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Neutron-deuteron scattering calculations with the Paris potential using the W-matrix
representation of the two-body input
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Observables of elastic neutron-deuteron scattering are calculated within the framework of the Alt-
Grassberger-Sandhas (AGS) three-nucleon equations. As input we use the separable W-matrix represen-
tation of the two-body T matrix of the Paris potential. We present a criterion based on the Schmidt
norm of the kernel of the AGS equations to optimize this representation. Comparing with an almost
complete set of experimental observables, except for a few observables depending sensitively on input not

yet fully optimized in this manner, our results generally show good agreement with the data. We thus
corroborate previous findings for semirealistic potentials also for realistic interactions, namely that the
8'-matrix approach provides a very eScient means of calculating three-nucleon scattering processes. Es-
timates are given showing that this method requires at least an order of magnitude less computational
resources than other solution algorithms, without sacrificing accuracy.

\

PACS number(s): 13.75.Cs, 25.40.-h

I. INTRODUCTION

In Refs. [I] and [2], it was shown for the semirealistic
S-wave Malfliet-Tjon interactions [3] MT I and MT III
that the W-matrix formalism of Ref. [4] provides an ex-
cellent way of representing the two-body input for
neutron-deuteron elastic [I] scattering and breakup [2]
calculations. Here, we will present results for elastic
neutron-deuteron scattering based on the realistic Paris
potential [5] calculated within the framework of the
effective two-body formulation of the three-nucleon Alt-
Grassberger-Sandhas (AGS) equations [6].

In solving the three-body problem, essentially there ex-
ist two strategies. The first, the direct-integration
method, is to discretize the partial-wave-decomposed
two-dimensional integral equations into finite summa-
tions in both momentum variables and invert the result-
ing system of linear equations. The second approach
consists of representing the two-nucleon subsystem input
in terms of separable expansions of the two-nucleon am-
plitudes entering the kernel of the AGS equations. In the
spirit of the original Fredholm theory of integral equa-
tions with degenerate kernels, this corresponds to an ex-
plicit partial solution of the two-dimensional integral
equation with respect to the subsystem momentum vari-
able. The use of such expansions, therefore, always re-
sults in a reduction of the dimensionality of the equations
to one-dimensional integral equations in terms of the
spectator momentum of the third nucleon relative to the
two-nucleon subsystem.

In assessing the merits of the latter approach, it must
be emphasized that a separable expansion is not just a
convenient representation of the input but a true
reAection of the mathematical structure of these subam-

plitudes. The imaginary part of the two-body T matrix,
for example, is completely separable, without any non-
separable remainder; this follows from the unitarity rela-
tion. For the real part, the dominant contributions stem
from the bound state and resonance poles around which
the T matrix possesses a factorizable residue; in other
words, these contributions are separable, too. If, there-
fore, the expansion is chosen such that it reAects the ex-
isting separable structures, it is to be expected that the
number of required expansion functions will be small
enough to provide a considerable saving of computing
time toithout any loss of numerical accuracy as compared
to a direct two-dimensional integration.

Existing numerical solutions of the ASS equations for
nucleon-deuteron scattering with realistic forces employ
both strategies: Ref. [7) uses the direct two-dimensional
discretization method and Ref. [8] expands the two-body
input into a series of separable terms according to the
Ernst-Shakin-Thaler (EST) prescription [9]. In the form-
er case [7], the dimension of the resulting kernel matrix is
so large that with today s computing facilities the corre-
sponding system of linear equations cannot be inverted
directly and one has to revert to an iterative solution in
terms of Pade approximants. In the latter case [8], the
number of terms required for expanding the Paris poten-
tial reliably may be as high as 25 even for uncoupled par-
tial waves (i.e., the approximation is of rank 5).

The 8'-matrix representation of the two-body T matrix
provides an exact splitting of the full T matrix into a
separable and a nonseparable part [4]. Its particular use-
fulness in three-body calculations stems from the fact
that it allows one to concentrate in the separable part in
an exact manner the entire pole and cut contributions of
the subsystem. This separable part is of rank 1 for un-
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coupled and of rank 2 for coupled partial waves, irrespec-
tive of which interaction is used. The corresponding real
and nonsingular remainder always vanishes half on shell.
The separable part alone, therefore, provides a fully uni-

tary approximate input for three-nucleon equations. Fur-
thermore, in order to optimize this treatment, one still
has at one's disposal an open parameter function k(E2) of
the two-body subsystem energy E2 which may be adjust-
ed to minimize the effect of the neglected remainder.
This input to three-nucleon equations, therefore, strikes a
balance between simplicity on the one hand and an accu-
rate reflection of the dominant behavior of the exact T
matrix on the other. In the latter respect we emphasize
that the separable part results from properties of the T
matrix itself, and not from some unspecific expansion of
the potential. As a consequence, the number of channels
is exactly the same as prescribed by the physical quantum
numbers, i.e., the separable representation itself does not
introduce additional couplings enumerated by expansion
indices. Since, moreover, integrations need to be carried
out only with respect to one relative momentum (instead
of the original two), the resulting system of linear equa-
tions is small enough to be solvable without requiring any
compromise as to numerical accuracy. The numerical er-
ror of our solutions, therefore, is well within 1%.

In Sec. II, we first recapitulate the W-matrix formalism
for coupled partial waves, as required for the application
to realistic two-body forces. Without going into any de-
tails of the derivation, we then write down the three-
nucleon AGS equations resulting from the present ap-
proach.

From a practical point of view, the optimization of the
approximate input by an appropriate choice of k(E2)
plays a very central role in the W-matrix approach. In
the previous calculations with semirealistic potentials
[1,2] this was achieved rather simply by a variational
principle. Since this is no longer possible for realistic in-
teractions, we present in Sec. III a general optimization
procedure based on an investigation of contributions to
the Schmidt norm of the kernel of the three-nucleon AGS
equations. For the present calculations, in view of limit-
ed CRAY computing time, we could employ this pro-
cedure only for the three-body seven-channel problem.
For larger two-body input, we then used the same func-
tion k(Ez). (The seven-channel problem refers to a
scattering calculation with maximal total angular
momentum I —', using 'S0 and S, —D, two-body

I

partial-wave input; a three-nucleon bound state calcula-
tion with this input is referred to as a five-channel prob-
lem since in that case one has only I = —,'.)

In Sec. IV, we compare the numerical results thus ob-
tained with experimental data. In general, we find good
agreement with the measured data, except for observables
which are known to be very sensitive to the two-body I'-
wave input, and which is not yet fully optimized in our
present numerical treatment. Presenting our conclusions
in Sec. V, we argue that the employment of the Schmidt
norm optimization procedure for all partial waves, how-
ever, will lead to solutions of the three-nucleon equations
for realistic potentials which are of the same high quality
as those found previously for semirealistic interactions.

II. FORMALISM

The formulas in Ref. [1] were tailored to the fact that
the underlying nucleon-nucleon interactions used there
acted only in the S waves. In the following we provide all
relevant formulas necessary for realistic NN potentials.
At first, we recapitulate the W-matrix formalism which
provides the two-body input for the three-body AGS
equations. We use units in which the nucleon mass is
unity, i.e., 41.47 MeV fm = 1.

A. 8'matrix

It is a straightforward exercise to extend the W-matrix
formalism of Ref. [4] to the case of coupled partial waves.
We start by introducing a reduced potential matrix ele-
ment UII for coupled partial waves l and l' by

&a (p p ') =p 'vii (p p'')p

in terms of the partial-wave momentum-space matrix ele-
ment VII of the two-body potential V. The momentum
factors p

' and p
' are chosen such that U&& (p,p') does

not vanish for vanishing momenta p,p' for l, l') 0. (The
generalization given in Ref. [10] uses a slightly diff'erent,
unsymmetric definition for U&& (p,p'). Our present choice
follows from practical considerations; it greatly facilitates
the numerical treatment of all ensuing expressions for
small momenta. As a consequence, also the uncoupled
case, which follows by set ting VII.=6II.VI, produces ex-
pressions somewhat diff'erent from those of Refs. [1, 2,
and 4].)

The W matrix W~& is then defined as the solution of

UII (p, q; E ) —Uii (p, k; E )
W~&(p, p', E)=U~&(p, p', E)+ g f dq q 2 q 'WI, I(q,p', E) .

0 E—
q

Obviously, because of the subtraction of U„.(p, k;E) in
the kernel, the W matrix is a function of the parameter
momentum k; in the notation W~&(p, p', E) this depen-
dence is suppressed for reasons of a more concise nota-
tion. This parameter is to be chosen such that

&E for E)0,k='
arbitrary for E (0 .

In other words, the integral equation (2) is nonsingular
for scattering energies E ~0. As a consequence, the W
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matrices are real functions of the energy even for E ~0,
without any poles and cuts. These analytical properties
make them some of the most "benign" functions in po-
tential scattering theory. (For a detailed account of the
underlying relations in the case of local potentials, see
Ref. [4].) Note that the subtraction in the kernel of (2)
also means that W&&(p,p'; E) no longer possesses the usual

symmetry properties of the potential, i.e., the analogue of

1 II(P P )=1 I I(P P)

is not true for WiI-(p, p', E). Furthermore, as will become
obvious from the expressions given below, there is an ad-
ditional asymmetry of W~&(p, p', E) with respect to its
partial-wave indices l and I. While the former has a
direct physical significance, the latter serves only as an
internal summation index of the 8'-matrix representation
(to distinguish these indices from true partial-wave in-
dices we will consistently use a caret).

At negative energies, the parameter k is not only arbi-
trary, it is not even limited to be a constant. It may be
any (nonpathological) function of the energy and it may
even be chosen to be different for different partial waves,
i.e., the k dependence of the subtracted reduced potential
in the kernel of (2) is given in detail by

UII.(p, k&E ) = UII.(p, kg. (E);E),

, ~a(pq)+g dq q z T&.I.(q,p', E+iO),
E+iO —

q
(4)

one finds that the fully of-shell two-body T matrix
TII.(p,p', E+iO) may be decomposed exactly into a separ-
able term TI'I. (p,p', E+ i0) and a nonseparable, real
remainder R II (p,p '; E),

TII,(p,p';E+iO) = Tt', .(p,p';E+i0)+RII (p,p', E ),

both of which are given entirely in terms of the solutions
of the nonsingular W-matrix equation (2); i.e.,

TI (p,p', E+iO)=p'g Wir(p, k;E)h~(E+iO)

language, we shall refer to W~&(p, k;E) as the half-on-shell
8' matrix even if E (0 where this, strictly speaking, is
not quite appropriate.

Just as in the uncoupled case discussed in detail in Ref.
[4], one easily shows now that the solution of the integral
equation (2) completely determines the two-body scatter-
ing problem also for the coupled case. Instead of solving
the singular Lippman-Schwinger (LS) equation,

TII (p,p', E+iO)

=l'a(p p')

which means that, in general, the 8'-matrix elements
W~&(p, p';E) are functions of k~&(E). This freedom in

choosing k at negative energies will play an important
role in the considerations of Sec. III. To simplify the

I

and

X Wi, l, (p', k;E)p

R(((p,p', E)=p' Wg(p, p', E)—g W(j(p, k;E)Wp, '(k, k;E)Wfl(k, p', E) p
'

1, 1'

As one immediately verifies by inserting the momentum k
for p or p', the remainder R11. vanishes half on-shell. In
other words, the separable part (6) alone provides the full
off-shell unitarity relation of the exact T matrix. Since
the 8'matrices are real, the pole and cut structure of the
full T matrix is contained solely in the "propagator"
h~, (E+iO) in Eq. (6),

b p(E+i0) = g F~„'(E+i0)Wy „'(k,k;E),

The bound state pole (if it exists) of the T matrix at the
energy E = —a is contained in the propagator (8); it is
identified by the condition

detF( —a ) =0 . (10)

gF((( —a )C-, =O

If this necessary and sufficient condition for the existence
of a bound state is met, the Jost matrix cannot be invert-
ed and the eigenvalue equation

where F(E+iO) is a generalization of the Jost function
(or lost matrix, rather, in the coupled case) given by

Wp(q, k;E)
F~,(E+iO) =5~,—I dq q q 20 E+iO —

q
(9)

The generalization concerns only the negative-energy
domain and is due to the freedom of choosing the param-
eter k according to (3); for positive scattering energies,
F(E+iO) reduces to the usual Jost function (cf. also dis-
cussion in Ref. [4]).

1

P, (p)= N g Wg(p, k; —a )Cl,
g 2

p
2

(12)

where N is the overall normalization factor determined in
the usual way. Despite the formal appearance of the pa-
rameter k in (12), these fully normalized bound-state

possesses nontrivial solutions C1. The properly normal-
ized components f& of the corresponding bound state
wave function are then given by linear combinations of
the solutions of (2) at the energy E= —a according to
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wave functions are independent of k (as they must be, of
course).

These relations provide a complete solution of the off-
shell coupled partial-wave two-body problem in terms of
the real W matrices (2). In the three-body calculations
presented below, we will use the Paris potential [5] as the
underlying NX interaction and we will employ the separ-
able part (6) of the corresponding W-matrix representa-
tion alone. We emphasize that this approximation of the
Paris potential affects only fully off-shell contributions of
the two-body interaction (since the separable part is exact
half on shell) and that this approximate input satisfies the
full off-shell unitarity relation. To optimize this treat-
ment, i.e., to minimize the effect of the neglected
remainder (7), we still have at our disposal the free pa-
rameter k at negative two-body energies. (Instead of op-
timizing k, one could also include further separable rep-
resentations of the remainder according to the prescrip-
tion of Ref. [4]. Our investigations indicate, however,
that first optimizing the lowest-order approximation be-
fore adding more terms is far more efficient. )

From Eq. (6) and all related expressions it is obvious
that one needs but the half-on-shell solutions W~&(p, k;E)
of (2) to carry out this approximation scheme, i.e. , only
those which are directly, at least formally, related to the
bound-state components (12).

As a further technical detail we mention that the repre-

I

sentation (5)—(7) is derived under the condition

det W(k, k; E )WO, (13)

i.e., we require that the on-shell Wmatrix W(k, 'k;E) may
be inverted. For certain simple rank-1 separable poten-
tials this is not true. Since, however, in real applications
such potentials presumably would not be subjected any-
way to the procedure described here (since they are al-
ready separable), we do not consider this a serious prob-
lem. For the Paris potential we have observed a violation
of (13) for isolated value pairs (k, E) at negative two-body
energies E. In these cases the problem can be circum-
vented rather easily by choosing a different functional
form for the parameter k.

B. Three-body AGS equations

For a detailed account of the theory behind the AGS
equations, we refer to Ref. [6]. Here, we only give the
final form of the effective two-body equations for
neutron-deuteron scattering resulting from employing the
separable part (6) of the T matrix. (More details of the
derivation of the present formulation can be found in
Ref. [11].)

Denoting the total angular momentum by I and the
total isospin by I, the symmetrized partial-wave-
decornposed three-nucleon AGS equations read

T& (q', q;E+iO)=V& (q', q;E+iO)+g f dq"q" V&„(q', q";E+iO)b,„,( E—,'q" +iO)T—"(q",q;E+iO),
p) v

(14)

where E now denotes the three-body CMS energy. The
labels a, P, p, v denote sets of quantum numbers compris-
ing spin, angular momentum, and isospin, viz.

respectively. The two-body propagators b.&&,
&

of Eq. (8)
now have acquired an index g which describes the quan-
tum numbers of the two-body subsystem,

r]'K'L '

l'
gKL

l
(15)

r)= [S,J;TI, (18)

~rl rl~~K L ~KL
P~ I'I (16)

and

~Pa ~g'g~K'K ~L'L ~I'f (17)

(and analogously for p, , v). The detailed index structure
of Tp and&& reads

where S is the spin, J the total angular momentum [with
coupling sequence (l,S)J], m. =( —1)' the parity, and T
the isospin of the subsystem. The quantum numbers K
and L in (15) describe the channel spin of the three nu-
cleons [with coupling sequence (J, —,

' )K] and the relative
angular momentum between the subsystem and the third
nucleon, respectively. In other words, the total angular
momentum follows from the coupling sequence (K,L )I .

The effective potentials V&, with an explicit index
structure completely analogous to (16), are given by

~+I
Vp (q', q;E+iO)=2+q'

1, 1
' H=o a =o

h P~(x)
Up (H, h ) -, f dx 8;",-, , (p„',k';E2) . WP(p„, k;E2),

2qq' —
&

' I " '
y —x+iO

(19)
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where

p„=Qq' + —,'q +qq'x, p„'=Qq + —,'q' +qq'x

(20)

are the two-body subsystem momenta and

given in the Appendix.
As can be seen from (16), the solution of Eq. (14) is not

yet the physical (partial-wave) T matrix; one still must
sum over the 8'-matrix indices l, /'. The physical matrix
element is given by

(21)
rlTV K L ~KL=X2 ~ rIT~-K L ANKLC-C1'1 1' 17

1, 1'
(24)

are the two-nucleon energies (denoted by E in Sec. II).
Furthermore,

q2 q&2

qq'
(22)

and P~(x) is the order H Legendre polynomial of the first
kind, and

H,„=—,
' (L +1+L '+1' ) .

The spin-isospin recoupling coefficients Up (H, h) are

where the factors are a consequence of the corresponding
ones from Eq. (12). Inspection of Eq. (14) shows that the
rightmost summation over l may be performed already
before a numerical solution.

The only transition of physical interest in elastic
neutron-deuteron scattering is the one with g=g'=d,
where d denotes the deuteron. The full amplitude for the
scattering of a neutron with momentum q and spin corn-
ponent rn off a deuteron with total angular momentum
component M is given by

(q'm'M' T""(E+iO)~qmM ) = g g ( IM' ,'m'~K'M—z ) (1M,'m ~KM—z) (q'K'Mz
~
T (E+iO) ~qKMz ) (25)

K, M~ K', MK

where

(q'K'Mx ~T (E+iO)~qKMx ) = g g g Y, , (q')Yg~ (q)(K'M~L'Mr' ~I Mt )(KM~LMz ~I M„)
L, ML L,M r, Mr

X T" (q', q;E+iO) . (26)

The Yr M are spherical harmonics and Q is the direction of
the vector q (similarly for q'); the bras and kets are
Clebsch-Gordan coeScients.

III. CHOOSING k(ER)

The first step towards a numerical solution of the
three-nucleon equation (14) is the determination of the
free parameter k of the 8'matrices at negative two-body
energies such that the inAuence of the neglected
remainder (7) is minimized. In Ref. [1], it was observed
that calculating the triton binding energy as a function of
k (with k chosen as a constant) exhibited a minimum
which coincided with the corresponding exact value of
the binding energy. It was conjectured, therefore, that
there exists a variational principle which underlies this
finding. Furthermore, for the semirealistic MT I and MT
III potentials used in Refs. [1] and [2], it was then found
that the parameter k corresponding to the minimal bind-
ing energy provided scattering results which also were
compatible with reference calculations.

In the meantime a proof of the conjectured variational
principle was found [12] showing that it is valid for all
two-body interactions for which the three-body generali-
zation of the Hilbert-Schmidt expansion [13] is well
defined. (Contrary to popular belief, the assumptions un-

derlying a Hilbert-Schmidt expansion of the three-
nucleon LS kernel are not valid in general. Our experi-
ence suggests that more realistic potentials do not admit
a well-defined Hilbert-Schmidt expansion. ) Numerically,
this may be tested very simply by checking whether all ei-
genvalues of the three-nucleon LS kernel remain real for
negative energies. The MT I and MT III potentials used
in Refs. [1] and [2] satisfy this criterion and the findings
of Ref. [1] for the triton binding energy are, indeed, vari-
ational results. (The violation of the conjectured varia-
tional principle reported in Ref. [14] was subsequently
shown [15] to be in error. )

For the Paris potential, this criterion is not valid (i.e.,
the higher-order eigenvalues of the LS kernel contain
imaginary admixtures) and the variational principle is no
longer true. However, from the smallness of the imagi-
nary parts one may infer that the violation to be expected
presumably will be rather small. Indeed, using the separ-
able 'So and S&- D& two-body contributions of the Paris
potential and employing the variational procedure by
separately varying k for 'So and S, - D„numerically we
find no violation. Moreover, the minimal triton energy of—7.295 MeV thus found compares very well with the
complete five-channel calculations of —7.303 and—7.308 MeV of Refs. [16] and [17], respectively, i.e., the
deviation from the complete calculation is less than
0.2%.
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However, in the absence of a strict variational princi-
ple, this may be just fortuitous and it is, therefore, desir-
able to have some other means of choosing k. Since con-
stant values for k, albeit different ones in different two-
body channels, do not fully exploit the freedom one has,
ideally one would like a procedure which yields k as a
function of the energy such that the contributions from
the remainder (7) are minimized. As a first step in this
direction, one may look at the average values of p in Eq.
(19) as a function of the corresponding two-body energy
E2 (similarly for p,

' and E2). Choosing k in W&(p„k;E2)X&

equal to these average values will ensure that the
remainder vanishes on average. Writing explicitly the ar-
guments of the right-most of the two 8' matrices in Eq.
(19), one has with (20) and (21)

-7 0-
Z

-7 5—

I

10
I

20
I

30

E,ff (MeV)

I

40
I

50

W~&(p, k; E2 ) = W&&( +q ' + 'q + qq—'x, k; E ——'q ~
) .

Using then the fact that on average the contributions due
to the x integration in Eq. (19) may be expected to be at
x =0 and that E2=E —

—,'q is the two-body energy be-

longing to the three-body energy E, one finds that the
average value ofp is given by

po=Vq + —q

1/2

3
+q' (28)

E f1
—E2

k(E~) = for E2 ~0, (29)

A similar result, with q and q interchanged, is obtained
for the leftmost W matrix in Eq. (19). These average con-
tributions will account for most of the subsystem contri-
butions if the remainder vanishes for these momenta.
Obviously this is achieved by choosing k as a function of
the two-body subsystem energy E2 in the form

1/2

FIG. 1. Results of a five-channel triton binding energy calcu-
lation as a function of the energy offset E,ff. of Eq. (29). Hor-
izontal line at —7.308 MeV corresponds to the value obtained
in Ref. [17].

from Ref. [17], in violation of the variational principle.
One also sees from Fig. 1 that offset values of 15 or 35
MeV will reproduce the reference triton energy of—7.308 MeV.

This simple kinematical argument may be made more
stringent by investigating the various partial-wave contri-
butions to the Schmidt norm of the three-body LS kernel.
Writing the kernel of (14) as

K& (q', q;E+iO)

=g V&„(q',q;E+iO)h„(E ,'q +i—O)—, (30)

its Schmidt norm is defined by

where E,ff is some energy offset which corresponds to
averaging in Eq. (28) the different q' for a given three-
nucleon energy E. Using this functional form and calcu-
lating the triton energy as a function of E,ft, we find the
result of Fig. 1 which shows that the minimum energy is
now slightly, by about 0.6%, below the reference value

dq I dq'(q'q~K& (q', q;E +i )0~)

p 0 0
(31)

To see in some more detail the internal structure of all
contributions for fixed q and fixed quantum number sets /3

and a, let us look at the simple case of S waves only;
these contributions are then written explicitly as

'2
W" (p', k', E2 ) W"(p, k; E2 )

dq' q'q dx b,"(E—
—,'q~)

E —
q

—q' —qq'x + i0

Because of E2 =E—
—,'q, fixed values of q correspond to a definite two-body subsystem energy and for p, one has

(32)

p, =Qq' + —,'q +qq'x

according to (20). If one now samples all contributions in the q and x integrations of (32) for which this two-body
momentum p is equal to a given, fixed value p, the result of this sampling procedure may be written as a function of E2
and p,

n""(E~p)= f dx—1

W" (p', k', E2 ) W"(p, k;E2 )
b,"(E,)q'q

E2 ——'q —q' +qq'x +i 0
(33)
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n"'"(E2, p) q'='so q='so
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FIG. 4. Same as Fig. 2, for the scattering energy of 10 MeV.
The corresponding contour plot is shown in Fig. 5.

FIG. 5. Same as Fig. 3, for the scattering energy of 10 MeV.
Figure 4 shows the corresponding 3D plot. Maximal contribu-
tions to the Schmidt norm are found along the solid line; the
dashed-double dotted line corresponds to our choice of k(E~).

For seven-channel three-body observables we find that
the detailed functional form of pulling down the values of
k to zero has negligible inhuence on the final results. In
this respect, it should also be noted that the essential as-
pects of Figs. 2 —5 do not change if different (reasonable)
functions k(E2) are employed in calculating n (Ez,p).
In other words, the norm criterion itself is largely in-
dependent of k(Ez) and allows one to choose k(E2) in
one single step, without having to go through several
iterative stages.

While the actual numerical calculation of optimized
functional forms for k(E2) according to the procedure
just described requires only negligible computing time
compared to the solution of the full three-body AGS
equations (14), its development and testing against alter-
native possibilities used up quite a bit of the granted
CRAY computing time. As a consequence, we could not
fully implement the Schmidt norm criterion for all sub-
system partial waves. As a compromise, we chose the
same functional form as in Fig. 5 for all two-body partial
waves considered in the present work. While we find that
this is a very good choice for the seven-channel case us-
ing 'So and S, - D, and a good average choice for other
partial waves, we do not consider it as being fully opti-
mized yet. As an example of the latter point, we present
in Figs. 6 and 7 three-dimensional and contour plots for
the P2 subsystem. One clearly sees that our choice for
k(Ez) is inadequate to describe the dominant features of
this partial wave in detail; it essentially only skims the
slopes of some of the peaks and almost entirely misses the
largest of these peaks. As a result, some of the observ-
ables reported in the next section, in particularly those
depending very sensitively on certain P-wave contribu-
tions, are expected to improve if one uses more refined
functional forms for k~1(E2) in the P waves.

We emphasize here that our criterion is a three-body

criterion, i.e., we optimize our two-body input with
respect to the three-body kernel. Conventional two-body
norm criteria cannot provide more than an indication of
the quality of the approximation in the context of the
three-body problem. A genuine practical criterion must
by necessity be a three-body criterion.

IV. NUMERICAL RESULTS

The numerical solution of the W-matrix equation (2)
can be done without any problems for all energies since it
is nonsingular. To provide an accurate input for the
AGS equations (14), we require the half-on-shell solutions
of (2) on a discrete energy mesh of 105 points where 65 of
these points are at negative energies. The corresponding
solutions of (2) are obtained on a momentum mesh of 120
points. The resulting 8' matrices of dimension 105 X 120
then provide the basis for a two-dimensional spline repre-
sentation which allows a very accurate calculation at ar-
bitrary energies and momenta. As mentioned already, as
input we use the Paris potential [5]. Since, by construc-
tion, the separable W-matrix representation (6) is exact
half on-shell, our approximate input reproduces, of
course, all of the on-shell data of the Paris potential.

In solving the ACxS equation (14) numerically, we used
essentially the same methods as discussed in Ref. [1]. We
solved Eq. (14) on the real axis by expanding the solutions
into cubic B splines [18]. The logarithmic singularity
originating from the x integration of (19) was treated by
standard subtraction techniques. We used at least 16
mesh points for the x integration and at least 50 cubic B
splines to expand the unknown solutions. The necessary
momentum integrations of the kernel (14) over the given
spline functions were done with more than 130 mesh
points. We emphasize that the relatiue simplicity of the
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FIG. 9. Deuteron vector analyzing power iT» for (a) small (J «1+) and (b) large (J «2) two-body input. Line styles as in Fig. 8.
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FIG. 10. Deuteron tensor analyzing power T&o for (a) small (J"«1+) and (b) large (J «2) two-body input. Line styles as in Fig. 8.
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FIG. 11. Deuteron tensor analyzing power T» for (a) small and (b) large (J «2) two-body input. Line styles as in Fig. 8.
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FIG. 12. Deuteron tensor analyzing power T» for (a) small (J ~ 1+) and (b) large (J ~ 2) two-body input. Line styles as in Fig. 8.
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FIG. 13. Neutron-to-neutron polarization transfer K' for (a) small (J"~ 1+) and (b) large (J ~ 2) two-body input. Line styles as in
Fig. 8.
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FIG. 14. Neutron-to-neutron polarization transfer K~ for (a) small (J 1+) and (b) large (J Z) two-body input. Line styles as in
Fig. 8.
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FIG. 15. Neutron-to-neutron polarization transfer K for (a) small (J ~ 1+) and (b) large (J~ 2) two-body input. Line styles as in
Fig. 8.
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FIG. 17. Neutron-to-deuteron polarization transfer K for (a) small (J 1+) and (b) large (J ~ 2) two-body input. Line styles as
in Fig. 8.
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FIG. 18. Neutron-to-deuteron polarization transfer E, for (a) small (J 1+) and (b) large (J 2) two-body input. Line styles as
in Fig. 8.
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FIG. 19. Neutron-to-deuteron polarization transfer E, for (a) small (J"~ 1+) and (b) large (J ~ 2) two-body input. Line styles as
in Fig. 8.
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FIG. 20. Neut on-to-deuteron polarization transfer K~ ' for (a) small (J"~ 1+) and (b) large (J + 2) two-body input. Line styles as
in Fig. 8.
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FIG. 2'1. Neutron-to-deuteron polarization transfer E ' for (a) small (J"~ 1+) and (b) large (J ~ 2) two-body input. Line styles as
in Fig. 8.
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FIG. 22. Neutron-to-deuteron polarization transfer K~ —K~ for (a) small (J ~ 1+) and (b) large (J ~ 2) two-body input. Line
styles as in Fig. 8.
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FIG. 24. Neutron-to-deuteron polarization transfer K,"~ for (a) small (J ~ 1+) and (b) large (J ~ 2) two-body input. Line styles as
in Fig. 8.

changes even if we improve our present P-wave input. As
can be seen from the figures, for those insensitive observ-
ables our results are in good agreement with those of Ref.
[7], with the exception of the neutron-to-deuteron polar-
ization transfer K"~ of Fig. 21(b). In our experience,
this observable is not very sensitive to a variation of the
P-wave input, yet our 34-channel results are quite
different from, and in better agreement with the experi-
mental data than, those of Witara et al. [7] (It should be
mentioned in this context that the curves of the calcula-
tions of Witala et al. were extracted from plots; numeri-
cal values of their results were not available to us. Some
of the differences of our results to those of Witafa et al.
may be attributed to our errors in reading off the plotted
results of Ref. [7], i.e., practically all differences between
the small-input results shown in Fig. 8(a) —25(a) may be
understood in this way. )

V. CONCLUSIONS

In order to discuss the particular merits of the 8-
matrix approach in somewhat more detail, let us first
compare it with one of the most successful separable ex-
pansion methods, the Ernst-Shakin-Thaler (EST) expan-
sion [9]. Its convergence when employed for the Paris
potential was studied in Ref. [8]. Using the two-nucleon
'So and the S&- D& partial waves as examples of uncou-
pled and coupled partial waves, respectively, it was found
[8] that one requires at least rank-5 and rank-6 approxi-
mations, respectively, to obtain reliable approximations
of the two-body on-shell data for the Paris potential. In
the language of Ref. [8], ranks 5 or 6 correspond to 25 or
36 terms in the respective expansions. The 8'-matrix ap-
proximation of Eq. (6), by comparison, requires only 1 or
4 terms, respectively, corresponding to rank 1 or tank 2.
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FIG. 25. Neutron-to-deuteron polarization transfer K~ ' for (a) small (J ~ 1+) and (b) large (J ~ 2) two-body input. Line styles as
in Fig. 8.
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For the half-on-shell T-matrix elements, this provides an
analytically exact description. Optimizing, furthermore,
the still open parameter function k(E2) according to the
procedure of Sec. III, the corresponding three-body
seven-channel 8'-matrix results are seen to be of the same
quality as those of other calculations [7,8]. As an-
admittedly somewhat crude —measure of the required
numerical work for both approaches, one may use the
respective sizes of the integral-equation kernel matrices,
since this, in our experience, determines to a large part
the necessary computational resources, in particular, the
computing time. Using the same mesh sizes for the
momentum integrations, the difference between 1 and 25
or 4 and 36 terms in the respective expansions implies
that for a five-channel calculation in the EST approach
one needs to calculate about a factor of 10 more matrix
elements. This factor increases with an increasing num-
ber of channels.

Comparing our approach to a direct two-dimensional
discretization [7], our estimates for the most basic prob-
lem, the five-channel problem, indicate that the number
of matrix elements for the latter is at least a factor of 100
larger. Again, this factor increases drastically with an in-
creasing number of channels. In making these estimates
we emphasize that we compare here our generous mesh
sizes with the relatively small ones gives in Ref. [7],
despite the fact that we consider the latter inadequate to
obtain the overall numerical accuracy claimed there.

In this context, let us add a comment of a more general
nature. In a problem as complicated as the nuclear
three-body problem, one is always faced with the danger
of running out of computational resources. However, if
sacrifices in accuracy have to be made, they ought to be
made where they hurt least, if possible. It is the nature of
elastic nucleon-deuteron scattering that it can be under-
stood very well as an effective two-body problem in which
the dominant dynamical mechanism is that of a single nu-
cleon interacting with a composite two-nucleon subsys-
tem. It seems obvious, therefore —and our experience
bears out this prejudice —that one should not make any
compromise in describing the dynamics of this relative
motion of the spectrator nucleon, because a too- crude
approximation there will have direct and immediate
consequences on the final results. If approximations have
to be made, they ought to be made within the two-
nucleon subsystem where their bearing on the elastic
nucleon-deuteron observables is less direct and averaged
out to a very large degree by the way effective two-body
matrix elements are formed, where subsystem informa-
tion is integrated away. In view of the fact that the de-
gree of coupling of the three-body equations within the
8'-matrix approach is exactly identical to what is
prescribed by angular momentum decomposition,
without any additional couplings due to an unspecific se-
parable expansion, and without the additional subsystem
integration of a direct-integration approach, the 8'-

matrix method constitutes a solution algorithm where the
size for the resulting system of linear equations is as small
as is possible according to the quantum number structure
of the problem. It is for this reason that we can afford to
make no compromise in choosing the corresponding in-
tegration mesh size and solve the effective two-body equa-
tion (14) as accurately as possible. In this respect the W-
matrix approach provides a numerically very cost-
effective and reliable method of calculating three-body
scattering data even for realistic potentials.

Summarizing, we have presented here a numerical
solution of the three-nucleon AGS equations within the
framework of the W-matrix approach [4]. While previ-
ous implementations [1,2] of this method were restricted
to the simple W-wave Malfliet-Tjon potentials [3], the
present investigation is based on the Paris potential [5],
considered to be one of the most realistic two-nucleon in-
teractions. The results reported here corroborate the pre-
vious findings, namely that the 8'-matrix approach pro-
vides a very efficient means of obtaining high-quality
solutions for three-nucleon processes. This conclusion is
notwithstanding the fact that at present, for lack of com-
puting time, we have only been able to optimize the two-
body input for the 'So and S&- D, two-body partial
waves. Preliminary work concerning the optimization of
other partial waves, however, has been carried out al-
ready and we are confident that the corresponding three-
nucleon results will be of similar quality as the seven-
channel results with 'So and S, - D, input.
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APPENDIX

~max

I p (H, h)= —,
' g [1+(—I)'+~ "]Ep [H, ,'(f+1' —h), —,'(f —l'—+h)],

~=~min
(A3)
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where f;„=~l' —h
~

and f „=l+l'—~1
—h

~

and

1/2
2I 2l'

2f 2f'

h' l f—H
0 0 0

l' f ' f— h

l —f H h

Ep (H, f', f)=(—1)'+ +
( —,') + (2l+1)(2l'+1)(2H+1) (2L+1)(2L'+1)

L f h h l' f' —H L' f' h'
X ~ (2h+l)(2h'+1) 0 0 0 0 0 0 0 0 0

h„h'

l f —f I I' f ' —f ' l'
X & "F+" I. (A4)

with

C(3 (F)=( —1) +'+ &(2J + 1)(2J'+ 1)(2K+ 1)(2E'+ 1)(2S+1)(2S'+ 1)

S J 6 / E I'5' J' 61'E'
&'G+"1-'G S —'KG L I F —'E' G L'1 F6 . 2 2 2

Here, ( ) and I I are 3j and 6j symbols, respectively.
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