density
parameter a and the spin-cutoff parameter o> become en-
ergy dependent, thus making this model more flexible in
fitting level densities over a wide range of energy. The
GSM expressions for the calculation of the level density
are certainly more awkward than the simpler relations of
the BSFGM and the CTM. However, this complication
may be inescapable if the aim is to obtain a consistent
description of the level density over a wide range of exci-
tation energies for a large number of nuclei.
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APPENDIX

The density of quasiparticle excitations in Eq. (7) can
be written in a form similar to the FGM:

exp(S)

V2mo? det

PeplU")

where the effective excitation energy U’ is defined in Eq.
(9) and S is the entropy. In the GSM, the level density
needs to be treated separately in two energy regions.
These regions are separated by the critical temperature
t.. [see Eq. (8)]. At temperatures above ¢, the equations
of state of the GSM differ [11,12] from the similar expres-
sions of the FGM by a shift of excitation energy. In this
region, the temperature, entropy, and other thermo-
dynamic functions can be determined from U’ using the
equations

U=at*+E,,,, S=2at=2V'a(U' —E.4) » A2
det=(144/m)a’t> ,

ol=(6/m")al{m?)t,

where t is the thermodynamic temperature, E_ 4 is
defined below, (m?)=0.24+0.014'" is the average
square of the angular-momentum projection of the
single-particle states near the Fermi surface, and the en-
ergy dependence of the parameter a is taken into account
via Eq. (11).

To determine ¢, S, 02, and det from U’ below the
phase-transition point ¢, the simple parametrization
proposed in Ref. [22] is used

U,=Ucr(1_¢2)’ S:Scr(tcr/t)(1_¢2) ’

2 2 2 2 2y2 (A3)
o*=o05,(1—¢%), det=det (1—¢*)N1+¢*)*.
The subscript cr denotes the values of the corresponding
functions at the critical point, namely,
U,=a tz +Econd’ Scrzzacrtcr ’

cr~ %erter

(A4)
ol=(6/m)a,{m?)t,, det,=(144/malt],

The relation between the function ¢=[1—(U'/U,)]'"?
and temperature ¢ is given by the equation

¢=tanh[(z. /t)P] . (AS5)
From the solution of this equation, it is possible to find
the temperature corresponding to a given excitation ener-
gy or, conversely, to find U’ for a given ¢t <t_ and then
use Egs. (A3) to find the remaining functions. The con-
densation energy characterizing the decrease of the

ground-state energy of the superfluid phase relative to the
Fermi-gas phase is given by the expression

3

Econd = 2772 acrA(z) ’ (A6)

where A is given by Eq. (15).

The influence of shell effects on the behavior of the
thermodynamic functions in the superfluid phase, Eq.
(A3), is reflected in the value of the level-density parame-
ter a.. at the critical point, which must be found by an
iterative solution of the equation
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[1— exp(—ya.tE)]

2
acrtcr

a,,=a{l+5¢, , (A7)

where 8¢y and y are the same quantities defined in Sec.
111

The vibrational enhancement of the level density can
be written in the form

Kyipr—=€Xp[8S —(8U /)] , (A8)

where 8S and 8U are changes in the entropy and excita-
tion energy, respectively, resulting from the collective ex-
citations. These changes are described by the relation-
ships for a Bose gas:

8S=§ Q2A;+D)[(1+n;)In(1+n;)—n; In(n;)] (A9)
i=0
and
U= (2A;+1)o;n; , (A10)
i=0

where w; are the energies, A; the multipolarities, and n;
the occupation numbers for vibrational excitations at a
given temperature. To account for the disappearance of
collective enhancement of the level density at high tem-
peratures, the occupation numbers were taken from?

__exp[—y;/(20;)]
explow; /t]—1

i , (A11)
where y; are the spreading widths of the collective exci-
tations. The spreading of vibrational excitations in nuclei
is similar to the zero-sound damping in a Fermi liquid
and the corresponding width can be written as

v =Clw?+47%?) . (A12)

The value of C=0.00754 '3 MeV ! was obtained from
the systematics of the densities of low-lying levels and
neutron resonances of medium-weight nuclei [12]. In
that analysis, the measured values were employed for the
energies of the first 27 states and %o =504 ~2/3 MeV for

2Some authors have defined n; differently by omitting the fac-
tor 2 multiplying w; in the numerator of Eq. (A11). See, for in-
stance, Eq. (7) of M. L. Svirin and G. N. Smirenkin, Yad. Fiz.
48, 682 (1988) [Sov. J. Nucl. Phys. 48, 437 (1989)].

the octupole excitations, whose influence is much weaker
than the quadrupole ones.
The rotational enhancement factor (not used in the
current work) can be written in the form [11]
Ko =718 (U)=01g(U)=0*(1+1B)g(U), (A13)
where J, is the perpendicular moment of inertia and
g (U) is an empirical function that describes the damping

of rotation in hot nuclei. An expression proposed by
Hansen and Jensen [23] can be used for this function:

g(U)={1+exp[(U—U,)/d,]} "}, (A14)
where

U,=1204"'382 MeV (A15)
and

d,=14004 ~%°B? MeV . (A16)

For nuclei with deformation parameters $>0.2, the
damping of the rotation is negligible for energies below
S,. The uncertainty in g (U) is then not very significant
in the analysis of the bound levels and neutron reso-
nances and g(U)=1for USS,.

The flowchart of the computer program used to calcu-
late the GSM level density is as follows. The input pa-
rameters are @, Ay, and 8. The first quantity calculat-
ed is ¢ . defined by Eq. (8). The implicit Eq. (A7) is then
solved for a,.. With E_, 4 given by Eq. (A6), all critical
quantities defined in Eq. (A4) are then calculated. The
thermodynamic temperature ¢ corresponding to the exci-
tation energy U'=U, is found from Eq. (AS). The
quasiparticle density p,, is obtained with Egs. (A3) and
(A1) when U'< U, and with Egs. (A2) and (A1) when
U’z U,. The a value for use in Eq. (A2) is given by Eq.
(11). The vibrational and rotational enhancements, K.,
and k., are calculated separately according to Egs. (A8)
and (A13), respectively. The three quantities, pg,, Kyiprs
and k., are multiplied together to obtain p(U). The in-
tegrated number of levels (all spins and both parities) up
to U is given by p(U) multiplied by z. The density for a
particular spin is obtained by multiplying p(U) by f(J)
given by Eq. (3), with the crucial difference that o2, given
by Egs. (A2) and (A3), depends on the excitation energy.
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