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Solving momentum-space integral equations for quarkonium spectra with confining potentials.
III. Bethe-Salpeter equation with spin

J. R. Spence and J. P. Vary
Department of Physics and Astronomy, Iowa State Uniuersity, Ames, Iowa 50011

(Received 4 August 1992)

Singular integral equations for quarkonium (qq ) spectra are solved in momentum space for relativistic
confinement plus Coulomb potentials including spin. The confinement potential in momentum space is

defined using an analytical regularization scheme. Further manipulations give rise to integro-differential

equations and we obtain analytical approximations for the remaining singular integrals. The procedure
is tested with two different reductions of the Bethe-Salpeter equation. Using both scalar and scalar plus

pseudoscalar confinement we obtain the spectra of charmonium, b-quarkonium, and the light mesons.
We compare the results with experiment and with results obtained by other techniques. Eigenfunctions
for selected eigenstates are presented. A good description of both the light and heavy mesons is then ob-

tained with scalar linear confinement in the instantaneous approximation to the Bethe-Salpeter equation.
This description is based upon the inclusion of a Breit term to approximate transverse gluon effects.

PACS number(s): 12.40.Aa, 12.40.Qq, 12.38.Lg

I. INTRODUCTION

There is considerable interest in developing a covariant
description of the mass spectra and amplitudes of elemen-
tary particles based on QCD. Until such time as methods
to directly solve QCD are perfected, the Bethe-Salpeter
(BS) [1] integral equation with a phenomenological
confining interaction should serve as an instructive model
for the properties of the elementary particles. In this
connection it is important to have stable and accurate
methods to solve the BS equation in momentum space
with nonlocal and singular kernels. We have adopted the
quarkonium problem to illustrate a method for treating
singular potentials in the BS equation with spin. We also
present results for both the heavy and light mesons and
compare with experiment and with some related theoreti-
cal investigations.

We begin by showing how confinement potentials for
particles with spin may be defined in momentum space in
such a manner that their partial wave decomposition is
straightforward and yields a numerically tractable frame-
work. A suitable basis for the numerical solution of in-
tegral equations containing such potentials is chosen, and
the appropriate integrals are evaluated accurately and
efriciently. We then apply this combination of techniques
to evaluate the spectra of charmonium and b-quarkonium
within the Blankenbecler-Sugar (BbS) reduction and
within the instantaneous approximation (IA) to the BS
equation. We use these frameworks to examine different
Lorentz structures for confinement and to explore appli-
cations to the light mesons.

In an earlier work [2], which we refer to as I,
confinement potentials in momentum-space integral
equations for spinless particles were treated by introduc-
ing a cutoK In a succeeding work [3], which we refer to
as II, we introduced techniques to evaluate analytically

the limit as the cutoff goes to zero. In the current work
we employ the procedures of II together with standard
results from the meson theory of nuclear forces to treat
confinement potentials for particles with spin. As a result
many of the techniques of relativistic nuclear physics
developed to treat such potentials can be adapted in a
straightforward manner. Thus the current work im-
proves on the results of I and II in several ways and re-
tains the advantage that general nonlocal potentials can
be treated in addition to these singular potentials. The
resulting methods are now quite general and applicable to
a wide variety of problems beyond those treated here.

We have arranged the presentation in the following or-
der. We begin in Sec. II with two reductions of the BS
equation. In Sec. III we outline the single-boson-
exchange and confinement contributions to the kernels,
and Sec. IV gives the partial wave decomposition of the
equations. Analytical methods for treating singularities
are discussed in Sec. V, which are extensions to methods
in II. Section VI and VII outline our spline methods for
numerically solving the equations. We then present in
Sec. VIII the results for charmonium and b-quarkonium
using a simplified model neglecting the coupling of posi-
tive and negative frequency states. We extend the model
by including this coupling plus approximate transverse
gluon eS'ect (the Breit term) in Sec. IX and present results
for both the heavy and the light mesons. We conclude in
Sec. X and discuss further applications of these models
and methods.

II. EQUATIONS

Working in the center of momentum (CM) frame, we
consider two three-dimensional reductions of the BS
equation. The first reduction is an instantaneous approxi-
mation (IA), known as Salpeter's equation [4,5],
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[E—E, (q) —Eb(q)]A,+(q)Ab+(q)P(q)=A, +(q)Ab+(q) Jd q'G(q —q')[A,+(q')Ab+(q')+Ab (q')Ab (q')]P(q') (la)

[E+E,(q)+Eb(q)]A, (q)Ab (q)P(q)= —A, (q)A (q) fd q'G(q —q')[A,+(q')Ab (q')+A, (q')Ab (q')]P(q') . (lb)

The A+(q) [A (q)] are projection operators that project
positive [negative] energy free particle states and are
defined by

a, q+p, m,
A,—(q) =— 1+

2 E, (q)

2 1

A,+(q)Ab+(q)P(q)

=A,+(q)Ab+(q) Jd3q'G(q —q')A,+(q')Ab (q')P(q') .

(3b)

—ab q+pbmb
Ab (q)= —1+

Eb(q)
(2b)

Note that both the amplitude P(q') and the kernel
G(q —q') are different than for the IA.

E,(q)=+(m, +q )'~ (2c) III. KERNELS

Eb(q)=+(mb+q )' (2d)

The kernel G(q —q') represents the interaction be-
tween the particles, and denoting a =P, the matrices a",
and a~b satisfy

a",o., +a, u", =25"

a~qnb +aba~b =26"

Cx~cxb crab cx =0,
where p, v=0, 1,2,3. There are two additional Salpeter
equations, A, Ab / =0 and A, Ab+ $ =0, which arise from
making the instantaneous approximation and which have
been implicitly included in our treatment.

The inclusion of coupling between positive and nega-
tive frequency states is particularly important for light
mesons for which the energy gap between positive and
negative frequency states is relatively small. It is also
more important when considering interactions containing
pseudoscalar terms because such terms couple positive
and negative frequency states strongly. For these reasons
inclusion of this coupling is crucial to the problem of at-
tempting to determine the Lorentz structure of the
confinement kernel when fitting both light and heavy
meson spectra together [6]. However, since the inclusion
of the coupling between positive and negative frequency
states is not important for the examination of methods
for solution to the BS equation, we defer them until Sec.
IX and Eq. (la) becomes

[E —E, (q) —E„(q)]A,+(q)Ab (q)P(q)

=A,+(q)Ab+(q) Jd'q'G (q —q')A,+(q')Ab+(q')P(q'),

and similarly by Eq. (lb).
A second three-dimensional reduction to the BS equa-

tion also explicitly treated here is the Blankenbecler-
Sugar (BbS) [7) reduction which for the case m, =mb =m
has the form

In relativistic nuclear physics, systems containing two
or three nucleons are often described by the use of some
three-dimensional reduction of the BS equation or of a
Faddeev equation. The nucleons interact by means of a
sum of one-boson-exchange potentials (OBEP) [8,9].
These potentials are obtained by making the appropriate
three-dimensional reductions of four-dimensional OBEP
kernels of the form

4myo(3) yol I b
G(q, q, p)— —(q —q') +p

(4)

where p is the mass of the exchanged meson and

r.gI, =1m l, y,ey, y ey, . . . ,5 p

~a ~b
I I

gb
g

q. =(q0. q. » qb (qOb 'qb ) .

Here the y„denote the usual Dirac matrices.
For the IA such a three-dimensional reduction gives a

potential which we denote by V '(q, q', p ) and which is
given by

4~yo yor. S rb'( ' )=qtq ~p = (,)2~q —q p
(5)

V '(q, q';p, ), (6a)

with a class of singular potentials including confining

Since lim 0( —BIBp)' 'exp( pr)lr =r',—we define,
as in I, the momentum-space kernel which cor-
responds to the coordinate-space kernel V'(r; p)
=y0y0I', I br'e ~" to be [8]
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forms being given by

a
V'(q, q', 0) = lim

o Bp
V '(q, q', p, ) . (6b)

The limit p~0 is to be taken after integration over q'.
Since the OBEP is simply the special case of (6a), with

i = —1 many of the techniques and results developed for
use with the OBEP may now be adapted with little
change provided we know how to take the p~0 limit.
Techniques to handle this limiting procedure were

I

developed in I and II for the case without spin. Here we

extend those methods to the general case with spin.

IV. PARTIAL %'AVE DKCQMPQSITIQN

A suitable basis for partial wave decomposition of the
IA to the BS equation is the LSJ basis. With this basis
eigenstates of the BS equation decouple into three [9—11]
sets: singlet (S=0, L =J), uncoupled triplet
(S = 1,L =J = 1), and coupled triplet (S = 1,L =J+1).
Then, using the simplified notation V(q, q';p)
= V (q, q', )M), the BS amplitude is the solution of

( JML 'S
~ P(q) ) = g f dq 'q' ( JML 'S

~ V(q, q'; p )
~
JMLS ) (JMLS

~ @(q ') ),1

E 2E (q—)
(7a)

where either L =L'=J or L =J+1,L, '=J+1.
We next give some standard results for the OBEP case

in order to establish notation and then indicate how
to adapt the results for our studies. Denoting
i' 'V (q, q', p)= ( JML'S~ V(q, q', i2)~ JMLS ) and
I 1t I (q) = ( JMLS

~ f(q) ), Eq. (7a) becomes

1
& fde'e'Vi"i(e, V', i )ei(e'),E 2E q—

(7b)

with the sum over L =J+1 for the coupled triplet case or
over only the single term L =J for the uncoupled triplet
case and the single case. The quantities VLL can be
written as linear combinations of quantities V;
x =0,1,12,34,55,66,a, b, with the definitions singlet:

Q,' '(z)I(&)—
q'q

QJ '(z) =—Qg(z),

%=0, 1,2, 3,

QJ"=ZQi(» —4,o *

Qg (Z) = [JZQJ(Z)+QJ i(Z)],1

same as in each case, we present only the scalar case with

equal mass particles and within the IA.
For the scalar case de6ne

F' '= (E'E+m —)S

F'"=q'q,

F,"'=m (E'+E),

yJ0 0VJ .
JJ

uncoupled triplet:

yJ1 1yJ .
JJ

coupled triplet:

1""'= 2J+1 [

Q(3)(Z)— J+1
E =(q2+m 2)'",
EI —

( ~2+ 2)1/2

C = 1

2nEE'

1/2

[ZQ (Z) —Q, (Z)],

+(J+1)"v'+&J(J+1)'v'],
1

Vx+),J+) = [(J+1)' v

+J "V'—&J(J+1)'V'],

V ' = [&J(J+1) V
1

2J+1
—J' V +(J+1) V ]

VJl [~J(J+ ))by J+(J+ 1) 55VJ 66y J]1
J+1,J 1 7

a y J—55 y J+ 66 VJ

by J—12yJ 34y J

The details of the expressions for the V diff'er with
the Lorentz structure of the kernel and for other reduc-
tions of the BS equation. Since our procedure for gen-
eralizing the OBEP results to treat confinement is the

+q +p
2qq'

where q (q') now denotes the magnitude of q (q') and
QJ(Z) are the Legendre functions of the second type as
defined below.

The explicit forms for the V 's for this case are then

0 V~= C [F( )I(0)(Z) +F"'I")(Z)],
) VJ —C [F(o)I(0)(Z)+F(i)I(2)(Z)]

"V =C [F'"I' '(Z)+F' 'I"'(Z)]
' V =C [F'"I' '(Z)+F' 'I' '(Z)],
55VJ —C F(2)I(3)(Z)S S S J
"v'= c,F,"'I,"'(z) .

The results for the BbS reduction are similar [12].
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V. TREATMENT OF SINGULARITIES

The Legendre functions of the second type, Qz(Z), are
defined by

1 Z+1
Qo(Z) =—ln

2 Z —1

2J+1 J
QJ=i(Z) =

J+1 ZQJ(Z) QJ —1(Z) &J,o .J+1

Because the QJ(Z) have logarithmic singularities
when q =q' and p =0, quantities of the form
lim„o( —8/Bp)'+'Qz(Z) require care in their interpre-
tation [13]. As an example of our procedure for treating
these singularities, consider the linear confinement case.
If E(q, q') is finite as q —&0 and as q~ ~, we may gen-
eralize the reasoning of II, starting with

2

—lim
d 1 1

Qo(Z) =P
o Bp dq' q'+ q q' —

q

and then integrating by parts twice and using the bound-
ary conditions gives

a
lim
p~o ap

2

ozE qq' q'dq'= —2 qK q0 0 —P
0 o q'+q , K(q, q')g(q')dq'a

q' —
q aq'

= —(2/q)K(q, O)it|(0) —f ln
q'+q a2

IC (q, q')g(q')dq'
aq

Together with the relationship
2

lim ZQz(Z) = li
a

p~o ap p —+
m, QJ(Z)+Z QJ(Z)

a
o qq ap

Eqs. (8) and (9) define the quantities lim„o (8/Bp) QJ(Z).

a2= —(2/q)K(q, O)lt(0) —lim f Qo(Z) K(q, q')g(q')dq' .
o o

O aq'2
(9)

VI. SOLUTION OF THE EQUATIONS

As a specific case we consider the IA for equal mass particles interacting only through a linear confinement kernel.
In the notation of Eq. (7b) we have

2

[E 2E(q))l(Ls(q—)= lim g f dq'q' VL L(q, q';p, )QP(q') .
p~o I 0

To solve these equations the functions gp(q) were as-
sumed to have the convenient form pp(q)=q gp(q).
The functions yL (q) were approximated as linear com-
binations of cubic 8-splines with two continuous deriva-
tives

LS( ) y PJSLB

and the singular quantities lim„o (8/
Bp) VI I (q, q', p) were converted to integro-diff'erential
operators in the manner shown above. Then the
coefficients P ~ were determined by a Galerkin [14]
method chosen to yield symmetric matrices. The func-
tion B„(q) are then defined in terms of %+4 (distinct)
knots [r~ I by a recursion relation [15]. For j )4 these
knots were chosen to be the images of the zeros [x I of a
Chebyshev polynomial

2j —1
xj = cos

21Va

under a mapping

+j+4 q

1/2

VII. EVALUATION OF INTEGRALS

In order to evaluate needed integrals of the form
i+1

a
lim
p~o ap

dq', I'~' q, q' a„q'
o 2qq'

(10)

For j (4, ~4=0, and the remaining knots were chosen
symmetrically so that

14 ' 7 +4p j 1y2y3 e

Satisfactory choices for q and 5, giving numerically stable
results in all partial waves, were q =0.5 GeV and
6=0.025 GeV.
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the integrals

8
lim

o Bp

' (+1 (N)(z)
iUF(M)( t

)
2qq

U =Or 1r2

3

F,' '(q, q')= g C„,q'",
n=o

satisfying both

F' (q, q') =F' '(q, q')

were evaluated with methods described below and the re-
sults substituted into the recursion relation defined the
splines 8„(q'). To evaluate (11) each F' '(q, q') was ap-
proximated on the interval [~,r +i] b.y a cubic Hermite
spline E~ '(q, q),

Bq' ' ' ()q', F,' '(q, q')=, F' '(q, q')

at the end points q' 7 j Tj+i This yields the approxirna-
tion

()
lirn
p~o ())L(

g (N)(z)q', q'V' '
q, q' = lim

+ i
3 (&)(z)

C d ' in+v

n=0 2qq

These integrals were evaluated analytically and the
second (nonsingular) integration necessary for the Galer-
kin method was done numerically. An advantage of this
procedure is that the quantities

Ii dq' o Z q' , m =0, 1 2, . . . ,
J

and

I2 ' = dq'q™, m =012, . . . ,
J

need to be evaluated only once and the evaluation of in-
tegrals of the form (10) becomes a matter of forming
linear combinations of them.

Evaluating the analytic expressions for the integrals
I', ' and I'z ' above require care to ensure numerical pre-
cision. Integrating by parts to set up recursion relations
for I +" in terms of I' ' yields expressions which are
convenient to evaluate with precision. An exceptional
case is when ~. becomes large, where it is desirable to ex-
pand Qo in powers of 1/q' and keep a few leading terms.

Before introducing the complexity of coupling the pos-
itive and negative frequency results, we discuss results for
this simpler mode1 applied to the heavy quarkonium sys-
tems where it should be reasonably valid.

VIII. RESULTS AND DISCUSSION
FOR THIS MODEL

Using a basis of 31 splines for each value of L, we
solved for eigenenergies and eigenfunctions of the IA and
BbS reductions of the BS equation with Coulomb plus
confinement kernels,

24~a Vol p XoVp a Xozo~ ~"+4~b lim—(q —q') )»(M —(q —q') +(L(,

(12)

The results are presented in Table I. The calculation la-
beled IA(I) was done with I I =11+y~y (scalar

plus pseudoscalar confinement) and the remainder labeled
with IA(II) and BbS with I I = I 1 (pure scalar
confinement). Results for related calculations [5], using a
coordinate-space kernel corresponding to (12) with
I (3 I = 1(31, are presented for comparison in the last two
columns of Table I. These calculations are done with the
same parameter set as in Ref. [5] to facilitate compar-
isons. That is, we use a charmed quark mass of 1.25
GeV, a bottom quark mass of 4.58 GeV, a=0.25, and
b=0.29 GeV . No attempt to optimize or adjust these
parameters has been made in this treatment, but we will
fit the spectrum in Sec. IX below.

The calculations of Ref. [5] are most closely related to
IA(II), but include coupling between positive and nega-
tive frequency states which we defer to the next section.
However, since the role of these couplings is not expected
to be large for the heavy mesons, we present the compar-
ison here in order to calibrate our theoretical progress to
this stage.

The results of Ref. [5] are obtained with a mixture of
coordinate- and momentum-space methods, using har-
monic oscillator eigenfunctions as a basis. There is a gen-
eral consistency among the two calculations performed
using the IA(I), IA(II), and also with the results of Ref.
[5]. With the exception of the 0 states and 2+ states,
the differences between the calculations are of the order
of magnitude of the effect of our omission of coupling be-
tween negative and positive frequency states in the IA(II)
calculations of this section. This effect is about 5—10
MeV in our IA(II) calculations and in the results cited in
Ref. [5].

In the b-quarkonium spectrum we found, in addition to
states corresponding to the observed 1 states, which
were primarily S states, two currently unobserved 1

states having eigenenergies near 10100 and 10450 MeV.
These states were almost pure D states, and their masses
represent predictions of these calculations. We also
present in Table I predictions for the lowest-lying 'P,
state of b-quarkonium.

Comparing the BbS calculation with the IA calculation
using the same kernel IA(II), we note that there is good
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TABLE I. Quarkonium masses in MeV with kernels as given in text. The quantity M„„—M,„„,=b, is quoted for each set of
theoretical results. The spectroscopic notation quoted for coupled states is that of the leading component in our calculations.

Meson

IrC

J/Q
XO

X1

QC

X2

IC

0
1

p+
1+
1+
2+
0
1

1

1

1

1

1

p+
1+
1+
2+
1

1
0+
1 +

2+
1

1

1

2S+ 1L J

'S,
'Sl
3p
3p
1p

'S,
S
D)
'Sl
D,
Dl
Sl

3p

3p

3p
'Sl
D

3p
3p
3p
'S)
D(
'S)

~expt

2979
3097
3415
3511
3526
3556
3590
3686
3770
4040
4159
4415
9460
9860
9892

9913
10023

10232
10255
10268
10355

10580

IA(I)

3003
3117
3468
3460
3430
3536
3628
3694
3749
4093
4130
4411
9480
9826
9838
9837
9909

10001
10097
10227
10238
10300
10379
10443
10694

+24
+20
+53
—51
—96
—20
+38
+8

—21
+53
—29
—4

+20
—34
—53

—4
—22

—5
—17
+32
+24

+ 114

IA(II}

3049
3105
3437
3462
3452
3528
3651
3691
3741
4094
4127
4414
9480
9825
9842
9841
9907

10004
10099
10229
10244
10299
10384
10448
10701

+70
+8

+22
—49
—74
—28
+61
+5

—29
+54
—32
—1

+20
—35
—50

—6
—19

—3
—11
+31
+29

+ 121

Bbs
M„),

3064
3145
3555
3591
3613
3673
3782
3842
3953
4371
4449
4820
9476
9836
9854
9867
9926

10016
10126
10255
10273
10328
10416
10492
10756

+85
+48

+ 140
+80
+87

+ 117
+ 192
+ 156
+ 183
+331
+290
+405
+16
—24
—38

+13
—7

+23
+18
+60
+61

+ 176

Ref. [5]
M„),

2966
3095
3434
3475

3447
3622
3682
3735
4085
4119
4405
9471
9822
9837

9843
9997

10225
10237
10244
10376

10693

—13
—2

+19
—36

—109
+32
—4

—35
+45
—40
—10
+11
—38
—55

—70
—26

—7
—18
—24
+21

agreement for the eigenenergies of b-quarkonium. How-
ever, in the charmonium case where the quark mass is
lighter, the agreement between IA(II) and BbS rapidly
deteriorates with increasing charmonium mass. For this
case of parameters the IA(I) and IA(II) provide a better
phenomenological description of the quarkonium spectra
than does the BbS. Both IA(I) and IA(II) also provide
descriptions comparable to that provided in Ref. [5]. The
rms deviations between calculations and experiment for
charmonium are 42 MeV, 44 MeV, and 42 MeV for
IA(II), IA(II), and Ref. [5], respectively. The rms devia-
tions for b-quarkonium are 44 MeV, 46 MeV, and 49
MeV for IA(II), IA(II), and Ref. [5], respectively.

The differences in Table I between the IA results and
the BbS results appeared to be due to the difference be-
tween the IA and BbS confinement kernels. This was
determined by substituting the BbS kernel into the IA
calculations and observing that the IA results with BbS
kernel were considerably closer to the BbS results.

The derivations between the BbS results and experi-
ment are large and tending in a single direction especially
for charmonium. This suggests that the BbS results
could be dramatically improved by adjusting the parame-
ters of the model. A more detailed investigation of this
issue and comparisons with additional reductions to the
BS equation is in progress [6]. Our main purpose here is
to outline our methods and obtain reasonable spectra
with at least one reduction and one choice of
confinement.

In Fig. 1 we give the radial dependence of the IA(II)
eigenfunction for the first 0 state of charmonium and in

Fig. 2 that of the second 0 state. Likewise, in Fig. 3 we
give both the S and D components of the first 1 state of
charmonium and in Fig. 4 those of the third 1 state.
These eigenfunctions P are normalized such that
Jo"P (q)q dq= 1. Figure 4 demonstrates well that L is

not a good quantum number for this problem. It is also
worth commenting again that the calculated 1 state,
shown in Fig. 4, is primarily a D state situated among
other 1 states which are primarily S states.

Noting that the x axis for these figures in units of

I I

i
I I I I

i
I I I I

)
I I I I

j
I I I I

Charmonium 0

I. . . , I. . . , I

0.5 1 1.5 2
Momentum (GeV/c)

2,5

FIG. 1. Wave function for lowest 0 eigenstate of charmoni-
um calculated within IA(II) as a function of the magnitude of
the quark three-momentum.
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6 s» s

[
& s

CharmonIum 0

26 g i i s

2.0

)
I 4 I I I f I I

)
I I I I

J

I I I I

Charmonium 1

Third Eigenstate
SOLID = S Component
DASH = D Component

O

0

1.5

1.0

0.5

/
/

/
/

/

-1
0 0.5 1 1.5

Momentum (GeV/c)
2.5

0.0
s ) & I i ) I i I

0.5 1 1.5
Momentum (GeV/c)

2.5

FIG. 2. Wave function for second 0 eigenstate of charmoni-

um calculated within IA(II) as a function of the magnitude of
the quark three-momentum.

FIG. 4. Wave function for third 1 eigenstate of charmoni-
um calculated within IA(II) as a function of the magnitude of
the quark three-momentum.

GeV/c and that we have taken the charmed quark mass
to be 1.25 CxeV, the relativistic nature of the problem is
apparent. The relativistic nature of the problem is also
apparent when comparing the eigenenergies in column
IA(I) of Table I, for scalar plus pseudoscalar confinement,
with those in columns IA(II), and those in BbS with sca-
lar confinement. In the nonrelativistic limit these would
all be equal, as is much the case with the behavior b-
quarkonium systems. However, in the case of charmoni-
um, the differences are already significant.

Comparing IA(I) and IA(II) we see the relativistic
effects are apparently largest in the more tightly bound
charmonium states. This is especially true of the 0
states. On the other hand, comparing IA(I) and BbS
shows that the relativistic effects can be large in the more
highly excited charmonium states. Thus, we conclude
that the relativistic effects may be significant and their
precise values dependent on the BS reduction chosen for
a fixed set of parameters.

Another agreement for the relativistic nature of char-

3 I I I I

)
I I I I

monium is given in Table II where we present expecta-
tion values for a nonrelativistic velocity operator
Vzz =q/m and a corresponding relativistic expression
V„&=q/E(q) both calculated within IA(II). From the
fact that the values presented are all larger than 0.48, we
conclude that the motion of the constituents in this mod-
el is substantially relativistic. We therefore expect that
the calculation of additional observables could readily
yield results at variance with corresponding results from
nonrelativistic models.

IX. EXTENDING THE MODEL
TO THE LIGHT MESONS

In developing a general and relativistic QCD inspired
model for the mesons, we find two further generalizations
of the preceding treatment to be required in order for it
to be applicable to the light mesons.

The first is to generalize previous methods for solving
the BS equation in momentum space to include the cou-
pling of positive and negative frequency states. The
reason for this, as noted above, is that the effects of the
mixing of positive and negative frequency components
become very large for the lighter mesons. Hence, for an
attempt to describe both the light mesons and the heavy
mesons with the same equation and the same interaction,
inclusion of such coupling is crucial. Furthermore, even

TABLE II. Expectation values of relativistic and nonrela-
tivistic free particle velocity operators for some eigenstates of
charmonium calculated with IA(II).

s i i i I s s I I I I I I l I I I I I

0.5 1 1.5
Momentum (GeU/c)

2.5

FIG. 3. Wave function for lowest 1 eigenstate of charmoni-
um calculated within IA(II) as a function of the magnitude of
the quark three-momentum.

JP

0

~expt

2979
3590
3097
3685
3770
4030
4160
4415

0.6278
0.7328
0.5829
0.7174
0.7903
0.8394
0.8813
0.9372

0.5005
0.5305
0.4898
0.5306
0.6054
0.5864
0.6261
0.6229
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in the case of the heavy mesons we found, as discussed
further below, that agreement with experimental spectra
strongly constrains the Lorentz structure of the
confinement kernel when this mixing is included.

The second generalization we found necessary for the
treatment of the light mesons is the inclusion of a Breit
term for one-gluon exchange. The Breit term represents
certain transverse gluon effects, and we defer its discus-
sion to the subsection on the light mesons.

A. Equations and methods for their solution

We continue to work in the center of momentum frame
but, now, only with the instantaneous approximation to
the BS equation [4]. At first sight the inclusion of the
coupling between positive and negative frequency states
would seem to offer no difficulty. The methods of the
previous sections can be used to convert the IA with cou-
pling between positive and negative frequency states into
a matrix equation. When this is done the BS(IA) equa-
tion may be written as a matrix equation of the form

r &i bo=E (13)

A major difficulty arises from the fact that the matrix

R T
—T —R

is non-Hermitian and has trace equal to zero. These facts
make direct approaches to the generalized eigenvalue
problem of Eq. (13) numerically unstable. We find a sa-
tisfactory solution by starting with the generalized eigen-
value problem for the square of the energy. Writing Eq.
(13) as

Ax =EBx,

the equation for the square of the energy is

E Bx=AB 'Ax .

The roots of these equations for E come in pairs
which are all positive for the heavy mesons. These
represent pairs of eigenvalues (positive and negative) of
E, which correspond to positive and negative frequency
solutions of the original equations. For lighter mesons,
some pairs of roots of E are negative, corresponding to
pairs of purely imaginary eigenvalues for the energy.
However, these imaginary roots appear far from the real
roots of interest in the complex plane when we choose the
spline basis as described in the preceding sections. Fol-
lowing an earlier work [5], we simply discard these imagi-
nary roots. Presumably, these spurious solutions would
be absent in a more complete treatment of the meson
spectra.

B. Lorentz structure of the confinement kernel

Using a basis of 62 splines for each value of the L, we
solved for eigenenergies of the IA reduction of the BS
equation with Coulomb plus confinement kernels,

4~~ XoX„ ror„. a" +4~blam—(q —
q ) v»P

2
y,ay, rg r

—(q —q') +p
(14)

The results are presented in Table III. The calculation
labeled IA(I) was done with I S I = 1 1+@5'y, that la-
beled IA(II) with I I = 1 1, IA(III) with
I I = 1 1 —y5 y, and IA(IV) was done with
I @I =1(31+@„(3)y".Thus, as in the previous sections,
IA(I) corresponds to scalar plus pseudoscalar and IA(II)
to pure scalar confinement. The case IA(III) is scalar
minus pseudoscalar, and IA(IV) is composed of equal
parts scalar and vector. We note here that our usage of
the term "vector" is different from Refs. [16]and [17].

The values of the parameters a, b of Eq. (14) and the
charmed and bottom quark masses were determined for
each case separately by a least squares fit to the first six
1 states of charmonium, the first three observed 1

states of b-quarkonium, and the first two 0 states of
charmonium. Our procedure is to use these states to
determine a set of parameters for each choice of Lorentz
structure of the confinement kernel and then to observe
how well each of the corresponding spectra agrees with
experiment. As before, in the b-quarkonium spectrum we
found, in addition to states corresponding to the observed
1 states, two unobserved 1 states having eigenenergies
near 10100 and 10450 MeV in our calculations. We
again give their eigenenergies as a prediction of these cal-
culations. We also give the predictions for the lowest-
lying 'P, state of b-quarkonium. For each Lorentz form
of confinement, we give, in Table IV, the parameters for
these fits, and the root mean square deviations between
theory and experiment for all states shown in Table III.

Inspecting Tables III and IV, we conclude that IA(II),
the pure scalar case, gives the best fit. Testing in this
way, we conclude that if confinement is to be described as
in Eq. (14), the Lorentz structure of the confinement ker-
nel is largely or completely scalar. Put briefly, addition
of a substantial vector or pseudoscalar portion to the
confinement kernel shifts the relative spacings of the
eigenstates so as to reduce the quality of the fit to the
heavy meson spectra from those shown in previous sec-
tions. We can see that the origin of this deterioration in
the quality of the fit is due to the coupling of positive and
negative frequency states. This is illustrated by contrast-
ing the quality of the fit of IA(I) in Table I with that of
IA(I) in Table III where this coupling raises the overall
rms deviation in the fit from 43 to 225 MeV for the scalar
plus pseudoscalar confinement. On the other hand, for
pure scalar confinement [IA(II)], the coupling of positive
and negative frequency states results in a slight lowering
of the overall rrns deviation of the fit from 45 to 43 MeV.
By way of further comparison we note that in Table III
the IA(II) rms deviations from experiment are 34 MeV
for charmonium and 52 MeV for b-quarkonium.

We note that in the calculations of the previous sec-
tions, in which this coupling of positive and negative fre-
quency states were ignored, addition of a pseudoscalar
term to the confinement kernel actually produced a
slightly improved description. Because a pronounced
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TABLE III. Quarkonium masses in MeV with kernels as given in text. The quantity M„„—M,„,=b, is quoted for each set of
theoretical results. The spectroscopic notation quoted for coupled states is that of the leading component in our calculations.

Meson

9C

J/ltd

XO

Xl
IC

X2

9C

JP

0
1

0+
1+
1+
2+
0
1

1

1

1

1

1

0+
1+
1+
2+
1

1

0+
1+
2+
1

1

1

2S+ 11J

'S,
'Sl
3p
3p
lp

'S,
'Sl
D,
'Sl
Dl

'D
l

Sl
3p
3p
lp
3p

'Sl
3D
3p
3p
3p

'Sl
Dl
Sl

Mexpt

2979
3097
3415
3511
3526
3556
3590
3686
3770
4040
4159
4415
9460
9860
9892

9913
10023

10232
10255
10268
10355

10580

IA(I)
M„„
3187
3147
3890
3290
3672
3271
3490
3551
3714
4016
4049
4128
9482
9806
9823
9822
9879
9993

10077
10214
10223
10144
10368
10442
10679

+ 108
+50

+475
—214
+ 146
—285
—100
—135
—56
—24

—110
—287
+22
—54
—69

—34
—30

—18
—32

—124
+13

+ 102

IA(II)
M„l,

2969
3103
3421
3471
3461
3535
3631
3689
3744
4080
4114
4377
9457
9815
9834
9824
9907
9995

10098
10245
10243
10197
10381
10450
10702

—10
+6
+6

—40
—65
+21
+41
+3

—26
+40
—45
—38
—3

—45
—58

+13
—12
—71
+26

+ 122

IA(III)
M„l,

3003
3154
3574
3398
3565
3177
3865
3468
3756
3999
4106
4134
9371
9789
9832
9763
9919
9981

10102
10208
10259
10235
10385
10470
10709

+24
+57

+ 159
—113
+39

—379
+273
—218
—14
—41
—53

—281
—89
—71
—60

+6
—42

—24
+4

+32
+30

+ 129

IA(IV)
M„l,

3070
3060
3250
3555
3178
3597
3347
3631
3749
4078
4178
4459
9501

10039
9920
9589

10008
10037
10178
10470
10294
10297
10398
10498
10696

+91
—37

—165
+44

—348
+41

—243
—55
—21
+38
+19
+44
+41

+ 179
+28

+95
+14

+238
+39
+19
+43

+ 116

deterioration in the quality of an actual fit is now ob-
served with the addition of a substantial vector or pseu-
doscalar portion to the confinement kernel, this large
effect may not be evident in the lowest-order nonrelativis-
tic reduction of the Bethe-Salpeter equation (which does
not account for the coupling of positive and negative fre-
quency states).

C. Light mesons

The second step we found necessary for an accurate
treatment of the entire meson spectrum with a single set
of parameters was the inclusion of the Breit term. This
term in the IA for the BS equation may be derived in a

TABLE IV. Parameters obtained by fitting the meson spec-
trum with kernels having the Lorentz structures described in
the text. The masses of the charmed quark and of the bottom
quark are labeled M& and M&, respectively. The parameters a
and b govern the strength of the one-gluon-exchange and
confining potentials, respectively. The total rms deviation be-
tween theory and experiment for the 21 states of Table III is
quoted in the last column.

gauge invariant manner by expanding the quantity
1/[ —(q —q') ], in the gluon (or photon) propagator, in
powers of (qo —

qo ), obtaining

1 1 qo qo
—(q —q')' (q —q')' (q —q')' (15)

The first term is the standard instantaneous Coulomb
interaction, and the second term is a correction term
describing the effects of transverse photons or gluons.
Using the on shell free particle Dirac equations for the
quarks, the second term in Eq. (15), the Breit term, may
be written

—4rraa, (q —q')Ig as. (q —q')

(q —q')
(16)

The Breit term, as given in Eq. (16), is inappropriate
for incorporating directly into the BS kernel since it
treats the mixing of positive and negative frequency
states incorrectly. We invoke a standard remedy by in-
serting projection operators to eliminate such mixing by
replacing

~Br a b ~Br+a b ++a +b ~Br+a +b

IA(I)
IA(II)
IA(III)
IA(IV)

Mc
(aev)

1.444
1.256
1.376
1.287

M~
(aev)

4.504
4.580
4.590
4.718

0.1604
0.2666
0.3581
0.3825

b
(Gev')

0.3388
0.2965
0.3321
0.1134

Total rms
(MeV)

225
43

140
120

We note that by taking the four-dimensional generali-
zation of the three-dimensional linear confinement poten-
tial (LCP) to be 1/[ —(q —q') ], it is possible to expand
in powers of (qo —qo) and obtain the corresponding
Breit term for the LCP. We tested this possibility and
found the effect of such a Breit term to be very small, and
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TABLE V. Quarkonium masses in MeV for the IA(II) model with coupling between positive and
negative frequency states and the Breit term included. As is customary we align the calculated states
with the observed states according to their mass values for each spin parity starting from the lowest
mass values. The asterisk on an experimental mass indicates a state employed in our fit. The values
quoted from Ref. [17]are those using the Richardson potential [18]. See the caption to Table I.

Meson

IC

I/1(
XO

Xl
IC

X2

9C

0
1
0+
1+
1+
2+
0
1

1

1

1

1

1

0+
1+
1+
2+
1

0+
1+
2+
1

1

2S+ 1L J

'S,
'S
3p
3p
lp

'S,
'Sl
3D

Sl
Dl
Dl
'S
PO

3p

3p

Sl
3p
3p
3p

Sl
'Sl

Mexpt

2979*
3097*
3415
3511
3526
3556
3590
3686*
3770*
4040*
4159
4415*
9460*
9860
9892

9913
10023*
10232
10255
10268
10355*
10580

IA(II)
M„l,

2979
3097
3437
3477
3422
3522
3636
3696
3735
4090
4119
4404
9463
9809
9827
9814
9889

10077
10211
10227
10165
10364
10679

0
0

+22
—34

—104
—34
+46
+10
—35
+50
—40
—11
+3

—51
—65

—24
+54
—21
—28

—103
+9

+99

Ref. [17]
Mcale

2996
3114
3400
3490

3547
3614
3685
3793
4126
4198
4559
9469
9849
9887

9915
10021
10234
10258
10278
10359
10647

+17
+17
—15
—21

—9
+24
—1

+23
+86
+39

+ 144
+9

—11
—5

+2
—2
+2
+3

+10
—10
+67

hence we chose not to include it here.
Using the IA(II) as discussed above and adding a Breit

term of Eq. (17), the 11 selected states of the 0 and 1

spectra for charmonium and 6-quarkonium were fitted as
before to determine the charmed and bottom quark
masses as well as the strengths of the one-gluon-exchange
term and the pure scalar LCP term in the interaction.
This resulted in a charmed quark mass of 1.248 GeV, a
bottom quark mass of 4.538 GeV, a =0.2427, and
b=0.2867 GeV . None of the light meson masses were
used in determining the parameters in the interaction.

To determine the masses for the u, d, and s quarks, we
fitted the masses of the m, the p, and the P. This resulted
in a mass for the up and down quarks of 0.1540 and
0.2406 GeV for the strange quark mass.

For Coulomb and confinement potentials the combina-
tion of procedures outlined above satisfies the criteria of
accuracy and stability in a small spline basis. Because
one integration was done analytically, the amount of
computer time was reasonable. The final version of the
program, used to generate the results in Tables V—VII,
which follow, took between 5 and 25 min of CPU time on

TABLE VI. Selection of lighter mass rnesons formed from equal mass fermion pairs. See the cap-

tions to Tables I and V.

Meson

P
fo
ao

bl
a,

ap

ft
fz
'772

qq

$$

$$

$$

$$

2S+ 1L J

'S,
Sl

3p

Sl
lp
3p

3p
3p

'D
'S

Mexpt

140*
768*
974
983

1019*
1232
1260
1300
1318
1426
1525
1670
1680

IA(II)
M„l,

144
715

1260
1085
1022
893
997

1298
1191
1340
1523
1527
1746

+4
—53

+286
+ 102

+3
—339
—263

—2
—127
—86
—2

—143
+66

Ref. [17]
M„„

143
629

1231
731

1063
1195
1222
1363
1367
1499
1630
1774
1831

+3
—139
+257
—252
+44
—37
—38
+63
+49
+73

+ 105
+ 104
+151
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TABLE VII. Selection of mesons formed from unequal mass
fermion pairs. See the captions to Tables I and V.

Meson qq
+ 'LJ M„~,

IA(II) Ref. [17]
M„),

K

D

Ds
&s
B

SQ

CQ

CQ

CS

CS

'So
'SI
'S,
'S)
'So
SI
'So

496
892

1865
2010
1969
2110
5279

496 0
899 +7

1814 —51
2147 + 137
1902 —67
2281 + 171
5003 —276

485
839

1770
1918
1981
2119
5169

—11
—53
—95
—92
+12
+9

—110

In this paper we have presented two types of results:
(1) methods for solving Bethe-Salpeter wave equations for

a VAX8600 for each partial wave. Because the analytical
evaluation of the singular first integration was reduced to
forming linear combinations of certain fundamental in-
tegrals, the procedures described here are highly suited
for vectorization. After some optimization and vectori-
zation the program took between 1.4 and 20 sec on a
Cray YMP, for each partial wave.

The new fit with the Breit term and the resulting addi-
tional states of the heavy mesons are given in Table V.
For comparison we present results for the corresponding
states from Crater and Van Alstine [17], who employed
their two-body Dirac constraint dynamics approach to fit
a larger set of heavy mesons masses. Our IA(II) results in
Table V now have an overall rms deviation of 45 MeV
from experiment compared with 42 MeV in Table III.
The results of Ref. [17] in Table V have an overall 42
MeV rms deviation from experiment. Considering that
our results and those of Ref. [17] arise from different
fitting strategies, they may be viewed as roughly compa-
rable descriptions of these data.

With the interactions now determined only by our fit
to the heavy meson masses, we present our results for a
set of lighter mesons in Tables VI and VII along with the
corresponding results from Ref. [17]. Only three mesons
from Tables VI and VII were used to determine our light
quark masses. The majority of our masses in these tables
constitute, in a sense, the predictions of our model.

The IA(II) results in Table VI have a 159 MeV rms de-
viation from experiment, while the corresponding quanti-
ty for the Ref. [17] results is 127 MeV. In Table VII the
IA(II) results exhibit a 137 MeV rms deviation from ex-
periment, while those of Ref. [17] have only a 68 MeV
rms deviation from experiment. To aid in understanding
the lower rms values from the results of Ref. [17], we
note that all but one of the 20 masses in Tables VI and
VII were utilized in their fit to determine the interaction
parameters and the quark masses.

X. CONCLUSIONS AND OUTLOOK

two spin 1/2 fermions interacting via one-boson-
exchange potentials plus linear confinement and (2) appli-
cations of those methods to develop a unified model for
the light and heavy mesons which has success compara-
ble with existing models. We obtain a relativistic descrip-
tion of the light and heavy meson spectra utilizing the in-
stantaneous approximation (IA) to the Bethe-Salpeter
(BS) equation. In so doing, we find that a scalar linear
confinement and a Breit term to approximate transverse
gluon effects work well together to produce a more
reasonable fit. We imagine that our description of the
meson masses can be further improved by increasing the
number of light mesons involved in the fitting procedure
and by adjusting the interaction terms to simultaneously
fit light and heavy mesons. This takes us beyond the phi-
losophy of the current endeavors but will be approached
in the future [6].

The utility of these methods goes well beyond the ap-
plications we have demonstrated here and we will give
some brief examples.

First we have adopted these methods in order to solve
e+-e scattering and have obtained resonances which
could serve as an explanation of anomalous e+-e coin-
cidence peaks in heavy ion experiments [19]. The contin-
uum problem with a one-photon-exchange kernel is much
more dificult than the corresponding bound state prob-
lem because, in addition to having singularities in the
kernel of the BS equation, one has singularities in the
solution to the BS equation. An extension to the unequal
mass case of e -p scattering has been completed [20].
Second, given the efticiency of these methods for the rela-
tivistic two-fermion problem, it appears natural to extend
them to the relativistic three-fermion problem. Third,
finite element methods of the type described here general-
ly converge much more rapidly than do low-lower finite
difference methods. Thus the methods introduced here
open an alternative avenue for addressing nonperturba-
tive treatments of QCD which we are presently investi-
gating.
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