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The Harvard noncoplanar geometry is used to specify calculations of the differential and integrated

cross sections and of the component analyzing powers from pp bremsstrahlung. This geometry is

equivalent to spherical polar coordinates for coplanar scattering. A wide range of incident energies

and symmetric proton emission angles are considered in studying various properties of the reaction.

Emphasis is placed on an energy of 280 MeV and for forward proton angles, at which results are

most sensitive to specific off-of-the-energy-shell properties of the two nucleon t matrices. Those t

matrices are generated with various interactions. The importance of the NN t-matrix off-diagonal

tensor contributions for the coplanar observables as demonstrated in the pioneering work of Brown

is clearly shown. Photon cross sections vary with the noncoplanarity of the reaction due in part to

changes in relative importance of diverse NN channel t matrices. The analyzing powers likewise

vary with azimuthal angle and reveal a particular sensitivity to the tensor coupled P2- F2 channels

and to the Po channel.

PACS number(s): 13.75.Cs, 21.30.+y

I. INTRODUCTIGN

The pp-bremsstrahlung (ppp) reaction is the most un-
arnbiguous reaction from which to obtain off-shell infor-
mation of the NN force. This is the case because the
electromagnetic interaction is not only weak relative to
the strong force but also well understood. The reaction
is also the simplest process in which off-shell effects in-
crease with energy and complications can be avoided by
working with energies only above which other processes
become important (such as the pion threshold). Conse-
quently, there was much interest in the reaction in the
1960s and 1970s but no major inroads were made in ex-
tracting decisive off-shell information then and interest
later waned. More recently there has been a renewed
interest due primarily to higher precision and sophisti-
cation of experiments and of theoretical analyses [1—3].
The recent TRIUMF experiments included the first ex-
tensive measurements of the analyzing power. The diffi-
culty in obtaining such measurements (and of other po-
larization observables) has thwarted progress in the past.
Now there are facilities in preparation (COSY in Jiilich
and TRIUMF) which should produce more precise data.
There are also some initial results from the Indiana Uni-
versity Cyclotron Facility (IUCF) Cooler-Ring [4] which
look promising.

In view of this activity it seems appropriate to take a
closer look at various aspects of the reaction and, given
that the recent work thus far has concentrated solely on
coplanar events, we extend upon this by studying non-
coplanar events. Older calculations [5—7] suggest that
the photon cross section, while quite insensitive to polar
angle variations in the reference plane, is very sensitive
to azimuthal angles. With the new measurements taken
at energies close to pion threshold it would be instructive
to observe noncoplanar events as even coplanar geometry
detectors will accept these events to some extent due to

their finite size. Thus, we undertake a general noncopla-
nar calculation at such energies in order to study the
azimuthal behavior of the observables. The noncoplanar

analyzing power is calculated for the first time. Further-
more, the behavior of the electric and magnetic contri-
butions to the photon angular distribution, including the
known suppression of the convection current, are shown

explicitly with increasing energy. The electric suppres-
sion as a function of the azimuthal angle, suggested by
Drechsel and Maximon [5], will also be displayed.

The noncoplanar observables reHect the off-shell be-

havior of the NN t matrices and we study that in some

detail. The noncoplanar kinematics reveal a steadily in-

creasing photon momentum with increasing noncopla-

narity which suggests a stronger dependence upon off-

shell properties of the NN t matrices. This, it was hoped,
would be reHected in the observables, particularly the an-

alyzing power. Additionally, for noncoplanar geometries,
the 2: and z components of the analyzing power are no

longer trivial and may provide further useful information.
In order to enhance off-shell effects, the most sensitive
off-shell region was scrutinized, namely, forward proton
scattering near pion threshold.

Our calculation follows along similar lines to the TRI-
UMF work of Workman and Fearing [1]. Included are
relativistic spin corrections (RSC), one-pion-exchange

(OPE) amplitudes, and off-shell Coulomb corrections;
the latter will be discussed in detail in a later paper.
Rescattering terms have been omitted in the current work

but as the calculations have been made using the center-
of-momentum frame, the leading term of the rescattering
vanishes identically. The effects of the RSC close to pion
threshold will be discussed in the coplanar geometry, for

which they are most important. We also briefly look at
the effect upon results of partial wave cutoffs near pion
threshold.

For our noncoplanar calculations the Harvard non-
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coplanar geometry [6] was chosen as with this geome-
try the observables are more conveniently scanned, over
the whole range of photon angles, 0' to 360'. Increasing
noncoplanarity restricts the photon polar angles towards
the "limiting photon. " The variables can quite readily
be transformed to spherical polar coordinates.

The Lippmann-Schwinger equation is solved to spec-
ify the NN t matrices. Four interactions were used: the
Paris [8, the Bonn OBEPQ [9], the extended Reid soft
core [10], and a phenomenological interaction developed
some time ago in Melbourne [ll]. The latter force was
designed to fit on-shell Amdt [12] phase shifts in all chan-
nels with momentum-dependent functions. The effective
tensor force of this interaction is much weaker than those
of the other forces, whence comparisons can contrast and
emphasize eKects of the "realistic" tensor channels.

In Sec. II we detail our method of calculation for the
kinematics and in Sec. III we discuss some important
properties of the T matrix and consequently give the de-
tails of its calculation. Other contributions and their
significance in ppp are discussed in Sec. IV. The frame
transformations and the calculation of our observables
are given in Secs. V and VI, respectively. Our results
are presented and discussed in Sec. VII and conclusions
are drawn in Sec. VIII.

II. KINEMATICS

As a discussion on the kinematics for bremsstrahlung
has not been included in recent papers we do so in some
detail here, including the solution for noncoplanar events.
All kinematics have been done relativistically and with-
out approximation, unlike in the older presentation of
Drechsel and Maximon [5], and so are valid for copla-
nar and noncoplanar events at all energies. The Harvard
noncoplanar geometry as specified by Liou and Sobel [6]
is utilized as the coordinate system defining the incom-
ing and outgoing momenta. This has several advantages
over conventional spherical polar coordinates. Notably,
the restricted emission angles for noncoplanar scattering
in the spherical polar geometry can be avoided. The ge-
ometry used is shown in Fig. 1, wherein it is to be noted
that the azimuthal and polar angles are defined relative

d'a
d8r dgid82dgqdg~

dsCT

dArd02dtp~
'

and the components of the analyzing power, A~, A„, and

A. Definition of @7

Energy-momentum conservation determines a limiting
maximum angle out of the x-z plane for the symmetric
azimuthal proton angle given by

(Or+ y.)
2

to the reference x-z plane so distinguishing these coor-
dinates, (8i, gr, 82, gz, 8» P~), from the spherical polar
angle set (8i, Pr, 82, Pz, 8~, P~). The low energy proton
(LEP), which is on the same side of the y-z plane as
the photon emission, is taken to be proton 1 along the
positive x axis. Due to symmetry we need only con-
sider proton 1 momenta along the positive 2: axis. The
Harvard noneoplanar geometry is equivalent to spherical
polar coordinates for coplanar events and is also instruc-
tive for noncoplanar events as the proton energies are
always far greater than the photon energy. Thus, via
energy-momentum conservation, scattering of the pro-
tons can only be made slightly out of the reference 2:-z
plane. These coordinates are easily related to spherical
polar coordinates [6] and, for noncoplanar events, the
phase space factor for the photon angular distribution is
finite for all photon emissions. The phase space factor in
spherical polars diverges at the extreme photon emission
angles for noncoplanar scattering.

Nine variables are to be determined with energy-
momentum conservation providing four constraints upon
them. For the remaining five independent variables the
set (8i, Pr, 8z, Pz, g~) is chosen. The photon angle Q~ is
defined below and subsequently we seek observables for
@pe in terms of these variables, such as the photon cross
section,

i.e. , P = P ~„, corresponding to a "limiting p ray" with
the photon angle set (80, $0).

If the "limiting photon" momentum is defined by kp
then a new photon momentum can be defined as [13]
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k' = k —o.kp,

with o, chosen such that k' always lies in the reference
plane. Then, Q~ is specified as the polar angle of k' and
spans the range 0—2' rad. It is related to the photon
polar and azimuthal angles [6] via

tan Pii sin 8~ —sin 80 tan
tang~ =

tan $0 cos 8~ —cos 80 tan P~
(4)

FIG. 1. Kinematics for bremsstrahlung in the Harvard
noncoplanar geometry.

For symmetric cases, 8i = 82 = 8 and Pr ——P2 = P, this
becomes
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tan Pp sin 8~
tan

tan Pp cos 8~ —tan P~
(5)

B. Solution of kinematics

since 8p = 0. We are concerned, herein, with symmetric
proton angles and the values for Pp and P,„were sought
by using a root-finding process for Pp.

In terms of the variables for the Harvard noncoplanar
geometry the energy-momentum conservation equations
for the reaction, in the laboratory frame, are

pl slil 81 cos ~i p2 sill 82 cos ~2 + k sill 8,I cos

pl sill/i + p2siI182 —&sing~ = 0

pl cos 81 cos QI —p2 cos 82 cos Q2 + A' cos 8~ cos Q~ —pl

Ep& + Ep2 —E ~ + E I + Ek

(x direction),

(y direction),

(z direction),

(energy conservation),

(6)
(7)

(8)
(9)

where E~, = g(pic) + (mc ) E~, = mc2, EI, = kc,
E = g(p,'c)2+ (mc2)2, and m is the proton mass.
The solutions to the kinematics are obtained by eliminat-
ing the five independent kinematic variables analytically
from Eqs. (6)—(9) and using a root-finding procedure for
the one remaining variable.

The method Liou and Sobel [6] present in the appendix
of their paper can be utilized to find the outgoing mo-
menta via matrix inversion of Eqs. (6)—(8). However, in
the coplanar geometry, Eq. (7) is trivial and the coeffi-
cient matrix obtained for p&, p2, and A: is singular. The
energy equation is nonlinear in these variables and so
cannot be substituted in for this purpose.

The coplanar and noncoplanar kinematics are quite
distinct problems in our development. For the coplanar
case we have g~ = 8~ = 8~, where 8~ is the spherical po-
lar photon angle, and three equations for three unknowns
remain. Prom these we obtain a quartic function in the
outgoing momentum, pi. In the noncoplanar case, on
the other hand, there are five unknowns supplemented
by five equations: the energy-momentum equations and

Eq. (4). The result is a rather complicated function in

the chosen (last) variable, which we have chosen to be 8~.
In both cases the roots are easily computed within the
allowed range of values for the variables and the physical
roots readily extracted.

C. Noncoplanar kinematic behaviour

The kinematic conditions of bremsstrahlung with in-
creasing noncoplanarity, characterized by P, has a num-
ber of features important in the interpretation of results.
As this angle increases the protons emerge out of the
reference 2:-z plane in the positive y direction while the
photons are emitted out of the plane in the negative y di-
rection. With increasing P the massless photons move out
of the plane much more rapidly than the protons. The
movement out of plane is not symmetric but is slightly
tilted forward [5]. Their emission is restricted to greater
photon azimuthal angles, P~, as they all converge towards
the "limiting photon" direction. This limit lies slightly
forwardofgp = 90' for P = P „and/ „depends upon
the incident energy and proton polar angles, oi and 02.
At 280 MeV and proton angles between 5 and 30 its
value lies in the range 5 —10'.

As shown in Sec. II A the "limiting photon" momentum
can be used to project any photon emission momentum
onto the reference plane. Thereby, the restricted angles
of emission transform to the angle variable g~ that spans
a 0'—360' range, making it particularly useful for theo-
retical studies. A disadvantage is that results then do
not have a simple geometric interpretation. However,

if required, the chosen variables can be transformed to
spherical polar coordinates.

III. DETAILS AND FEATURES OF THE
CALCULATION

A potential model calculation of ppp has been made.

Such was undertaken by a number of authors in older cal-

culations [5, 6, 14, 15] and these were reasonably success-

ful at fitting the available data. More recently advances

have been made on both theoretical and experimental
fronts. New calculations have been reported which are
more precise and include many improvements upon the
older works. The new calculations fit data taken at higher

energies quite successfully and particularly data taken

near pion threshold. Also, they are consistent with mea-

surements of spin observables such as the TRIUMF ana-

lyzing powers [16—18].
In turn, within the potential model two distinctive ap-

proaches may be taken which, in principle, are the same.
In the first, solutions to the Schrodinger equation in con-

figuration space are sought and the ensuing wave func-

tions used in calculating the matrix elements of the elec-

tomagnetic operator. This approach has been taken by
several authors [14,15]. In the second approach, the tran-
sition amplitude is considered in momentum space where-

upon it factorizes into a nucleon-nucleon (NN) part, a
propagator, and an electromagnetic vertex. This is the
most common approach to calculating pyre [1,2, 5, 6] and
we use it also as the factorization most clearly identifies
the NN t matrix, in which we have prime interest.

The NN t matrices are solutions of the Lipprnann-
Schwinger equation, using momentum space represen-
tation, which we obtain from matrix inversion. We
find that these solutions are very stable, particularly for
higher partial waves. The NN interaction is specified
without approximation while the weakness of the elec-
tromagnetic interaction allows it to be taken only to first
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order. The most important relativistic corrections (the
RSC) have been included.

As the full T-matrix formalism has been developed in
some detail [1,2, 5, 6, 14] only the salient features of that
development are given and included are any new aspects
and changes required in order to incorporate noncoplanar
events.

Beginning with the Cell-Mann and Goldberger two-
potential formalism [19] the full T-matrix operator can
be written as

T = V, + [t (Ef)] G (Ef)Ve~+ U, G+(E,)t+(E,)

+[t (Ef)] G+(Ef)V, G+(E,)t+(E,), (10)

in which the i and f indices refer to initial and final
proton states respectively, the (—) and (+) superscripts
refer to incoming and outgoing boundary conditions, re-

spectively, and E is the energy of the two protons. The
operator t(E) is the NN t matrix, V,~ is the electro-
magnetic operator, and G(E) is the propagator for the
protons. The V,~ and NN t-matrix operators do not
commute. All the NN t matrices and propagators have
outgoing wave boundary conditions. The first term in
Eq. (10), the zero scattering term, is forbidden as it rep-
resents radiation by a free particle. The next two are the
single scattering terms and the fourth is the rescattering
term. We ignore the rescattering in the current work.

Expectation values of the full T' matrix are formed us-
ing the relative proton states lp, S, M) and photon states
lk), where p, S, and M are relative proton momen-
tum, total spin, and spin projection, respectively, and
k is the photon momentum. The spin space matrix ele-
ment for the full T operator is developed in the center-
of-momentum (CM) frame to be

(S™2(pi —I 2 —k) It (Ef)12(x ', —p', ), S'M'&*(S"M"lv."DEISM)

8"M" (Ef —Ep. -~ —Ep. )

+
(S"M" 2(» —p2+ k)lt (Ef)l-,'(pI. —p2), S'M')'(S"M" IU'"ISM)

(Ef E E k)

(S'M'I V, IS"M")(S"M", —(pi —p2 + k) It+(E,) I

—(pi —pq), SM)
(E, —Ep, +g —Ep )

(S'M'IV, l IS"M")(S"M",~(pq —pz —k)lt+(E, )l ~(pq —p2), SM)

The energies are given relativistically, via E~

g(pc)z+ (mc ) . The unprimed (primed) Ve~ op-
+('}

erator represents proton i in the initial (final) state. In
this expression we have used the relation

(SM pl [t (E )l'lp' S'M')

= (S'M', p'lt (E,)lp, SM)'.

The single scattering contributions are expressed in terms
of four algebraic functions. At this point it should be
noted that the kinematics, phase space factor, propa-
gators, and full T-matrix formalism are derived within
a relativistic framework. However, the electromagnetic
and NN interactions are both given nonrelativistically
as are their corresponding matrix elements in Eq. (11).
Care, then, must be taken in determining what inter-
action matrix values coincide with the kinematics. The
electromagnetic interaction operator is taken as

V, = ——
~ p, e — y~rr, kxe)—& ('} 1 &'}

m2~ A:('

(in natural units), (13)

where cr represents the Pauli spin matrices and e is the
unit polarization vector of the photon. RSC are to be
added as higher orders of m . This is discussed later.

Evaluation of the spin space NN t-matrix

(S™p'lt (Ep)lp SM) (S'M' p'lt (Ep)lp SM)*
volves a choice of specification. Either one expresses

them in terms of the spin operators of the two pro-

tons via the Wolfenstein parameters [20] or one trans-

forms the electromagnetic spin space matrix elements,
Jfl

(S'M'IV, JISM), to the representation in which the

relative total spin, S, of the protons is invariant. In

studying noncoplanar events, the second is the more con-

venient method. With the erst, the four single scattering

spin space NN t-matrix elements will have four distinct

scattering planes in general.

A. Center-of-mass frames and gauge invariance

There are a number of reasons for using the CM sys-
tem to evaluate the T-matrix amplitude; not the least
of which are practical ones. First, in the soft photon
approximation (SPA) [21], wherein the amplitude is ex-
panded in powers of A:, it can be shown that the rescatter-
ing term to order A: is proportional to the CM momen-
tum itself whence the term may be neglected to leading
order. Second, the question of gauge invariance and how

well it is satisfied is intimately linked to the choice of
reference frame. If the rescattering term is not properly
treated, bremsstrahlung calculations are not gauge in-

variant as, generally, the single scattering terms are not.



1380 A. KATSOGIANNIS AND K. AMOS

However Heller [22] has shown that the O(ko) terms are
gauge invariant for the full amplitude. Nevertheless, for
uniqueness and completeness higher orders of k should be
included in the rescattering term [14, 15, 23]. There are
other gauge terms (due to the momentum dependence of
the potential) which have been included in some calcula-
tions via minimal methods. They are required to ensure
a conserved NN current. In fact the calculations are
very sensitive to the gauge and so the choice is impor-
tant. Currently, by working in the CM frame and using
the transverse gauge, we assure gauge invariance with
suppression of the rescattering term to leading O(kc).

The advantage of the CM frame was utilized by Brown
in first obtaining the electric quadrupole and magnetic
dipole photon angular distributions [14, 24] whereas cal-
culations in the laboratory frame predicted electric dipole
distributions only due to the negligence of large rescat-
tering contributions. The inclusion of all terms for the
rescattering in Brown's work also assured that gauge in-
variance was treated properly. This work suggested that
the contribution of the rescattering to the photon angu-
lar distribution is less than 10%. These calculations were
conducted at lower energies and her more recent results
[3] at 280 MeV infer that there is a slightly greater effect.
This is particularly so at forward proton angles for the
cross sections and with the analyzing powers. However,
RSC were not included in these studies. Quantitatively
they are similar to rescattering effects. Liou and Sobel [6]
have shown that they are required for Lorentz covariance.

B. RSC and Xorentz covariance

The form and detail of the RSC included are precisely
those given elsewhere [1). Beginning with the Dirac equa-
tion for a proton in an external electromagnetic field, a
Foldy-Wouthuysen [25] transformation is performed giv-
ing a two-component, positive energy equation for the
proton. By comparison with the result from the Hamil-
tonian of the Pauli-Schrodinger equation, the RSC are
obtained. These corrections are additive terms to the
nonrelativistic convection and magnetization currents of
the electromagnetic operator, although predominantly to
the latter. The electric corrections are of O(m s) and
the static part of this current, due to its O(k i) behav-
ior, is suppressed with increasing energy. In our calcu-
lations we have included terms from the correction due
to the summation of the one-particle terms in the Foldy-
Wouthuysen reduction [26].

Besides their quantitative importance, the RSC,
whether in the CM or the laboratory system, are essen-
tial for Lorentz covariance. As demonstrated in Ref. [6],
the RSC for bremsstrahlung give quite distinct features
in cross sections calculated in either frame, even when the
rescattering is included for the laboratory frame calcula-
tion. Indeed the RSC are considerably more important
in the laboratory system than the rescattering and their
omission gives quite unsatisfactory p~ results, partic-
ularly at higher energies. However, in the CM system
their efFects are not nearly as dramatic; being roughly
proportional to the CM. The results in both frames con-
verge quite rapidly on including only the first-order RSC.

The NN t matrices are functions of the relative mo-
menta of the two nucleons. For use in @gay calculations it
is easiest, then, to work in the CM of the on-shell relative
momenta. By use of Lorentz invariants and coordinate
rotations, it is straightforward to transform matrix ele-
ments to the desired reference frame, whether it be the
overall @pe CM frame or the laboratory frame. As the
first and last two terms in Eq. (11) are on-shell for the
outgoing and incoming relative momenta, respectively,
two such frames are required. Also, the NN t-matrix cal-
culation is nonrelativistic so the CM transformation for
the two-body NN t matrix is to be efFected with non-
relativistic coordinates. In order to be consistent with
the relativistic kinematics the momenta therein must be
transformed to the CM frame by a Lorentz transforma-
tion. We calculate the kinematics in the laboratory frame
and transform between frames in such a consistent way.
Furthermore, for the First and second terms in Eq. (11)
the on-shell momentum, (pi —p2) /2, is not necessarily co-
linear to the chosen z axis (the incident beam direction).
This is the case even for coplanar events but for non-
coplanar events, in addition, the y components cannot
be ignored. Thus, a generalized Lorentz transformation
is required for reference frames in arbitrary directions.

By considering parallel and perpendicular components
in the direction of an arbitrary relative velocity, v, be-
tween two reference frames these transformations can be
obtained from the initial (unprimed) to the final (primed)
system:

q'~ = m+, (q~ 0) —v&) P(& —1)

and

E' = p(E —qc P), (15)

where P = v/c, p = (1 —P2) i~2, and E
g(qc)~+ (mc2)~. Together Eq. (14) and Eq. (15) trans-
form as the energy-momentum four-vector. Taking the
unprimed frame as the CM frame for the two protons one
can derive the CM parameters:

qgc+ qgc
E'+ E' (16)

Kc = —(q', c —q2 c) —— (E,' —E2~ )P,2 27+1 (17)

27
(18)

This implies a lack of covariance in the nonrelativistic
treatment of the the electromagnetic operator but inclu-

sion of only the O(m ~) terms seems to rectify this suffi-

ciently. Nevertheless, quantitatively, the RSC effects are
suppressed, as are the rescattering term contributions,
provided the CM system is used in calculation. Both
efFects are then small and comparable.

C. Lorentz transformations to the NN
center-of-momentum frame
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The relative velocity vector, P, is simply that of the NN
CM while Eq. (17) gives the CM, m, in terms of the non-
relativistic result and a relativistic correction term. Note
that for the two-body NN t matrices the remaining rela-
tive momenta are off-of-the-energy-shell so, once the two
CM are determined via Eqs. (16) and (17), the other
three must be transformed as the momenta of indepen-
dent particles [i.e. , pi, pz, and k for terms 1 and 2 in Eq.
(11), and pi, p2, and k for terms 3 and 4]. The ofF-shell
momentum vectors may be cast into their relative mo-
mentum form before or after the frame transformation
due to the linearity of the Lorentz transformation.

D. The NN interactions and the NN t-matrix
for ma1ism

In our studies, the extended Reid soft core [10]
(ERSC), the Paris [8], and Bonn OBEPQ [9] interactions
were used as input to the Lippmann-Schwinger equa-
tions. The Paris and OBEPQ interactions were derived
from field theory but the ERSC is purely phenomeno-
logical. Off-shell differences are not solely attributable
to differences on the energy shell, i.e. , the phase shifts.
This is apparent in the off-shell region for bremsstrahlung
and is displayed in terms of half-off-shell extension func-
tions [27] or f ratios [28]. In utilizing these interactions,
note should be made of the various approximations in the
derivation of their NN t matrices which may also lead
to off-shell difFerences: the Paris t matnces were always
obtained from the Lippmann-Schwinger equation but the
Bonn group developed the OBEPQ t matrices via the rel-
ativistic Blanckenbecker-Sugar equation. For the major-
ity of our ppp studies we have used the Paris interaction
since our t matrices are solutions of Lippmann-Schwinger
equations.

A fourth, phenomenological, interaction, developed in
Melbourne [ll], has been used in some calculations. Our
purpose in using it is to observe the effects in the @pe
results obtained using a potential which is quite distinct
from the other three but which nevertheless fits the NN
phase shifts rather well to 400 MeV. This model interac-
tion was defined in momentum space, featured Gaussian
as well as the more usual Yukawa form factors, and was
designed to fit on-shell scattering and bound two-body
data. One or more of three scalar functions of momen-
tum were used in each two-nucleon channel for each of
the "one pion, " "two pion, " and "p" and "u" mesonlike
exchange contributions. Its f ratios are similar to those
of the Paris potential in all channels except the tensor
channels. Therein due to a much weaker tensor force,
the Melbourne results are strongly suppressed. Observ-
ables sensitive to the off-shell information of the tensor
channels could distinguish between these interactions.

The NN t-matrix elements are calculated most conve-
niently by taking the direction of the initial relative mo-
mentum as the axis of quantization and the azimuthal
angle of the final relative momentum as zero; thus fol-
lowing the derivation of Stapp et al. [29]. A rotation of
the axes to coincide with those of the overall @pe frame is
then required. That rotation is dealt with later. In order
to calculate the elements, (S'M', p'lt+(E~)lp, SM) and
(S'M', p'lt (E~)lp, SM)', as prescribed, the Cartesian
coordinate axes may be defined as

x = yXz, y = pXp, 2' = p.

When the two-body NN t-matrix operator is trans-
formed to relative and center-of-mass variables a partial
wave expansion of the reduced mass NN t-matrix oper-
ator in momentum space is made. We obtain

(q'lt+(&)lq) = —& ).&' ' ~1". sJ(q') tl.'I, '(q' ~ ~) (&I".sJ)'(q)Pr
JST

(20)

where A = h jm, P~ is the total isospin projection operator, u is the relative energy, and q and q may both be off
of the energy shell. Pf&J(q) are the tensor spherical harmonics given by

(q) =) C'".Y (q)lS ) (21)

where Cg~s are the Clebsch-Gordan coefficients [30, 31], Cl~~s ——(LSpvl JN), and Yl,„(q) are the spherical har-
monics [30, 31]. This NN t matrix relates to the nonrelativistic scattering amplitude [29], f(q, q), via

f(q' q) =-
~

&q'lt(~)lq).

Expanding Eq. (20) between the spin states lS'v', q') and lSv, q) gives

(22)

(S'v', q'lt+(cu)lq, Sv) = —A ) i CL'y, 's 'YL'„(q')tl, l +(q', aim)CI ps Yl v*(q)Pz' .
JTN

(23)

Due to parity conservation and the antisymmetry of the wave function [32] there are no singlet-triplet transitions
for the two nucleons and so S' = S in this expression. Also, the axes are chosen such that the azimuthal angles are
zero for the spherical harmonics, Yr, „(q') and Yl.„'(q), and quantization along the z axis sets the orbital angular
momentum projection to zero for the initial beam, i.e. , p, = 0. The antisymmetrization of the ~wo proton states limits
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consideration to T = 1 isospin states and results in a multiplicative factor of 2 in the amplitude. Incorporating all of
the above leads to the simpli6ed expression

(Sv', q'lt+(~)lq, Sv) =—
JLL'

(S+L+1 odd)

2L+ 1 J$'T' ] y p Jv Jv
4' ~L'L (q q ~)+I'(v v'}—Sv'+LOS +L'(&— '}(q ) (24)

where q' lies in the x-z plane.
Thus the partial wave NN t-matrix elements, tz, l

= +(q', q; E~), in Eq. (24) must be calculated. The CM NN t
matrix must satisfy the Lippmann-Schwinger equation,

) + l,.m d
(q'I Ip)(pl +( )Iq&

0 ~ —A@2+ 2g
(25)

Taking the partial wave expansion for (q It(a) lq), Eq. (20), and the corresponding expression for the NN interaction,

(q'l&lq) = —& ). i' '
&L, g j(q') +L'L (q', q) (&Lsj) (q)PT

JST
I, 'LW

yields

(26)

2
t~, ~

+ (q', q; cu) = Vz, , I. (q', q) + —) lim
l go

—P + 27/

A matrix. inversion method [28] was used to solve the partial wave NN t-matrix equations. However, we did not
solve for the complex t matrices. Rather, the procedure as per Haftel and Tabakin [33] was used, giving purely real R
matrices, RE~PIT(q', q; u). They are defined with standing wave boundary conditions and obey an equation analogous
to Eq. (27) save that the principle value of the integrals is taken. Those integrals are replaced by grids of Gauss-
Laguerre integration points, suitable pole terms subtracted, and matrix inversion performed to obtain RI, L (q', q; ~).
A lower and upper form [34] (IV decomposition) of the coefficient matrix is used for this inversion. The fully off-

shell t-matrix elements with outgoing boundary conditions, t&, z+(q', q; w), may then be obtained directly from the
R-matrix elements via the Heitler equation. We require only the half-off-shell elements (q = qp, w = Aqp2), which
relate to the B-matrix solutions explicitly as

t~~ +(q', qp, ~) = (R~~ (q', qo, w) 1+iqoR~, ~, (qp, qp, w)

(q, qp' , (8) = (Rgg (q, qp, cd) 1 + iqoRgP(qo, qp', /d)

t~, ~+(q', qo, ~) = (R~ ~ (q', qp, w) 1+iqpR~ ~ (qp, qp, (u)

t~, ~,+(q', qp, ~) = (R~ c (q', qo, ~) 1+ iqpR~P(qp, qp, ur)

—iqoRgg (q', qp, ~)R~,~ (qp, qp, ~)) /'D,
—iqpRgg(q', qp,

.~)R~~~ (qp, qo, ~)) /V,
—iqoRc. 'c'(q', qo

' w) Rz z (qo qo' w) ) /&
—iqp R~ ~(q « ~)Rz~ (qp qp' ~)) /&

(28)

(29)

(30)

(31)

~h~re (J ) O) g = g' = J for uncoupled and (g =
I
J—ll, g' = J+ 1) for coupled channels. The denominator factor,

V, is

17 = 1+iqpR&z (qo, qp, ~) 1+iqoR~ c (qo, qo,'~) + qpR&z (qo qo~~)Rz g (qo, qo~~)

and is on the energy shell. Such matrix inversions re-
quire, typically, 32 Gauss-Laguerre points to achieve an
accuracy well within one part in 103. However for the
results given herein, 64 Gauss-Laguerre points have been
used throughout and all t matrices have been calculated
explicitly from matrix inversion for each on-shell momen-
tum required for the ppp calculation. A cubic spline in-
terpolation was used to give the t-matrix elements for the
specific ofI'-shell momenta. Finally we note that a method
of continued fractions could also be used instead of ma-
trix inversion. Previous calculations using both methods
gave identical results [28].

Our method of solution differs for that used for the
TRIUMF calculation [1] in which the half-off-shell ex-
tension function was calculated specifically. The two cal-
culations are the same in principle; albeit that Workman

and Fearing used relativistic energies for their propaga-
tors in the Lippmann-Schwinger equation whereas we use
the orthodox nonrelativistic form. The similarities in our

pyric observables suggest that the effect of this difference
is of little consequence due to the size of the relative mo-
mentum values involved and the inherent cancellation in
the energy denominators.

It should be noted that both of the amplitudes,

(S'M', p'lt+(E~) Ip, SM)

(S'M', p'lt (E~) Ip, SM)',

required according to Eq. (11), can now be obtained di-



COPLANAR AND NONCOPLANAR pp BREMSSTRAHLUNG 1383

rectly from Eq. (24) in the NN CM. By use of the relation

(q' q ~)l* =ti'i'(~' ~;~) (32)

IV. OTHER CONTRIBUTIONS
AND CONSIDERATIONS

they can both be calculated in terms of the partial wave t-
matrix elements with outgoing boundary conditions. The
spherical harmonics are always real for the chosen axes
defined by Eq. (19).

ues of free particle states. They are not too different from
the elements taken between Coulomb states [37]. In col-
laboration with the Hamburg group we are developing
Coulomb distorted NN t matrices as such are particu-
larly relevant for geometries as used in the recent work at
the IUCF Cooler Ring [4], i.e. , of measurements made at
very forward angles, at which the on-shell Coulomb am-
plitude approximation breaks down. An estimation of
the Coulomb effects at very forward angles, where pro-
ton separation is smallest and these effects are expected
to be greatest, has not been made as yet.

It has been found that for sufficient convergence in

@pe calculations the NN t-matrix elements for all par-
tial waves J & 6 must be included. All calculations we

have made do so except those made using the ERSC po-
tential, which is defined only to J = 5. In all calcula-
tions we note that the odd J channels have little effect
for J ) 4 but the even J values are important to J = 6,
particularly as they contain the isovector (T = 1) ten
sor channels. For higher partial waves we use the OPE
amplitudes of Workman and Fearing [1,35] (included for
J ) 6) but they make very little contribution not only
to the cross sections but also to the analyzing powers.
Nevertheless, all such terms for J ( 20 were included in
our calculations, for completeness.

Contributions from meson exchange currents have
been ignored as they are not a first-order effect for ppp.
They are very small; albeit compulsory for a suitable
model of npp. Nakayama [2] included these effects in the
soft photon limit for which the contribution of the two-
body current to privy is zero. Photon emission from such
processes requires the exchange of at least two mesons.
Estimations of Ueda [36] suggest an effect of less than
2' for the energies we consider.

Also included, we believe for the first time at higher
energies, are the proper off-shell Coulomb scattering am-
plitudes. However, only the analytic off-shell Coulomb
amplitude itself has been included in our calculations.
The NN t matrices are still defined as expectation val-

V. TRANSFORMATION TO FINAL
LABORATORY FRAME

It now remains to transform all the various Lorentz
frames of the T-matrix amplitude to the chosen single
reference frame in which all axes coincide. The observ-
ables are evaluated in the laboratory frame and in order
to obtain the T-matrix amplitude in this frame it is cast
into the form of a Lorentz invariant. For each Lorentz
frame, if the amplitude is multiplied by the square roots
of all initial and final particle energies, the analogous la-
batory T-matrix amplitude is obtained via

(Ep, Ep, EkEp„Ep, ), ITi bl

= (Ep, Ep, Ei,Ep, Ep, ) ITCMI . (33)

As the NN spin t-matrix elements were calculated in the
individual NK CM frame and with the initial relative
momentum defining the quantization axis, these ampli-
tudes now need to be rotated to the chosen laboratory
frame in which the initial beam direction is the quanti-
zation axis and with symmetric proton azimuthal angles.
The singlet NN spin T-matrix elements are invariant un-
der rotations so only spin-1 rotation matrices are required
to rotate the triplet (S = 1) amplitudes to the desired
frame. With the axes defined in the NN CM by Eqs.
(19) the KN amplitude can be rotated directly from

(1M', p'l~+(E, )lp, 1M) = ).DM'm'(~, P, &)(1 ~', p'l~+(Ep)ip, 1 ~)~~ cM(D'(~ P v))' M
mm'

(34)

and

(1 M', p'lt (E~)lp, 1 M)' = ) .DM (&, p, ~)(1ivi, p'lt (E&)lp 1 re')NN cM(D (~ p Y)) M
mm/

where cr, P, and p are the Euler angles [38, 39] and
DMi, M (n, P, p) are the Wigner rotation matrices [30, 38].
Note that for the conjugated matrix elements the trans-
pose spin NN t matrix is rotated and gives the transpose
matrix in the new reference frame.

For coplanar events only the first and second terms
in Eq. (11) require rotation. For noncoplanar events,
however, all four terms in Eq. (11) must be rotated. For
the third and fourth terms in that equation the NN CM
axes are colinear to the chosen laboratory coordinate axes

sino, = —x y=y . x,

~f a ~/cose= x x =y y,
(36)

so that, in the y convention [38, 39], P takes on only
two values, 0' or 180 . The third rotation occurs in the
same plane as the first so that only one of these two is
necessary. We choose p = 0 in which case the direction
cosines are given by
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for P = 0, and by cosines given in Ref. [1] [Eq. (3.3)] and Ref. [5] [Eq.
(5.15)] are not appropriate in this case.

coso, = —x' x = y' y,
for P = 180', when transforming from the unprimed to
the primed frame. It is to be noted that the direction

VI. PHASE SPACE AND OBSERVABLES

Using natural units hereafter, for the derivation of the
@pe cross section we begin with the expression

Q(pi p2 —Ep, Ep, )~ —m4 (38)

in which the A index sums over the polarization states of the photon. The first term on the right-hand side of Eq. (38)
is the flux, the third term is the transition amplitude term, and the infinitesimal phase space density, dp, is given by

d pid p2d k
dp = b(E + E + Ei, —Ep, —Ep, )

6' (p, + p2+k —pi —p2)
p p

F«planar = pi p2 cos4'p/+pl @p' ~D
~ ~ (4o)

where all quantities are in the laboratory frame and D
is the determinant given by Eq. (A23) in Ref. [6]. The

It should be noted that each cofactor (the flux, phase
space, and amplitude) is invariant and each is repre-
sented in the laboratory frame. The flux and phase space
can be evaluated explicitly in the laboratory frame quite
straightforwardly, and a prescription for the latter can be
found in the appendix of Ref. [6]. The phase space factor
for coplanar events is

noncoplanar phase space factor can be written in terms
of this as

d8~
+noncoplanar = +coplanar

dQ~
(41)

where d8&/dQ~ can be deduced easily from Eq. (A38)
in Ref. [6]. Note that the absolute value is taken for
d8~/dQ~ otherwise F„~„«&i~„«changes sign at large non-
coplanarities, i.e. , when 8~ begins to decrease as g~ in-

creases.
Explicitly, the differential cross section is the photon

angular distribution and takes the form

dsg 1 (2vr)4

MI M

) ( Z, Z, ZgEpEp(S'M, '
~T),SM)) (42)

where the factor of 4 is due to the averaging over ini-
tial spin projection quantum numbers and the index j
sums over all Lorentz frames. The coplanar result is di-
rectly given by Eq. (42) also, as in this case Q~ = 8~ and
d8~/dQ~ = 1.

The summation of the amplitudes in Eq. (42) is af-
fected if we cast the operator in the form

The dot product [Eq. (43)] may be evaluated for each
Lorentz frame and all states then summed.

For the analyzing power the amplitudes for each state
undergo a transformation to the uncoupled two-particle
spin basis,

T=a M (43)

with the vector M and photon polarization, e, in the
spherical basis. In the transverse gauge one can define
an orthonormal set of basis vectors (e i, eo, ei) such that
eo ——k, and e~q represent the polarization states, e~.

where m& and m2 are the spin projection quantum num-
bers for each proton. This facilitates matrix multipli-
cation with the Pauli spin matrices quantized along the
laboratory beam axis so that the analyzing power is given
by
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Tr(cr n, TtT)
Tr(TtT)

, (mym2 Io~I ~x~z)(ins~4 ITI mourn~)'(rnsm4 ITI mqrng)

P„,„,„„(nznz ITI nxn2)*(nznz ITI »~2) (45)

where n, is a unit vector that lies along one of the Carte-
sian axes and (mqm2 Icr,

I m~rnz) are the Pauli spin matrix
elements in the uncoupled basis of the two protons. Note
that the analyzing power is completely independent of
the phase space factor. Finally we note that for coplanar
events, by symmetry, A.~ = 0 = A, .

VII. RESULTS AND DISCUSSION

ti ~ (~ ~ &.) &i i (~ ~ &.)JST JST (46)

where q and q' are the on- and oK-shell momentum mag-
nitudes, respectively. This is in contrast to the soft pho-
ton approximation [21] in which the pygmy amplitude is ex-
panded in the limit where the photon momentum goes to
zero (k —+ 0) and is effectively an on-shell average of the

In this section we make a comparison between the four
interactions used for the coplanar geometry and subse-
quently present a partial wave analysis for this geometry.
In view of the similarity of the observables obtained with
all forces, the Paris interaction is used as representative
of the "realistic" NN interaction for most of the calcula-
tions herein. Most of the results focus on 280 MeV inci-
dent energy as a precursor to the off-shell studies made
in the most sensitive off-shell region. Our noncoplanar
results for the cross section and analyzing power compo-
nents are then presented and are followed by the results
of the oK-shell calculations for both coplanar and non-
coplanar geometries. For simplicity and because asym-
metric geometries do not oKer much new information for
our current purposes, only noncoplanar events involving
symmetric proton emission angles are considered. As
has been established, large proton separation angles ap-
proach the elastic limit (i.e. , as Hq + 82 —+ 90') [5] and
for the observables of interest the strongest off-shell be-
havior occurs at small detector angles. Given that the
noncoplanar kinematics show that the photon magnitude
actually increases out of the plane it suggests that non-
coplanar geometries may produce further off-shell infor-
mation, particularly for the P waves in the p~ reaction.
The @gay reaction is most sensitive to the P waves close
to pion threshold and strongly constrains their behavior
[18] but has little bearing on the S waves, for which npp
may yield more information.

We specify as "on-shell calculations" those in which
all the half-oK-energy-shell NN t matrices entering the
calculation are forced to be on shell. Essentially one uses
only the NN elastic scattering amplitudes and thus the
magnitudes of the off-shell momenta are set equal to the
on-shell momentum magnitudes in all the partial wave
NN t-matrix amplitudes. For a given (JST) channel
with orbital angular momentum quantum numbers I and
L' one has

A. On- and off-shell behavior of the interactions

In Figs. 2 and 3 the TRIUMF data [16] for the extreme
proton angles are compared with our theoretical calcu-
lations for four interactions. The Bonn OBEPQ, Paris,
and ERSC results are displayed in these figures by the
solid, dashed, and dot-dashed curves, respectively. The
Melbourne potential is represented by the dotted curve.
Using the on-shell approximation, all four interactions
lead to very similar results for the two events considered,
as could be expected, since all four fit the relevant NN
elastic data very well. The (28.0', 27.8') ppp data [i.e. ,
LEP proton angle is 0 = 28.0' (see Sec. II)], cannot dis-
tinguish between the on- and oK-shell calculated results.
However, from the (12.0, 12.4') results, clearly the on-
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FIG. 2. On-shell model and o8-shell model cross section
and A„at 280 MeV for the (28', 27.8') coplanar geometry
compared with the TRIUMF data for the four interactions
used herein: Bonn OBEPQ (solid lines), Paris (dashed lines),
ERSC (dot-dashed lines), and Melbourne (dotted lines). Note
that for all results we use the convention (LEP, HEP) where
the angle on the left (right) represents the low (high) energy
proton.

I

total amplitude. By forcing the NN t matrix elements
to be on shell in this way one can eliminate all off-shell
information from the single scattering amplitudes.

The electric and magnetic contributions to the cross
section are discussed in some detail for a wide range of
energies and kinematics. Finally, we look at the impor-
tance of incorporating the higher partial waves to the
NN t matrices and the effect of including the RSC as
compared to experimental data.
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FIG. 3. On-shell model and off-shell model cross section
for the (12', 12.4') and A„ for the (14', 12.4') coplana ge-
ometry at 280 MeV compared with the TRIUMF data for the
four interactions as identified in Fig. 2,

shell curves overshoot the data at larger photon angles.
Forward proton angles lie in the sensitive off-shell region.
Proper off-shell calculations fit the data very reasonably
in Figs. 2 and 3 for both observables. These comparisons
give measure to the importance of the proper treatment
of ofF-energy-shell properties of the t matrices in @pe cal-
culations. For both observables, cross section and ana-
lyzing power, A„, the similarity of the results obtained
using these t matrices show that the current experimen-
tal precision does not allow us to distinguish between
"realistic" interactions [40]. These results also show that
ofF-shell properties of the t matrices influence predictions
of A„most markedly.

The three conventional interactions, Bonn OBEPQ,
Paris, and ERSC, all yield good fits to the low partial
wave NX channel phase shifts and all are predicated
upon an underlying particle exchange theory to one ex-
tent or another. Such is an important constraint. The
phenomenological, velocity dependent interaction devel-
oped in Melbourne [11] to provide as good a fit to the
empirical on-shell data as possible, when used in these
ppp calculations, gave comparable on-shell results. How-
ever, off of the energy shell it is very different to the other
interactions which is attributable to ofF-shell differences
which lie, primarily, in the tensor channels.

As double scattering (rescattering) contributions were
not included the off-shell attributes of the NN t rna-
trices can be observed directly. The behavior of the
ppp observables are refiected in the half-ofF-shell f-ratio
function of the interactions [28] which stress the ofF-shell
variations of the A matrices, Rz~sLT(q', qo, a). As demon-
strated in Fig. 4, the Melbourne interaction is the only
one that extrapolates differently away from the on-shell
point for the off-diagonal KN t-matrix elements. It gives
off-shell values particularly different to those of the other
three interactions for off-shell momenta of up to 1.5—2.0

-2
0

I I I -10
6 0

q, (frn )

I I I l

2 4

FIG. 4. The f ratios for the P2 F2 chann-els at a labora-
tory energy of 300 MeV. The curves represent the interactions
as in Fig. 2.

fm away from the on-shell point which is the typical
bremsstrahlung off-shell region for the kinematics we con-
sider. This behavior corresponds almost directly to the
difFerences in A& between the interactions, as is most evi-
dent from the (14.0', 12.4') results in Fig. 3. We demon-
strate later that the marked decrease in the cross section
calculated values is evidence of the weaker tensor cou-
pling of the Melbourne interaction, a result in contradic-
tion with the suggestion of Brown et al. [3] that a weaker
tensor force may result in a larger cross section.

B. Partial wave study for coplanar geolnetries

Coplanar geometry pygmy cross sections and analyzing
powers are shown in Figs. 5 and 6 for 280 MeV incident
energy and symmetric proton angles, 8~ ——82 ——0 = 12
and 30', respectively. The complete results, with t ma-
trices taken ofF of the energy shell, for the Paris interac-
tion are given by the continuous lines in each case. In
the top section of these figures the complete results are
compared with the on-shell approximation (for all chan-

nels) results, the latter displayed by the dashed curves.
For both proton polar angle choices, in the middle and
bottom sections of this diagram results are given when
calculations are restricted to include but a 6nite set of
two-nucleon channels.

Adding successive partial waves for the observables
may give further insight as to the channel admixtures,
interference, and off-shell behavior. In the middle sec-
tion of Fig. 5 the contributions to the cross sections due
solely to the ~ So channel are displayed by the long-dashed
curve. It is not very signi6cant. When the Pp channel
is included, whence all J = 0 contributions are used in
the calculation, the results are as depicted by the short-
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FIG. 5. Coplanar cross sections at 280 MeV for eq

8q = 8 = 12' (left panels) and 8 = 30' (right panels) us-

ing the Paris interaction. The ofI'-shell model calculation is
designated by the solid curve in all cases. The top panels
show the on-shell model calculation by the dashed lines. The
middle panels show the calculations including only 'So (long-
dashed), ( Se + Po) (short-dashed), and ( So + Po + Pi)
(dot-dashed) partial waves. The bottom panels show the cal-
culation including all (T = 1) J & 2 (dotted) and all (T = 1)j& 4 channels (short dashed). These same two cases exclud-
ing the o8'-diagonal NN t-matrix elements are shown by the
long-dashed and dot-dashed lines, respectively.

dashed curves. The J = 0 contributions are evidence of a
predominantly electric character for both (12', l2') and
(30', 30') cases. The dot-dashed curves then portray the
inclusion of all J = 0 and J = 1 channels. Thereby about
one-half of the complete cross section is obtained. Adding
further channels into the cross section summations give
the results shown in the bottom panels of Fig. 5. These
include the tensor coupled channels. The importance of
the coupling has been shown by Brown [14] for the cross
section at lower energies. It is stressed further herein as
the results of adding all channels with J & 2 and with
J & 4 are shown by the dot and the small-dashed curves,
respectively. If the coupling is ignored then the results
are those displayed by the dashed and dot-dashed curves,
respectively. There is an obvious difference to the proper
coupling results.

Comparison of the full calculation results for I9 of 12'
and 30' as one adds successive J channels shows consid-
erable variation as well. As mentioned, for 0 = 12', the
P waves give the dominant contributions to the cross sec-
tion. By and large, however, successive component (J)
amplitudes constructively interfere for the 8 = 12' case
to give the complete cross section. The off-diagonal NN

FIG. 6. Coplanar A„at 280 MeV for Oq ——02 ——0 =
12' (left panels) and 8 = 30' (right panels) using the Paris
interaction. The curves are as designated in I ig. 5.

t-matrix elements are responsible for the enhanced peak
at the backangles. However, there is significant destruc-
tive interference due to these off-diagonal elements in the
middle photon angles, and the off-diagonal components
give most significant effects at large proton scattering
angles. The 8 = 30' results, on the other hand, are not
very sensitive to the proper off-shell character of the t
matrices and are not so strongly determined by the Po
and 3P~ channels. This cross section is dominated by
the J = 2 tensor coupled states albeit that the higher J-
channel contributions have destructive interference prop-
erties. The on-diagonal and off-diagonal tensor elements
are equally important. Also, in contrast to the 8 = 12'
cross section, only constructive interference is observed
from the off-diagonal elements for all photon angles.

The same results but for the analyzing power, A„, are
displayed in Fig. 6. As for the cross sections, A„reflects
how the forward proton angles are the sensitive off-shell
region for the Gottschalk geometry [13] and the on-shell
approximation is particularly poor. Effectively, though,
the on-shell approximation results and the full calcula-
tions are indistinguishable for 8 = 30'. For (30', 30') it
can be seen how the off-diagonal terms largely determine
the Bnal structure of A&, as would be expected from the
analysis of the cross section. However, this is also the
case, and more dramatically so, for (12', l2') in which
these elements almost solely dominate the anal shape of
A„. The fact that these terms are not the main con-
tributors to the (12', 12') cross section demonstrates the
specific sensitivity of A„ to the off-diagonal t-matrix ele-
ments. Furthermore, the weaker off-diagonal tensor con-
tributions of the Melbourne interaction are evident from
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a comparison of Figs. 5 and 6 with Figs. 2 and 3. For
these observables the calculation for the Melbourne inter-
action lies closer to the curves excluding the off-diagonal
terms for the other interactions.

C. Results of noncoplanar observables

For bremsstrahlung initiated by 280 MeV incident en-
ergy protons with proton polar angles of 12', there is a
kinematic limit to the symmetric azimuthal angle, P, of
P~ „=9.6'. This provides a reasonable angular range
for studying ppp as a function of P. In Fig. 7 we show the
variation with P of the complete results for the cross sec-
tions and for all three analyzing power components dis-
played as functions of the polar angle 1L~ (see Sec. II %).
The azimuthal angle is shown in steps of 2' and it is evi-
dent, by scanning left to right in Fig. 7, that each variable
displays a distinctive variation. The cross sections vary
most noticeably at the backscattered photon angles, in-
creasing to a maximum near 4' out of the reference x-z
plane. Thereafter, the characteristic falloff begins due
to the decrease in the total T-matrix amplitude [5], ap-
proaching the kinematic limit. The phase space factor
plays a major role in the structure of the cross section.
At 280 MeV, for coplanar events, it is quite constant for
the larger proton angles, 8, but is decidedly smaller for
perpendicular photon emissions (8~ 90') at forward
proton angles. Equivalently, for noncoplanar scattering,
the phase space factor decreases for perpendicular pho-
ton emission, but this behavior is more pronounced for
larger 6I values.

The analyzing power, A~, is identically zero in the
coplanar geometry (as is A, ) but by P = 6' it is some
15% at around Q~ = 60'. It retains its structure until
the noncoplanar limit is approached. The swift change

0.1-

0.0
X 0

-0.2 .

-0.3

~ ~ ~ ~
~ ~

in sign for A~ near the noncoplanar limit occurs at about
P = 8'. the point at which the backscattered photons be-
come forward scattered, as they approach the limiting
photon". Only the x component of the analyzing power
is finite at the kinematic limit for Oq

——Oq, where the
"limiting photon" momentum lies in the y-z plane with

Qp & 90'.
The y component, A„, of the analyzing power attains

its greatest magnitude for coplanar events, as events
there are perpendicular to the chosen y axis. Out of
the plane, A„shows a steady decrease to zero without
any structural changes. Unlike A, A& does not change
radically as a function of P. In comparison, the A, com-
ponent varies quite rapidly from P = 0 to its peak mag-
nitude (for Q~ 120') near P = 4'. Beyond this it
remains steady to P = 6' and subsequently decreases to

Q
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FIG. 7. Cross sections and analyzing powers at 280 MeV
for 0& ——0& ——8 = 12 and symmetric proton azimuthal an-
gles, P, as labeled. The results are for the Paris interaction.

FIG. 8. Cross sections and analyzing powers at 280 MeV
using spherical polar coordinates. The calculations are equiv-
alent to those in Fig. 7 and the curves represent the symmetric
spherical polar proton angles 8q = 8q = 8 = 0 (solid lines),
8 = 12.16' (long-dashed lines), 8 = 12.64' (dotted lines),
8 = 13.40' (dot-dashed lines), 8 = 14.39' (double-dot-dashed
lines), 8 = 15.32' (dashed lines).
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zero, much like A„.
We have calculated, also, the analogous observables to

those shown Fig. 7 in the spherical polar geometry as a
function of the photon spherical polar angle, 8~. These

I

results are shown in Fig. 8. A coordinate transformation
was made and the curves in Fig. 8 represent the same

ppp calculations as for Fig. 7. The transformations were
made via [6]

tan Pqtanyi ——
sln 8y

tan Pz
tan(7r —P2) =

sin 82

tan P~
tan (2vr —P~) =

sin 8~

tan Pg )
tan 8q = tan 8~ +

cos 8y )
(tan&2 '

tan 82 ——tan 8z+ I 8g cos 8z

(tan P~tan' 8, = tan' 8, + [

g cos8~

The restricted photon polar angle (8~) emissions as a
function of increasing proton spherical polar angles P =
Pq = P2 and 8 = 8q = 8q are evident. The cross section
diverges as it asymptotes towards the minimum and max-
imum emission angles of 8~ for the noncoplanar events.
These same restricted 8~ values appear for the analyzing
power components at the same noncoplanarity. How-
ever these observables are convergent at the end points
as the divergence in. the cross section is due to the phase
space factor. The general features of the observables are
otherwise similar to those in the Harvard noncoplanar
geometry. Had the calculations been made precisely at
the noncoplanar limit with spherical polar coordinates,

„, the cross section would not exist and the an-
alyzing power component values would be at one point
corresponding to the "limiting photon. "

The integrated (over Q~) cross sections are displayed
for proton angles of 12' and 30' at 280 MeV in Fig.
9. The complete results are shown by the continuous
curves while the electric and magnetic components are
shown separately by the long- and short-dashed curves,
respectively. Note the different noncoplanar limit in each
case. For (30', 30') the falloff near the noncoplanar limit
is almost linear while for (12', 12') the integrated cross
section is virtually constant to P = 4' and begins to drop
slightly more rapidly, This is a feature which is character-
istic of forward proton angle scattering. In the TRIUMF
experiment [16] acceptance of noncoplanar events did not
involve major variations for the coplanar measurements
[41]. Our results support this fact but the decrease in the
cross section out of the plane, nevertheless, may have to
be considered before specifying any coplanar cross section
variation. It should be noted, also, that the cross section
fallofF is similar at pion threshold as it is for lower ener-
gies as the reduction in the total T-matrix amplitude is
not particularly sensitive to energy.

The slower decrease in the (12', 12') noncoplanar cross
section is due to the convection current and its inter-
ference with the magnetization current component. At
forward proton angles this interference seems to be un-
affected with increasing noncoplanar angle, P. The de-
structive coplanar interference increases with increasing
noncoplanarity for 8 = 30'. In fact, it is the interference
that causes the fallofF to be so dramatic for larger proton
angles. Further consideration of electric and magnetic

I

component efFects is given later.
In probing ppp for ofF-shell NN t-matrix efFects it

would seem that the azimuthal angle, P = 4', is the most
desirable noncoplanarity to choose as this is the region
in which all of the observables, except A„, reach their
peak magnitudes and the integrated cross section begins
to diminish.

6 =

C3
l—

LLJ

16 ==

12-

(dt. gj

FIG. 9. Integrated cross sections at 280 MeV for the Paris
potential as a function of P for the 8 = 12' (top) and 8 = 30'
(bottom) geometries. The full calculation is the solid line.
The electric and magnetic contributions are represented by
the long-dashed and short-dashed lines, respectively. Note
that these have been integrated for g~ values of 0' to 360'.
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D. Off-shell behavior for general kinematics
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In Fig. 10 calculated cross sections and analyzing pow-
ers, A&, are displayed for two cases in which the incident
energy is 280 MeV with symmetric proton opening angles
of 8 = 12'. On the left are given the coplanar (P = 0)
results while on the right the azimuthal angle, P, was set
at 4'. The continuous lines in all of these graphs depict
the @gay results found using the full oK-the-energy-shell
Paris t matrices. In the top section the complete cross
sections are compared with the on-shell approximation
(dashed lines). The A„observables given by those cal-
culations are compared in the third section of the figure.
As has been noted previously [18, 40], the full ofF-shell
properties of the Paris interaction markedly reduce the
small and large photon emission angle cross section as
compared to the on-shell approximation. This off-shell
dependence is slightly enhanced 4' out of the plane at
the extreme forward and backward photon angles. The
A„values are afFected even more dramatically although
the differences between full and on-shell approximation
results lessen as the kinematics become more noncopla-
nar.

The other diagrams in Fig. 10 give the cross sections

0.2 A„

and A& when the complete calculations are varied by
having only one individual partial wave channel taken
as on shell. The long-dashed curves were obtained by
taking the iSo channel on shell and the short-dashed,
dotted, and dot-dashed curves were obtained by taking
the P2 — F2, Po, and P~ channels individually on shell,
respectively. In the coplanar cross sections the greatest
variation from the full calculation occurs if Po or Py
is put on shell. Hence, it can be seen how the fully oK-
shell properties of those channels are most important in
determining the forward proton scattering cross sections.
As the reaction becomes noncoplanar the off-shell prop-
erties of the So channel increasingly influence results
before the characteristic fall in the cross section comes
into play close to the noncoplanar limit. This is related
to the increase in the electric contribution with noncopla-
narity for the integrated cross section. The So channel,
on the other hand, has little influence on A„, even for
noncoplanar events. Our results show the marked influ-
ence of the Pq Fq cha-nnels off of the energy shell and
we note the ofI'-shell properties of Pq, so important in
specifying the cross section, have a much lesser effect in
the analyzing power calculations.

As one goes to noncoplanar geometries, A* and A,
rapidly become comparable to A„. This presents an op-
portunity to obtain further information about off-shell
NN t matrices from studies of these observables. The re-
sults of our calculations for the three components of the
analyzing power at 280 MeV, (12', 12'), and azimuthal
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0,2—

0 fX

—0.2
I ~ I I ~ I

0.2

p

-0.2

A
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FIG. 10. Calculated cross sections and A„at 280 MeV for
0 = 12' in the coplanar (left) and P = 4' (right) geometries
using the Paris interaction. The solid curve is the full calcu-
lation in all cases. In the upper panels for each observable the
dashed curves represent the on-shell model calculation. The
lower panels for each observable display the results of keeping
only one individual partial wave channel on the energy shell.
The channels 'So (long-dashed), P2 E2 (short-dashed), P—a

(dotted), Pi (dot-dashed) are kept individually on shell.

—0.2

60 120
LIJ (deg)

FIG. 11. The analyzing power components at 280 MeV for
the 8 = 12' and P = 4' geometry using the Paris potential.
The curves for each observable are designated as in Fig. 10.
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angle, P = 4', are displayed in Fig. 11. The complete re-
sult is shown by the continuous curves in each segment.
The on-shell model results are shown by the large-dashed
curves in the top part of each section in the diagram.
The on-shell calculation has quite a different variation in
comparison to the off-shell result for the three compo-
nents. A„still shows distinguishable off-shell character,
as it does in the coplanar case, although this may not be
so for the other components, given current experimental
error.

Partial wave analyses of these analyzing power compo-
nents are given in the bottom part of each section and
indicate, again, the important role of the tensor coupled
channels in defining results. Recall that these graphs rep-
resent the complete result with a single channel taken in
the on-shell approximation. Four such calculations are
compared with the complete one. They are displayed by
the long-dashed, short-dashed, dotted, and dash-dotted
lines for the So, P2 — F2, Po, and Pi channel cases,
respectively.

The P2 Fz and-Po channels share the major off-
shell contributions for A . When the Pz F2 chan-nels
are kept on shell A takes on more of the on-shell struc-
ture. The partial wave contributions for A& are very
similar to the equivalent coplanar geometry (P = 0),
showing its greatest sensitivity to the P2 - F2 channels
and to sPo at photon backangles. It is the off-shell prop-
erties of this, the sPo channel, to which the A, compo-
nent is most sensitive. Although the on-shell sPz -sFz
coupled channels have a slight influence on the off-shell
curves, as shown in the bottom section of Fig. 11, keeping
the Po channel on shell gives virtually the fully on-shell
result.

As a final check of the role of these channels, calcula-
tions were made using our phenomenological Melbourne
potential. With this force the off-shell results for A~ and
A& difFered significantly from those shown in Fig. 11, as
do the results in Figs. 2 and 3. The full analyzing power
results are very similar to the on-shell model calculation,
due largely to the much weaker tensor force of this in-
teraction. However, for A„given the dominance of the

Pp channel, the calculation for all four interactions are
almost identical.

Thus, the off-shell dependence of A& in the coplanar ge-
ometry, particularly due to the effects of the tensor chan-
nels, is observed also with noncoplanar geometry. The
structure of the three analyzing power components show
diverse dependencies on the exact off-shell properties of
the T = 1 NN t-matrix channels. In particular, their off-
shell dependence is almost completely dominated by the

P2 F2 and Po chan-nels, for which each component is
more sensitive to either one or the other.

E. Electric and magnetic contributions
to the @gay cross section

Bremgstrahlung amplitudes involve the static electro-
magnetic interaction, Eq. (13), so that all calculated re-

I

suits can be divided into electric (p, s) and magnetic

(o, k X a) components. The separation of these com-

ponents has been made previously by Brown and explicit
results of their behavior are also displayed in a recent
publication [3]. The electric or convection current am-
plitudes lead to cross sections that vary as 1/k while the
magnetization current gives rise to a variation with k.
Electric contributions, therefore, diminish in importance
with the energy of the emergent photon and thence also
with the selected kinematics. Symmetric coplanar ge-
ometries, (12', 12') and (30', 30'), were used with pro-
ton incident energies of 50, 150, and 280 MeV to cal-
culate the separate electric and magnetic contributions
to the @pe cross sections. Those results are displayed in
Fig. 12; the 50 MeV values in the top section and the
280 MeV results at the bottom. In each case the com-
plete result, including RSC, is given by the continuous
curve while the electric and magnetic cross sections are
portrayed by the long-dashed and short-dashed curves,
repectively. We note first that the electric component
gives cross sections of quadrupole form, in contrast to
the smooth, relatively featureless, magnetic cross sec-
tions. Despite the 1/k behavior, for the 8 = 30' case,
the electric part, nevertheless, slightly rises with energy.
However, for 8 = 12', the larger k i factor, due to the
forward emission of protons, overwhelms other contri-
butions to actually drop the electric cross section. The
magnetic part rises almost isotropically for 8 = 30', and
rather rapidly, whereas at forward proton angles it is not
isotropic and increases quite slowly. Due to this behavior,
at higher energies the larger proton angle cross sections
retain their quadrupole shape reflecting the structure of
the convection current amplitudes but with magnitudes
determined largely by the magnetization current ampli-
tudes. For forward proton scattering the magnetization

=12

C)
I—

LLj

C3
Ct

60 120

N (~egj

60 120

FIG. 12. Calculated coplanar cross sections for the 0 =
12' (left panels) and 8 = 30 (right panels) geometries using
the Paris potential. These are displayed for incident energies
of 50 MeV (top panels), 150 MeV (middle panels), and 280
MeV (bottom panels). The solid curve represents the full

result. The long-dashed and short-dashed lines are for the
electric and magnetic contributions, respectively.
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current contribution almost completely dominates, as do
the NN triplet P waves thereto. The electric and mag-
netic interference is a major effect for pyre at all coplanar
proton emission angles and energies to pion threshold,
The enhanced destructive interference is responsible for
the reduction of the cross section about the minimum at
higher energies.

Suppression of the electric component with increasing
energy is one reason for the minor role played by the i So
channel in the Gottschalk geometry [13] since the mag-
netic effects from singlet states are also very strongly sup-
pressed. This role is further reduced by the fact that the
major scattering process for NNp is the one in which
photon emission precedes the strong interaction event
[42]. For @pe these terms are largely cancelled in the
full T-matrix amplitude. This can be seen most easily
in the CM frame by considering Eq. (13) and the elec-

tromagnetic spin matrix elements, (S'M'[V, [SM),
&~i('j

in the first and second terms of Eq. (11). Although at
50 MeV the electric term is still significant (whence the

So channel will inHuence measurements there) its sup-
pression at higher energies means that @gay affords us an
opportunity to study the properties of other two-nucleon
channel t matrices and, in particular, those of the cou-
pled amplitudes for the T = 1 set. We note that this is
not the case with navy which involves other quite difFerent
(T = 0) two-nucleon channel contributions. For npy the
two-body current (also largely suppressed for spy) is a
major contribution and is responsible for a substantially
larger cross section (factor of 5 or so) as compared to
pp'y

The qualitative structure of the electric and magnetic
contributions are readily understood from expansions of
the scattering amplitude. For the electric part and solely
for the iSo channel, the scattering amplitude varies as

Q, where [5]

9 = K' (k K') fi(k, IC', K) —K (k K) fg(tc, K', K)

(48)

involves the relative momenta of the two protons ini-
tially (K) and finally (K') with f» f2 being appropri-
ate functions of the momenta, and the scalar product is
taken with the polarization vector, e. Considering copla-
nar events, for simplicity, the scalar products vanish at
9~ = 0 and 180' while for 8~ = 90' the amplitude is very
small, as e K' 0. Likewise, the isotropic nature of
the magnetic cross sections can be anticipated since the
Pauli spin operator, cr, is independent of spatial coordi-
nates and matrix elements are defined in the transverse
gauge. There is little effect, then, with photon angle.
The extreme photon angle enhancement observed for the
forward proton angle, (12', 12'), cross sections is due to
the phase space factor, which is essentially constant for
the (30', 30') kinematics.

The (12', 12') noncoplanar cross sections in Fig. 7
show little change in features as a function of the non-
coplanarity angle, P, at 280 MeV. The electric contribu-
tion is small enough that no major structural changes due
to P variation are observed. Wider proton opening angles

are needed to observe in the cross section behavior effects
of the known reduction of the electric part [5] as a func-
tion of P. This is demonstrated in Fig. 13 wherein the 150
MeV cross sections are displayed on the left and the 280
MeV ones on the right, for the (30', 30') case and sym-
metric azimuthal angles, P, as labeled. For these energies
P = 4.4' and 5.8', respectively, are the noncoplanar lirn-

its. Again, the electric, magnetic, and complete cross sec-
tions are displayed by the long-dashed, short-dashed, and
continuous lines, respectively. The noncoplanar features
generally look similar for both energies and, indeed, seem
to be more sensitive to the proton opening angles than to
energy. The noncoplanar geometry changes qualitatively
the cross section, unlike any coplanar variation. The ini-
tial effect of noncoplanarity is to drop the cross section
at forward and increase it at backward photon angles.
It is the phase space factor that is largely responsible
for this and for the changes in the magnetic contribution
away from the isotropic coplanar result. The coplanar
quadrupole shape of the electric contribution is slowly
suppressed with increasing P. The decrease in the total
T-matrix amplitude leaves a reduced but finite result at
the kinematic limit so that the cross section is basically
featureless there. This is to be expected as all photon
emissions approach the limiting photon with increasing
angle, P. At the limit we are essentially observing photon
emissions of the same orientation.
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FIG. 13. Cross sections for 8 = 30' at 150 MeV (left pan-
els) and 280 MeV (right panels) using the Paris interaction.
Results are for the coplanar geometry (top panels), P = 2'
(left middle panel) and P = 3' (right middle panel), and at
the noncoplanar limit (bottom panels). The solid curve repre-
sents the full result. The long-dashed and short-dashed lines
are for the electric and magnetic contributions, respectively.
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F. Inclusion of higher partial woes and RSC
(12, 12.4 } (28, 27.8 )
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FIG. 14. Calculated coplanar cross section (upper panels)
and A„(lower panels) at 280 MeV for 8 = 12' (left panels)
and 8 = 30' (right panels) geometries using the Paris inter-
action. The solid, dashed, and dot-dashed curves are for the
calculations including only J & 4, J & 5, J & 8 partial waves.

In any calculation, a choice must be made of a cut-
ofF in the two-nucleon channel (J) contributions. That
choice must yield sufBcient convergence in calculations if
results are to be meaningful. Various such truncations
were used in calculations made in coplanar geometries
for the ppp cross sections and the analyzing powers that
are shown in Fig. 14. The Paris t matrices were used
and the results calculated for 8 = 12' and for 8 = 30'
are given on the left and right, respectively. The results
for J & 4 are shown by the continuous lines and adding
to that all J = 5 contributions yields the long-dashed
curves. Including all t matrices for J & 8 gave the re-
sults that are displayed by the dot-dashed curves which
are almost identical to results obtained using the Paris t
matrices for J & 6. Also, calculations were made includ-
ing higher partial waves (J & 20) approximated by an
OPE interaction set of t matrices taken in the on-shell
approximation in the same way as Workman and Fearing
[1, 35]. For the J & 6 calculation the OPE amplitudes
make very little difFerence to either cross section or ana-
lyzing powers. It is this latter prescription that is used for
all results unless otherwise stated (note that the ERSC
is calculated for J & 5 with OPE amplitudes for higher
J channels). Clearly, few changes occur on inclusion of
J ) 4 channels, the largest being a 10'Fo rise at backward
photon angles for the 8 = 30' cross section. Given the
sensitivity of A„ to the tensor channels, almost all the
information there is carried by the J & 4 channels.

The RSC have been included in all calculations, to
O(m s). The efFect of these corrections are shown in
Fig. 15 for coplanar cross sections and analyzing pow-
ers (A.„) which are compared with the TRIUMF data
[16] for the most extreme proton opening angles. The
calculations with the RSC gave the results displayed by
the continuous curves. Although they obviously grow in
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FIG. 15. Calculated coplanar cross section (upper pan-
els) and A„(lower panels) at 280 MeV for the geometries
as shown, using the Paris interaction and compared with the
TRIUMF data. The solid lines are for the full calculation and
for the dashed lines the RSC are excluded.

VIII. CONCLUSIONS

Both coplanar and noncoplanar calculations of pp
bremsstrahlung reveal that proper ofF-of-the-energy-shell
t matrices must be used in analyses; especially for
forward proton scattering (compared to the kinematic
limit). The data at 280 MeV [cross sections and an-
alyzing powers (A„) in tbe coplanar geometry] do not
distinguish between the off-shell properties of "realistic"
interactions. That may always be the case since local
interactions that fit the same on-shell data (phase shifts)
have very similar o6'-energy-shell t matrices for the range
of momenta corresponding to the bremsstrahlung kine-
matics.

Our results have shown sensitivity to components of
the t matrices, notably the triplet P waves and the tensor
coupled P Fchannels. At 28-0 MeV the efFects of tbe

So channel are not very significant. We note that all
J = 0 and 1 channels contribute about a half of the cross
sections but these may not necessarily be the dominant

importance with energy, to 15—20% at 280 MeV, they al-
ways drop the cross section either side of tbe minimum.
In comparison, the A„results are less afFected; particu-
larly for the larger proton polar angle results. Indeed, the
TRIUMF (A„) data do not differentiate between the cal-
culations with and without the corrections, although the
cross section data, one might suggest, indicate a prefer-
ence for the inclusion of these RSC. However, inclusion of
the rescattering term [3) appears to have virtually the op-
posite effects qualitatively and quantitatively and, at tbe
very least, will have some oK-setting interference with the
RSC. For completeness note that the TRIUMF data used
here do not include the I scaling suggested by Michaelian
et al. [16].
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contributors oE of the energy shell. Channels with J & 6
are negligible.

Azimuthal (noncoplanar) variation revealed that the
280 MeV cross section values at large photon angles (g~)
vary most markedly. In contrast A„gradually decreases
until it vanishes at the kinematic limit. A and A, have
quite unique structures for noncoplanar geometries. The
tensor coupled, Pz Fz-, and Po channel off-shell effects
are most important in the results for A~ while the sPo
channel is crucial for A, . Maximal effects at 280 MeV
seem to occur for P 4'.

The structure of the 280 MeV cross sections is domi-
nated by magnetic contributions in all geometries. The
changing integrated cross section shapes (with P) reflect
the variation in relative importance as well as of interfer-
ence between convection and magnetization current ex-
pectations.

We gratefully acknowledge Martin Jetter and Profes-
sor Heinz von Geramb of the University of Hamburg for
providing the opportunity to compare calculations and
thus correct errors in our calculated results.
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