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A relativistic energy density functional is constructed to investigate the Dirac effects on different
properties of the structure and scattering of finite nuclei. The kinetic energy density has been derived
within a relativistic extended Thomas-Fermi model and includes gradient corrections to second order
in h, . The effective mass and the volume term of the potential energy density have been obtained from
a local density approximation to Dirac-Brueckner calculations of nuclear matter carried out with a
realistic nucleon-nucleon interaction. This volume term is supplemented by the Coulomb energy and
by conventional phenomenological surface and symmetry terms, and the few free parameters of the
functional are suitably adjusted. Attention is then focussed on the calculation of fission barriers of
rotating nuclei and of the complex optical potential for heavy ion collisions at intermediate energies.
It turns out that the effects of the density-dependent Dirac spinor which have been incorporated in
this approach allow for a reasonable description of the investigated properties.

PACS number(s): 24.10.Jv, 25.70.Bc, 24.75.+i

I. INTRODUCTION

In recent years the understanding of nuclear matter
properties starting from a realistic nucleon-nucleon (NN)
interaction fitted to NN scattering data has considerably
been improved by the recognition of the importance of
relativistic efI'ects in treating nucleons inside a nucleus.
The key point has been the observation that the dom-
inant attractive and repulsive components of a realis-
tic NN interaction exhibit different properties under a
I orentz transformation. Within the one-boson-exchange
(OBE) model, the strong attractive component of the
NN interaction is described in terms of a scalar o.-meson
exchange, while the repulsive component is dominantly
due to the exchange of the ~ meson, a vector meson.
This structure of the NN interaction implies that the
self-energy of the nucleons in nuclear matter, calculated
from this interaction, contains a strong attractive scalar
component and a strong repulsive component which, in
the rest frame of nuclear matter, transforms in the same
way as the timelike component of a Lorentz vector. In-
serting this self-energy into the Dirac equation for the
nucleons inside the nuclear medium, one obtains solu-
tions for which the small component of the Dirac spinor
is drastically enhanced as compared to the Dirac spinors
for the free nucleons. This enhancement of the small
component of the Dirac spinor for a nucleon at finite
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densities can be described in terms of an effective nu-
cleon mass m' which is smaller than its bare mass. As
a consequence of this change of the Dirac spinors for the
nucleons as a function of the nuclear density, the matrix
elements for the NN interaction and the kinetic energy
are modified in the nuclear medium. These modifications
are very important to describe the saturation properties
of nuclear matter within a microscopic many-body cal-
culation starting from a realistic NN interaction [1—6].

The works of Miller and Green [7] and of Brockmann
[8] showed that the Dirac phenomenology could pro-
vide an acceptable description of spherical nuclei start-
ing from relativistic OBE potentials. Microscopic Dirac-
Brueckner-Hartree-Fock (DBHF) calculations have been
carried out for the finite nucleus isO [9] using the Bonn
potential [2, 3, 6] as the bare NN interaction. Also in this
case the relativistic features just mentioned lead to better
results than the corresponding Brueckner-Hartree-Fock
(BHF) ones [10]. For finite nuclei, however, the relativis-
tic efFects considered in the DBHF approach are not suK-
cient to yield complete agreement of the calculated bind-
ing energy and radii with the experimental data. Besides
these attempts to solve the DBHF equations directly for
finite nuclei, there exist also calculations of ground-state
properties of finite nuclei assuming a local density ap-
proximation (LDA) for the Dirac-Brueckner self-energies
[11).

A more phenomenological approach has reached con-
siderable success in the relativistic description of nu-
clear matter and the structure of finite nuclei as well.
This approach starts from an effective meson-nucleon
Lagrangian whose coupling constants and some meson
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masses are adjusted to the properties of nuclear mat-
ter and finite nuclei (see Refs. [12] and [13] for a com-
prehensive survey). Solutions of these models in the
relativistic Hartree (see, e.g. , [14—17]) and Hartree-Fock
(HF) [18, 19] approximations are available for finite nu-
clei. These models constitute the relativistic analog of
the nonrelativistic HF method with density-dependent
interactions such as the Skyrme [20, 21] and Gogny [22]
forces. It may be stated [16, 17] that relativistic incan
field (RMF) models of reasonable sophistication achieve
about the same agreement with experiment compared
with the more elaborated density-dependent forces in the
nonrelativistic HF approximation, with the conceptual
advantage of being fully relativistic and thus automati-
cally incorporating the spin-orbit force, which is of fun-
damental importance in nuclear physics. Calculations
with effective Lagrangians whose parameters are fitted to
Dirac-Brueckner self-energies obtained in nuclear matter
have also been performed [23—26].

Heavy ion (HI) scattering and large nuclear defor-
mat;ions are typical examples of the low and interme-
diate energy nuclear aspects which have been less ex-
plored using RMF methods. Axially deformed nuclei
have been studied in Refs. [17,27—31] and dynamical cal-
culations of nuclear collisions were investigated in [32,
33] using a Hartree RMF model. The only calculations
of HI optical potentials on the basis of the microscopic
Dirac-Brueckner formalism have been carried out by the
Tiibingen group [34].

In this work we intend to employ the Dirac-Brueckner
results on nuclear matter of Ohtsuka et al. [34] to eval-
uate the fission barriers of some selected nuclei and the
complex. optical potential for some HI systems at inter-
mediate incident energies. For this purpose we shall use
a LDA to build an energy density functional. The po-
tential part comes from a microscopic calculation using
a modern version of the realistic Bonn NN interaction,
which incorporates the effects of Brueckner correlations
and Dirac effects. The kinetic part is taken from a rela-
tivistic extended Thomas-Fermi (RETF) approximation
that incorporates gradient corrections of order h [35,
36]. The Coulomb energy and two standard correction
terms which account in part for the surface and neutron-
proton asymmetry effects are added to the volume term
of the potential energy density of the functional. With
respect to Ref. [34], the main improvement is that the
use of the present energy density functional will allow us
to obtain fully self-consistent nuclear densities by solving
the corresponding Euler-Lagrange equations, instead of
using parametrized densities as in this reference. With
respect to the previous work on fission barriers by Gar-
cias et al. [37], the use here of a RMF method represents
a sizable improvement, since in this reference a nonrela-
tivistic NN interaction was used that did not reproduce
the nuclear matter saturation point, which is typical for
all nonrelativistic G-matrix calculations [5, 10].

This paper is organized as follows. In Sec. II we sum-
marize the way the DBHF potential energy density has
been obtained, construct the complete energy density
functional, and adjust its few free parameters, showing
the results for finite nuclei. In Sec. III we calculate the

fission barriers for some selected nuclei, with emphasis
on the angular momentum dependence of these barriers.
The HI potentials are obtained in Sec. IV, and some illus-

trative elastic HI scattering cross sections are calculated.
Finally, we draw the conclusions in Sec. V. A prelimi-

nary account of this work has been presented elsewhere

II. RELATIVISTIC ENERGY
DENSITY FUNCTIONAL

A. DBHF potentia1 energy density

The nucleon Dirac spinor u(k, p) for a nucleon of mo-

mentum k in nuclear matter of density p is determined

by solving a Dirac equation

[p"k„—m —Z(k, p)] u(k, p) = 0, (2 1)

where m is the free nucleon mass, g" are the Dirac matri-
ces, and Z(k, p) is the self-energy operator of the nucleon.
For symmetric nuclear matter this self-energy contains a
large scalar component and a term, which, in the rest
frame of nuclear matter, transforms in the same way as
the timelike component of a Lorentz vector:

Z(k, p) = A(k, p) + pp B(k, p) . (2.2)

In a simple RMF or Hartree approximation to the field
theoretical model for the meson-nucleon many-body sys-
tem, the coefficients A.(k, p) and B(k, p) are independent
of the momentum k and are directly related to the at-
tractive scalar and repulsive vector meson exchange con-
tributions, respectively. Using a self-energy of the form
given in Eq. (2.2), the solution of Eq. (2.1) for a positive
energy nucleon is explicitly given by

i.+
u(k, p)=l 2, I I ~k Ix. ,

s+ m*
(2.3)

where m* = m + A(k, p) is the nucleon eKective mass
and c = (k2 + m* )

i~ . y is a Pauli spinor and the
normalization is

ut (k, p) u(k, p) = 1. (2.4)

In the Dirac-Brueckner approach, Z(k, p) is defined in

terms of the G matrix G as

dk'
s (kk'IG(W = ey+ei, ) Ikk') .

spin, isospin

(2.5)

The integration is carried out over the Fermi sphere for
nuclear matter of the density under consideration. The
G' matrix C is the solution of the relativistic Bethe-
Goldstone equation for nuclear matter O,t rest. It is
worth mentioning that, in addition to the self-consistent
treatment of the starting energy R' which is required
in the nonrelativistic BHF approach, the DBHF ap-
proach furthermore needs to treat the Dirac spinors self-
consistently [2]. The spinors (2.3) resulting from Eq.
(2.1) have to be used in evaluating the matrix elements
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(k~E~k) = A(p) + &(p) —(1 — .) (2.6)

Consequently, the spinors of Eq. (2.3) can be
parametrized in terms of a nucleon effective mass m'
which depends on p but not on k.

The potential energy density is readily obtained from
the self-energy as

11(p) = -,
4

s (kiZ(k, p) ik) .
dk

(2.7)

In the relativistic treatment of nuclear matter, the kinetic
energy density is given by

of the NN potential in the nuclear medium. We have
taken as the bare NN interaction the Bonn potential of
Refs. [2, 3], which was already used by Ohtsuka et al.
in [34]. Employing Eq. (2.2) for Z(k, p), one finds that
A(k, p) and B(k, p) are independent of the momentum k
to a very good approximation [24]. The k-independent
functions A(p) and B(p) are obtained by a fit to the nu-
merical values for the self-energy of Eq. (2.5) as follows

[2]:

nuclear matter limit would correspond to (2.8), and of the
contribution qz q are given in the Appendix. Note that
in our approach the nucleon effective mass m* depends
only on the total density p = p„+p„.

The corrective term 7.2q has several interesting fea-
tures. First of all, its inclusion in ~q allows one to obtain
fully variational nucleon densities that go to zero expo-
nentially, contrary to what happens if only the h, -order
term Toq is kept [12]. Second, nonlocal spin-orbit and
eEective mass corrections are automatically taken into
account in wq up to order h . This is conceptually impor-
tant in a relativistic formalism, and may be of some prac-
tical importance because of the large variations for m*/m
in the relativistic case, as this ratio goes from & 0.6 at
saturation to 1.0 at low densities. A detailed account
of the RETF method applied to o.-w models, as well as a
comparison with the corresponding Hartree results, can
be found in [36, 42].

C. Complete energy density functional
and parameter Bt

The total energy of a nucleus in terms of the energy
density functional E' is given by

~(p) =4 ut (k, p) (n k+ P m —m) u(k, p) E = dr 8 [pq(r), ~q(r)], (2.10)

/a'+ mm*

(2vr)' q e ™p
The relativistic approach makes the kinetic energy of nu-

clear matter less repulsive than in the nonrelativistic ap-
proach, while on the other hand the potential energy (2.7)
becomes much less attractive. As a sum, the total energy
becomes less attractive at high density and the empiri-
cal values of binding energy and density of the nuclear
matter saturation point can be reproduced.

B. RETF kinetic energy density

For any application to Bnite nuclei it is desirable
to have a kinetic energy density which incorporates some
features not present in the simple functional (2.8). A
kinetic energy density that includes up to h, -order cor-
rective terms has recently been derived in a RETF semi-
classical approximation to the nuclear problem described
by a scalar-vector Dirac Hamiltonian [35, 36]. Previ-
ously, the result was known for the atomic case in which
m* = m [39]. In the relativistic semiclassical context,
Weigel, Haddad, and Weber [40] have worked out expres-
sions for the Wigner-Kirkwood expansion of the HF ap-
proximation to a Lagrangian of OBE potential structure,
and Speicher, Dreizler, and Engel [41] have studied the
density functional approach to quantum hadrodynamics.

For each kind of nucleons q (neutrons or protons), the
RETF kinetic energy density [35, 36] is written as

qq(pq~ m ):rp q(pq& m ) + qQ q(pq~ m
&
V pq& Vm )

(2 9)

The explicit expressions of the term ~o,q, which in the

where

S(p„,) =),+~11(

+ &.& (p —p~)'+ n(&p)'+ ~c,o i(p&)

(2.11)

The terms 7q and II(p) have been defined in the previous
subsections. The last three terms in (2.11) are purely
phenomenological. The first one is a potential symme-
try energy term, the gradient term accounts for a part
of the surface energy, and the Coulomb energy F~o„~(p„)
contains a direct term and a exchange term in the stan-
dard Slater approximation. As discussed below, the con-
stant a in front of the potential energy density II(p) will

be used to improve on the finite nuclei results. Alto-
gether, the functional contains three free parameters n,
Csym and q. Despite the phenomenological character
that these parameters give to the energy density (2.11),
a connection with the microscopic calculation is kept in
the model inasmuch as it is the density-dependent Dirac
spinor, microscopically derived in the DBHF approach,
which determines the behavior of II and ~q (through m*)
as a function of the density.

The nuclear symmetry energy has been obtained by
performing DBHF calculations of symmetric nuclear
matter and neutron matter [43] (see also [44]). In prin-
ciple, this could be used to fix the Csy~ parameter, and
putting o. = 1 we would have been left with only one
free parameter g. However, the NN interaction used in

[43] is different from the one used by Ohtsuka et aL [34],
for which m* and II(p) are available for many values of
the density and also for two systems of nuclear matter
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in relative motion. Since we want to perform a calcula-
tion of the optical potential for two colliding nuclei using
the functional (2.11),we have taken II(p) from the latter
reference and have left |,~~ as a free parameter. The
functional (2.11), made up of the 5 -order kinetic part
and a potential part which contains the minimal phe-
nomenology to make the whole functional realistic, has
to be considered as a single package, which constitutes
our RETF model.

The Euler-Lagrange variational equations correspond-
ing to the functional Z(p~, rq) are solved self-consistently
using the imaginary time-step method as described in
Refs. [36, 45], once a value for the set of parameters
(n, C,~~, rl) has been chosen. We shall present the results
obtained with three difFerent functionals. The erst one
will be called TUO and corresponds to the parameter-free
case q = C,y

= 0 and n = 1. This functional, which is
the closest one to a microscopic calculation, in general,
is not expected to yield good results when compared to
experiment because it lacks some surface and symmetry
energy. It is interesting, however, to know how far one
can go without including any kind of phenomenology in
the model. TU1 is the second functional; to Bx its pa-
rameters we have adjusted the binding energy of 4oCa
and 2osPb, and the semiclassical fission barrier (By) of
4oPu, which is 3.8 MeV [46, 47] (details about the

fission barrier calculation are given in Sec. III). For ac-
tinide nuclei shell effects play an important role and may
originate a double-humped structure in the Bssion bar-
rier as in the case of ~4 Pu. Of course, the fission barriers
calculated with our approach have no shell structure and
can show only one smooth maximum. Therefore, we have
to compare our calculation with the value of the fission
barrier which is obtained after shell eKects have been sub-
tracted by shell-correction methods [46]. The parameters
of the third functional, called TU2, have been adjusted
to reproduce the binding energy of OCa and ~ Pb, and
the value of the surface energy of semi-infinite symmet-
ric nuclear matter corresponding to the Skyrme SkM*
force, E, = 17.22 MeV [47] (let us recall that this makes
SkM* able to reproduce the semiclassical fission barrier
of Pu)

Table I collects the values of the parameters and the
nuclear matter characteristics of the three functionals, as
well as the calculated fission barrier of oPu. It is very
simple to obtain the surface tension o of semi-infinite
symmetric nuclear matter for functionals such as that of
Eq. (2.11). Neglecting the Coulomb energy and taking
p„= p„= p/2, Eq. (2.11) can be written as

~(p) = C(p)+ [D(p)+ ~](~p)' (2.12)

where

C(p) =) ~o,&(p. = p/2)+~11(p) (2.13)

and D(p) is defined such that

D(p)(&p)' = ) .~2,.(p~ = p/2) (2.14)

pp
- 1//2

dp C(p) ——p X&(p)+ nl'" (2»)

where E/A is the energy per particle at the saturation
density po. The surface energy is

~ = 4«o2

where ro ——[3/(4xpo)] / is the nuclear matter radius.
The (bulk) symmetry energy is obtained by expanding

the energy per particle of asymmetric nuclear matter for
small values of the relative neutron excess (p„—p„)/p.
The result for the functional (2.11) is

k~~ m, m* ( m"
E,y —— 1 —

q ~

1 — +C,y p,6syq's F ( fTl
(2.17)

For a system with a planar surface perpendicular to the
z axis, p = p(z), and using the method outlined in Ref.
[48] one gets

+OO E
dz F(p) ——p

TABLE I. Parameters (n, C,~, q) of the TUO, TU1, and TU2 functionals, their nuclear matter
properties (energy per particle E/A, particle density po, Fermi momentum kp, incompressibility
r, , effective mass m'/m, and volume symmetry energy E,~ at saturation), surface energy E, of
semi-infinite symmetric nuclear matter, and fission barrier By of Pu.

C,y (MeV fm )
g (MeV fm5)
E/A (MeV)
po (fm 3)
kp (fm ')
K (MeV)

*/m
E,i, (MeV)
E, (MeV)
Ry (MeV)

TUO

1.0
0.0
0.0

—15.17
0.1780
1.381

239.2
0.616
9.48

13.97
2.2

1.024
84.0
8.20

—15.90
0.1778
1.381

250.2
0.616

24.41
15.83
3.7

TU2

1.036
118.0
15.25

—16.27
0.1777
1.380

255.7
0.616

30.45
17.22
5.6
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evaluated at p = po. k~ is the Fermi momentum and
e~ = (k+2+ m' )i~2. The first term on the right hand
side of Eq. (2.17) comes from w(p), and the second term
from the phenomenological potential symmetry energy.

Table I shows that the nuclear matter properties of the
three functionals are well within the commonly accepted
values, except for a rather small symmetry energy E,~
in the TUO case and, less markedly, in the TU1 case.
The symmetry energy of TUO is so small because for
this functional only the kinetic energy contributes to it
(the potential energy is calculated for p„= p„). The
binding energies and charge radii we have obtained for
some nuclei with the functionals TUO, TUl, and TU2
are displayed in Table II. The calculated total energies
have been corrected for spurious effects of center-of-mass
motion by subtracting the kinetic energy per particle,
as is usually done in non-relativistic calculations. The
charge radii have been obtained from the proton radii as
r, = (r + 0.8 ) ~2 fm using a form factor for the protonp
charge. One may see from this table that the agreement
between our calculations and the experimental data is
globally good, especially for the binding energies. Even
the parameter-free functional TUO yields acceptable re-
sults. However, the binding energy estimate for the nu-
cleus Ca obtained with TUO is too small compared with
the experimental value, and is necessary to set n ) 1 if
one wants to fit it, as in TUl and TU2. It is worthwhile
noting the very small change (a = 1, Table I) we have
introduced in the potential part of both the TU1 and
TU2 functionals. We want to point out again that as
the spin orbit is a fully relativistic effect, our expression
for the kinetic energy density functional wq automatically
incorporates the 5 -order corrections of spin-orbit origin
to this energy.

The TUO functional gives good binding energies for the
smaller systems C and 0, without it being necessary
to add surface energy or, obviously, symmetry energy.
We point out that, compared with relativistic Hartree
results, relativistic semiclassical calculations of order ti
yield some overbinding [36, 42]. This is the reason why
the binding energy of 0 obtained with TUO in this
RETF approximation is in better agreement with the ex-
perimental value than the fully microscopic DBHF result
[9]. With increasing neutron excess, the agreement of

TUO with experiment is spoiled. As TUO has a small
surface tension, it underestimates the semiclassical fis-
sion barrier of 2 oPu (cf. Table I) and that of any other
nucleus, consequently. The TU2 force, which has the
higher surface energy, yields slightly better results than
TUO and TU1, at the price of overestimating the semi-
classical fission barrier of 2 oPu.

The TUO parametrization gives better charge radii
than TUl and TU2. This may be understood in the
following terms. The lack of symmetry energy of TUO is
unable to counterbalance the Coulomb repulsion among
protons. As a consequence, the proton density spreads
out at the price of yielding unrealistically compact neu-
tron densities. For example, the neutron rms radius of
2osPb is 5.29 fm for TUO and 5.44 fm for TU1 (a HF
calculation with the SkM' force gives 5.63 fm [45]). In
any case, the calculated charge radii are systematically
smaller than the experimental ones. This might be due to
the fact that also the saturation density of nuclear matter
calculated in the DBHF approximation is slightly above
the empirical value (see Table I). Note, however, that the
radii we have found with the present RETF method are in
much better agreement with the experimental ones than
when one uses a nonrelativistic G-matrix calculation as
the. input to obtain II(p) [37].

III. FISSION HAH. HIERS

In this section we shall apply the TU1 functional to
the semiclassical description of symmetric nuclear fission.
We shall not present here results obtained with TUO and
TU2 because these functionals are unable to give a cor-
rect quantitative description of Bssion barriers, as dis-
cussed above in the case of oPu (Table I). Compared
with TUl, TUO yields too small barriers whereas with
TU2 they are too high. This effect, which is especially
appreciable for heavy nuclei, is a direct consequence of
the value of the iI parameter (i.e. , of the surface ten-
sion) of the functional, since fission takes place through
a delicate balance between the opposing actions of the
Coulomb repulsion and the surface tension as the nucleus
is deforming.

The basic ingredients of the method we use have
been described in [37] and references quoted therein. It

TABLE II. Binding energies B (in MeV) and charge radii r, (in fm) obtained with the TUO,
TUl, and TU2 functionals in comparison with experimental data.

B
TUO

TC

TU1
TC B

TU2
B

Exp
Tc

12C
16O

4'Ca
Ca
Ni

90Z
114S
118S
140C
208 pb

94.2
128.3
333.1
420.5
461.1
759.4
942.1
988.3

1157.5
1641.6

2.49
2.66
3.36
3.48
3.70
4.22
4.53
4.57
4.81
5.46

94.3
129.4
342.3
422.5
476.9
779.7
967.2

1006.0
1172.1
1636.6

2.53
2.69
3.37
3.46
3.70
4.18
4.49
4.52
4.76
5.39

92.4
127.5
342.2
419.9
479,0
783.8
973.7

1010.0
1176.0
1636.5

2.57
2.73
3.40
3.47
3.72
4.19
4.50
4.53
4.77
5.39

92.2
127.6
342.1
416.0
484.0
783.9
971.6

1005.0
1172.7
1636.5

2.47
2.73
3.49
3.48
3.75
4.27
4.61
4.64
4.88
5.50
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that the collision can be locally represented by a system
of two nuclear matters colliding with relative momen-
tum K„, and the total energy of the composite system
is calculated using the nuclear densities obtained in Sec.
II following the method indicated in [34]. That is, in-
stead of solving the relativistic Bethe-Goldstone equation
for two colliding systems of nuclear matter, the following
steps are taken. First, the relativistic Bethe-Goldstone
equation is solved for a single nuclear matter of density
p at rest, and the effective mass m*(p) and the matrix
elements of the bare NN interaction between two nucle-
ons in nuclear matter are determined in the same way as
it has been done in Refs. [2, 3], and which has been al-
ready used to obtain the potential part II(p) employed in
the previous sections. Then, these relativistic matrix ele-
ments are used to solve a nonrelativistic Bethe-Goldstone
equation for two systems of nuclear matter with the to-
tal density of the combined system. By this procedure,
proposed by Ohtsuka et at. in [34], the relativistic ef-
fects arising from the change of the Dirac spinors in the
nuclear medium are included in this nonrelativistic G ma-
trix since the matri~ elements of the bare NN interaction
are evaluated with the modified spinors, Eq. (2.3).

Special attention has to be paid to the kinetic energy
density in the case of two Fermi spheres in relative mo-
tion, and to the way to fix K„ for a given HI colliding
system and incident energy. These matters are discussed
in detail in [34] and references therein.

One of the nicest features of the microscopic G-matrix
approach to HI collisions is that in the case of two sys-
tems of nuclear matter in relative motion, the potential
energy becomes complex since two nucleons can be scat-
tered into unoccupied states with conservation of their
total momentum and energy. Thus one gets both the
real and imaginary parts of the optical potential from
the same interaction, and basically only the contribu-
tions of the mutual excitation of target and projectile
are left out. As this contribution can be accounted for
by standard coupled-channel techniques, the calculation
of HI scattering cross sections becomes parameter free.

We have studied the systems C + ~2C at 1016, 1449,
and 2400 MeV 0+ C at 15Q3 MeV, and 0+ Si
at 1503 MeV in the laboratory frame. Figure 5 displays
the real and imaginary parts of the optical potential for

C + i~C obtained with the TUl functional. The opti-
cal potentials that TUO and TU2 yield are very similar
to those of TUl, also for the systems 0 + C and 0
+ Si, and thus are not shown. There are only slight dif-
ferences near the origin, but HI scattering is not sensitive
to this region of the optical potential.

A detailed comparison of the results of Refs. [34] and
[54] reveals that the relativistic treatment affects the real
part of the HI potentials obtained from two systems of
nuclear matter flowing through each other in a similar
way as what happens for a single system of nuclear mat-
ter at rest. The change of the Dirac spinors reduces the
attraction of the potential energy which is again coun-
terbalanced by the reduction of the kinetic energy. The
most striking feature of the relativistic approach to HI
optical potentials is that the imaginary part is consid-
erably enhanced at high densities. The change of the

Dirac spinors reduces the attractive contributions of the
o.-meson exchange but does not inHuence the repulsive
~-meson exchange. Therefore, two nucleons at high den-
sities feel a larger short-range repulsion, which leads to
more scattering into unoccupied states, i.e. , to a larger
imaginary part. Note that this relativistic effect that
comes from the potential energy is not compensated by
any effect from the kinetic energy, as happens for the real
part.

The calculated optical potentials have been used to an-
alyze some elastic HI scattering data. The elastic scat-
tering cross sections have been obtained employing the
pToLEMY code [55] in the optical model (OM) or coupled-
channel (CC) analysis. As we have indicated above,
the calculated HI potentials include the effect of two-
particle —two-hole (2p-2h) inelastic excitations, but not
the excitation of lp-1h collective states which are absent
in nuclear matter due to momentum conservation. They
can be taken into account either as an additional effective
potential [56], or explicitly within the CC formalism. We

150 C+ C

100

1016 MeV
1449 MeV
8400 Me V

I i » I
I I I

—50

00 i i i I & & i I i i i I—1
0 2 4 6

r (fm)

—50

N -100

—200

50 i i i I i i & I i i i I—2
0 2 4 6

r (fm)
FIG. 5. (a) Real and (b) imaginary parts of the optical

potential for C + C at E~ b = 1016, 1449, and 2400 MeU,
obtained with the TU1 functional.
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have followed the latter approach, including the excita-
tion of such collective states in both the target and the
projectile.

The collective states we have included into the CC
analysjs jn the case of 0 + Sj are shown jn the cou-
pling scheme of Fig. 6. For the 2C + C system, we
have included the first 2+ (4.44 MeV) and 3 (9.64 MeV)
states in ~2C. The coupling interaction is obtained adopt-
ing the vibrational or rotational model for the nuclear
excited states. To get the nuclear transition potential
U~ for a given excited state, one needs to estimate the
so-called nuclear deformation length P~R~. We have
followed Blair's rule

(4.2)

to determine it. The deformation parameter P~ for the
charge distribution is obtained from the electric transi-
tion probability B(El) using

10

10

10

10 ~ ~ I l I ~ ~ ~ I I

0 2 4

18C+18C

E = 1016 MeV

6 8 10 12 14 16 18 20
ec m [deg.J

2

zeR&Pc (I) (4.3)

with B~ ——1.2A ~ fm. Then, the transition potential
follows from

Ut (r) = pNRN
dUp(r)

dr
(4.4)

where Up(r) is the complex optical potential previously
determined. Thus, the CC calculations are essentially
free of any adjustable parameter and constitute a good
test of the reliability of the method.

Figures 7—11 show the elastic scattering cross sec-
tions for the systems ~ C + C at E»b = 1016, 1449,
and 2400 MeV, 0 + C at Elab ——1503 MeV, and

0 + Si at El b = 1503 MeV, respectively. The ex-
perimental data have been taken from Refs. [57—60]. For
the systems C + C at E~~b = 1016 and 1449 MeV and

0 + Sj at Elab = 1503 MeV we djsplay both the OM
and the CC results, calculated with the TU1 functional.
In the case of the systems 2C + i2C at E~~b = 2400 MeV
and 0 + C at E~,b = 1503 MeV, we instead present
only the CC analysis and compare the TUO, TU1, and

FIG. 7. Elastic scattering cross section for C + C at
E~ b = 1016 MeV calculated with the TU1 functional. Dashed
line, optical model (OM) analysis. Solid line, coupled channel
(CC) calculation. The experimental data are from Ref. [57].

TV2 results. The latter figures show that the three func-
tionals yield comparable results for the cross sections of
the systems under consideration. For this comparison
one should be aware that the surface tension contents in
TU1 and TU2 give an attractive contribution to the real
part of the HI potential at the surface. This is counter-
balanced by the global enhancement factor n in such a
way that the real parts of the TUO, TUl, and TU2 po-
tentials are very similar at the surface region which is
most sensitive to HI scattering data. Consequently, the
calculated TUO, TU1, and TU2 cross sections for elastic
HI scattering are also very similar.

The figures show that our potentials reproduce the
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I
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I
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I

I
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I

I

4+
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12C+12C

E = 1449 MeV

+

g.S.
16O

O+
g.S. j0 I ~ ~ ~ I ~

0 2 6 8 1O

ec m (degJ. .
12 14

FIG. 6. Coupling scheme we have considered in the cou-
pled channel calculation of the 0 + Si scattering.

FIG, 8. Same as Fig. 7 for E~ b = 1449 MeV. The exper-
imental data are from Ref. [58].
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FIG. 9. Elastic scattering cross section for C + C at
E& b

——2400 MeV calculated in the CC analysis. Dashed line,
using the TUO functional; dotted line, TU1; and solid line,
TU2. The experimental data are from Ref. [58].
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FIG. 10. Same as Fig. 9 for the system 0 + C at
Ei b = 1503 MeV. The experimental data are from Ref. [59].

data quite reasonably in the CC calculations. The role
of the coupling to the lowest collective excitations in the
colliding nuclei is substantial at the energies considered
here. In other OM analysis using phenomenological op-
tical potentials this effect is hidden by the adjustable
parameters of the potentials and, consequently, little in-
formation about their explicit contribution to the cross
section can be extracted. Comparing the OM and CC
cross sections of the z2C + &2C reactions) we find that
the effect of the 1p-1h contributions to the optical po-
tential decreases with increasing energy. This shows the
diminishing contribution of the nuclear surface excita-
tions to the elastic scattering as the energy increases.
The remaining discrepancy with the data, basically the

FIG. 11. Same as Fig. 7 for the system ' 0 + Si at
Zi b = 1503 MeV. The experimental data are from Ref. [60].

lack of absorption, is expected to be due to other inelas-
tic processes which are still not taken into account by the
CC calculation, such as nucleon transfer between target
and projectile, and especially alpha particle transfer [61]
since these are 4n nuclei.

V. CONCLUSIONS

In this work we have studied the efI'ects of the density-
dependent Dirac spinor for the nucleons, as is determined
microscopically in the DBHF approach, on various prop-
erties of the structure and scattering of finite nuclei. For
this purpose, we have constructed a relativistic energy
density functional that includes a volume part in the po-
tential energy arising from a DBHF calculation of sym-
metric nuclear matter employing a realistic NN force
[2, 3, 6]. This volume term is supplemented by the con-
ventional correction terms accounting for the symmetry
energy, the surface tension, and the Coulomb energy, and
the relativistic kinetic energy density is corrected up to
order 5 [35,36]. The complete energy density functional2

contains three parameters which have been adjusted in
such a way that a relativistic extended Thomas-Fermi
(RETF) calculation of the binding energies of 4eCa and

Pb and of the semiclassical fission barrier of oPu (or
the surface energy of semi-infinite nuclear matter) fits the
experimental data. The parameter-free functional TUO,
whose potential part is not affected by phenomenological
parameters and only contains the Coulomb contribution
in addition to the microscopic DBHF result, yields rea-
sonable descriptions for ground-state properties of finite
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nuclei and for HI optical potentials at intermediate inci-
dent energies, but it is not suitable for a calculation of
Qssion barriers.

It turns out that the radii of nuclei calculated with
the present approach agree better with the experimen-
tal value than those obtained in similar studies, using a
potential energy derived from a nonrelativistic G matrix.
This demonstrates that the Dirac effects improve the cal-
culation of ground-state properties of finite nuclei also in
our RETF approximation.

We want to stress, however, that this study of ground-
state properties is not the main goal of our present inves-
tigation. For such studies direct microscopic calculations
are possible [9] and other more sophisticated phenomeno-
logical relativistic models work well (see, e.g. , [16, 17]).

The capabilities of our RETF functional are actually
appraised in situations in which a microscopic relativis-
tic calculation, or even a phenomenological one, cannot
be easily made, such as nuclear fission of rotating nu-
clei and HI scattering. In these situations, the method
constitutes a reliable tool. For the nuclear fission barri-
ers, the present calculations are the first ones carried out
with a relativistic model. We have shown that the model
yields results comparable to the nonrelativistic ones with
the conceptual advantage of being relativistic. For the
HI elastic scattering cross section calculations, we have

been able to improve the results the Tubingen group had
previously obtained [34] due to achieving a better de-
scription of the nuclear densities.

The present calculations can be extended to finite
temperatures, thus opening the possibility of exploring
higher energy phenomena. Work along this line is now
in progress.
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APPENDIX

In this appendix we give the explicit expression of the
RETF kinetic energy density functional we use in Eq.
(2.9). It has been obtained in a mean field semiclassical
approach to the problem associated with a Dirac Hamil-
tonian which describes the single-particle motion of a set
of fermions submitted to a scalar field and to the timelike
component of a four-vector field. The reader is referred
to [35, 36] for a detailed description of the method.

The RETF kinetic energy density of order h for each
kind of nucleon is found to be

'7 = %0 + T2 ) (Al)

=1 3 *2 m g4 m kF +cF
TP = 2kFE'F —m* 5 —4 kFGF' + m* 3 —4 ln

8Vr2 m* m* m*

1
7'2 =

2 2t"F 1+2 (1—
72EF

+12 1—
kF

+ 3 —4 1—9
kF

l
—[1

m)
m*'

4 2

m*

m* kF +eF
ln

9 1+3 1—
E'F

(A3)

with s~ = (kz + m* ) ~ . The local Fermi momentum
A:F is related to the particle density p through

I

In the nonrelativistic limit (k~ &( m, m' = m), one
recovers from Eqs. (Al) —(A3) the well-known result [47]

kp = (3~'p)'~'. (A4) (3~')'~'p'~'+3 1 (&p)~
10m 72m p
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