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Proton impurity in the neutron matter: A nuclear polaron problem
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We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye
approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths.
It is weak at low density and increases with the neutron matter density. We calculate the proton's
effective mass perturbatively for a weak coupling, and use a canonical transformation technique for
stronger couplings. The proton s effective mass grows significantly with density, and at higher densities
the proton impurity can be localized. This behavior is similar to that of the polaron in solids. We obtain
properties of the localized proton in the strong-coupling regime from variational calculations, treating
the neutron matter in the Thomas-Fermi approximation.

PACS number(s): 21.65.+f

I. INTRODUCTION

The number of protons present in the liquid core of
neutron stars is of the order of a few percent [1] as com-
pared with the number of neutrons. The proton admix-
ture, which is required for the beta stability of the sys-
tem, is found to decrease with density [1]. It eventually
vanishes at some density n, . Model calculations give n,
in the range Sno —10no [1]. Hence protons can be regard-
ed as impurities in the neutron matter at densities close
to n„. Particularly important is the proton effective mass
since it plays a crucial role for such phenomena in the
neutron star matter as proton superfluidity [2] and/or
possible spin instability [3].

The contributions to the proton's effective mass are
generally of two types: The first one is due to two-body
nuclear interactions while the other one is due to the cou-
pling to excitations of the neutron matter. We shall
denote corresponding values of the proton's effective
mass m, and m, ~, respectively. At finite proton concen-
trations the latter contributions are expected to be small
[4] and m „=mdt. However, for a proton impurity, when
the relevant energy scale is its vanishing kinetic energy,
any phonon contribution can affect the effective mass
profoundly, giving m, & much higher than m, .

In this paper we study the coupling of proton impuri-
ties in dense neutron matter to small density oscillations.
This coupling can be quite strong as a result of the behav-
ior of the proton chemical potential in the neutron
matter. Various parametrization show that the proton
chemical potential has a minimum close to the saturation
density no. At higher densities the proton chemical po-
tential increases and becomes positive at high densities
(Fig. 1). This suggests that a uniform density neutron
matter surrounding a proton might not be the lowest-
energy state. Let us consider a neutron matter of density
higher than the one corresponding to the minimum in
Fig. 1, and imagine a small density fluctuation, such that

—120
0.00 020 0.40 0 60 080

n (1/fm~)
N

FICz. 1. The proton chemical potential in the neutron matter.
The solid line is for the Friedman-Pandharipande-Ravenhall
model (given in the Appendix) and dashed lines are for two
Skyrme force parametrization of Ref. [8].

the density around the proton is slightly reduced. For
the long-wavelength Auctuation the proton energy is thus
also reduced, as the proton moves now in an attractive
potential well. This observation indicates that a single
proton tends to disturb a uniform neutron matter, i.e.,
there appears a coupling of the proton to the (long-
wavelength) neutron matter density oscillations. The
coupling has a deformation-potential form.

The aim of this paper is to calculate the proton
effective mass m, & due to the proton-phonon coupling.
The "nuclear" effective mass m, derived from nuclear
matter calculations will be used as a "bare" mass in our
calculations. We treat phonons in the neutron matter in
a Debye approximation. We use a perturbation theory
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and a canonical transformation technique to calculate the
proton effective mass for low and intermediate values of
the coupling, respectively. The proton effective mass is
found to increase with the neutron density. At higher
densities, where the coupling becomes strong, one can ex-
pect a behavior similar to that of the polaron, which be-
comes localized in the strong coupling limit. We consid-
er the case of strong-coupling variational Thomas-Fermi
calculations which show localization of a single proton in
neutron matter above a critical density n, which, howev-
er, depends strongly on m, .

As we mentioned, the phenomenon we consider has a
well-known analog in solid-state physics. In some crys-
tals the electron-phonon interactions inhuence the
effective mass of electrons significantly [5,6]. The system
consisting of the electron and the virtual phonon cloud is
called a polaron. Above a critical coupling the polaron
becomes localized and the corresponding efFective mass is
very large [5,6].

In Sec. II we derive the interaction Hamiltonian which
couples the proton to the neutron matter density oscilla-
tions. In Sec. III we calculate the proton effective mass
in the first-order perturbation theory, for the weak cou-
pling, and by a canonical transformation technique for
stronger couplings. In Sec. IV a possibility of localiza-
tion in the case of strong coupling is considered. The re-
sults are discussed in Sec. V.

II. COUPLING OF A PROTON IMPURITY
TO PHONONS IN NEUTRON MATTER

Let us consider a single proton in a uniform neutron
matter of density n&. If the momentum k of the proton
is low, the energy of the proton is

k2
Ep(k) —= +U,it,

2m~

where the effective potential is equal to the proton chemi-
cal potential in a neutron matter,

tonian of the single proton in the neutron matter with
small long-wavelength oscillations is

pp
Ht, = — +pe(nil )+ 5n(r, t)

2m ~ Bn~

=a"'+aJ' int

The last term describes the coupling of the proton to the
small oscillations of the neutron matter density.

For long-wavelength oscillations the neutron matter
can be treated as a continuous medium, and standard
methods of describing phonons in the medium [6] can be
used. The density oscillations can be expressed by the
displacement u(r, t) of the neutron matter from its equi-
librium position

5n(r, t)=n(r, t) —n~= n~V—u .

We can expand the displacement field u in the normal
modes (phonons):

u(r, t ) = 1 1

+ 2En co(k )

X e (k )(a ke '"'+a k e '"'),
where e(k) is the unit polarization vector, E is the energy
per neutron (including the rest mass) in neutron matter of
density n&, and co(k) is the energy of the phonon of
momentum k. For longitudinal acoustical phonons e(k)
is parallel to k and co(k) =c, lkl, where c, is the velocity
of acoustical waves in the neutron matter.

Quantization of the phonon field can be carried out in
a standard way replacing the Fourier component
ai, (t) =a i,exp[ —ice(k)t ] by the phonon annihilation
operator. The interaction Hamiltonian becomes

H;„,= —g [8(q)a exp(iq r)1

V
q

+8(q)'a exp( —iq r)],

es pr(nx) . (2) where

n(r, t)=n~+5n(r, t), (4)

where 5n is a small perturbation. If the density n(r, t)
varies su%ciently slowly, i.e., the wavelength of the per-
turbation is suKciently long and the frequency is low, the
proton energy is still given by Eq. (1). Hence the Hamil-

The chemical potential pp(n~) is the energy of a zero-
momentum proton. Here m, is the effective mass of the
proton due to nuclear interactions with neutrons and it
does not include any phonon contribution. The effective
potential can, in principle, depend on the proton momen-
tum; however, this is higher order and can be neglected
for small values of k. We can thus write the Hamiltonian
of the slow proton in the form

p2
Hp +pp(nN )

2m~

Assume now that the neutron matter is slightly inho-
mogeneous, with the neutron density

Bpp
I ql8 (q) = i ( n—~ )n~

Bn~ 2Ec n~

1/2

Expanding also the proton wave function in the plane
basis,

1q, (r)= y c„e", (10)

we can write the interaction Hamiltonian in terms of
phonon and proton annihilation and creation operators

H,„,= d r %i,(r) 5n(r, t)+p(r)
Bn~

—g 8(q)ck+qcz(aq —a q) .+& kq

The proton-phonon coupling (11) has the form of the
deformation-potential coupling in solids [6], with the
deformation-potential constant
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Pp
(niv)nx .C7-

Bn~
(12)

III. WEAK AND INTERMEDIATE
PROTON-PHONON COUPLING

The interaction Hamiltonian (11) can be treated as a
small perturbation of the energy of a proton in a uniform
density neutron matter HJ, ', Eq. (3), in case of low values
of B(q). We now consider this case.

A. Perturbative calculations

The lowest-order perturbation correction is obtained
for single-phonon intermediate states [6]. The first-order
wave function, in the Fock representation, is

lk„l, &(k„1,IH,„,lk, o&
%i, 0= lk Oq&+( 1)

This quantity measures the strength of the proton-
phonon coupling. Since it is a product of the derivative
of the proton chemical potential, with respect to the neu-
tron density, and the neutron density itself, it is small at
low densities and near the minimum in Fig. 1. For higher
densities cr increases linearly (Fig. 2). In the following we
shall consider only the high density range which extends
to the right of the minimum in Fig. 1. The proton-
phonon coupling is thus weak near the minimum and be-
comes strong at high density.

D(k, q) =E~(k —q)+co(q) —E~(k) . (15)

We use here a standard notation [6], in which the
single-phonon states lk, 1 & are defined by the proton
momentum k and the phonon momentum q. The wave
function (13) is thus

+k,o= Ik 0 &+ —g B(q) .
Ik —q, l, &

V D(k, q)
(16)

Evaluating the last contribution in the expression (17) we
can find the proton effective mass, as well as the change
of the proton energy due to the coupling to phonons. For
small values of k one can expand

r

1 2m+ 2kv 4k v

D(k, q) p(p +Q) p +Q (q +Q)2

Here k = lk, q = lql, Q =2m, c„and v is the cosine of
the angle between k and q.

The sum over the phonon momenta q can be replaced
for the single-phonon states, in a Debye approximation,
by the integral

Using the wave function (16) we can calculate the ener-

gy of the proton impurity up to the second order in the
interaction, which is

I «—q, l, lH, „,lk, o & I'
Ep '(k)= +U,s —g . (17)

2m, ' D(k q)

(13)

(k„l,lH, „,Ik, o& = B(q)s„, , (14)

and

where the matrix element of the interaction Hamiltonian
1S

where q „ is the Debye cutoff momentum. It has a
physical origin: In the neutron matter the wavelength of
phonons is limited by the interparticle distance. The re-
sults presented below correspond .to putting the Debye
phonon momentum equal to the Fermi momentum of the
neutron matter, q,„=kz.

From Eqs. (17) and (18) we find

3000
2m~g 2m ~

where I2 is

~Pp
(n~)

2
2m~n&

I2,
3~ Ec,

(20)

2000- I =ln 1+ (Q/q, „) —2

2(Q /q, „+1)
(21)

The correction to the proton energy is

2 2
~pp mgn~ /max

(n~) I, ,
Bn E~, 2~2

where I, reads

(22)
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n (1/fm )
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2

ln 1+ (23)

FIG. 2. The deformation-potential coupling strength as a
function of neutron rnatter density for the Friedman-
Pandharipande-Ravenhall model.

An important quantity, which can be used to control
the breakdown of the first-order approximation, is the
number of virtual phonons. It is given by the formula
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(24)

This is achieved by a new canonical transformation

(33)

which, after evaluating the sum, becomes
2 2

(n~ ) ln 1+nN 1 9'max

I N Cs

1

Q/q, „+1
(25)

U =exp g (fq
a

q f*—a )

q

(34)

where fq will be chosen to minimize the energy. This
transformation shifts the phonon creation and annihila-
tion operators:

U 'aqU=aq+ft, U 'aqU=a +f (35)

The phonon-vacuum expectation value of the
transformed Hamiltonian is

B. Canonical transformation method

As a signal of breakdown of perturbative calculations
one can use the number of virtual phonons (25). When it
exceeds unity the first-order approximation becomes in-
valid. This already happens at rather low density. For
higher densities, i.e., for higher coupling, we shall use the
canonical transformation method of Lee, Low, and Pines
[7]. It can be summarized as follows.

One starts with the interaction Harniltonian H;„„Eq.
(8), and the "free" proton Hamiltonian H~ ', Eq. (3). The
full Hamiltonian of the proton-phonon system reads

p2 1+ QF(q)(f f*)+ gqlf I

+ g If, l' ~(q) — P q+ q'
m, 2m~

(36)

Minimizing E, Eq. (36), we find the following equation for
q'

fq co(q) — P q+ q + g If, s q =F(q) .1 1 2 1

m~ 2m m

H =Hp +Hint +Hph

where the phonon Hamiltonian H h is

H h= +co(q)a a
q

(26)

(27)

In order to solve this equation one can write [7]

g q f, I'=(P

(37)

(38)

The Hamiltonian (27) commutes with the momentum
operator

P= gqa a +P, (28)
q

where p is the proton momentum. One can thus trans-
form to a representation in which P is diagonal and in
which the Hamiltonian does not contain the proton coor-
dinates. This is obtained [7] by applying the canonical
transformation

2Am,
1+2Am,

(39)

where
2

Bpp 2m ~ nN
(n~) I2 .

Bp~ 3EC,~
(40)

since the only available vector is P. Putting fq, Eq. (37),
into Eq. (38) and linearizing the left-hand side for small
values of

I PI, one can solve for g:

S=exp i P —gqa a
q

(29) Finally, the following expression for the proton
effective mass is obtained:

The transformed Hamiltonian reads

H= 1

2m~

+ QF(q)(a —a q),
q

P —g qa aq + g co(q)ata
q q

where

F(q)= —Il(q) .
1

v'I

(30)

(31)

Qq =qq+aq

by its expectation value

(32)

The ground state of the system for a given momentum
P is calculated variationally [7], replacing the displace-
ment operator

1 1
(1—

g ) —A(l —g)
2m, z 2m,

(41)

The change of the proton energy is given by the same for-
mula as in perturbative calculations above, Eq. (22).

To evaluate numerically the above formulas we must
specify a number of quantities. The most important
quantity in our calculations is the proton chemical poten-
tial in the neutron matter. To obtain it we use the
Ravenhall's parametrization, as given in Ref. [8], of the
nuclear matter calculations of Friedman and Pandhari-
pande [9]. This multiparameter fit is given in the Appen-
dix. The results of Friedman and Pandharipande [9] are
thought to be one of the most reliable neutron rnatter cal-
culations. The proton chemical potential for the
Friedman-Pandharipande-Ravenhall (FPR) nuclear in-
teractions is displayed in Fig. 1. For comparison, we also



47 PROTON IMPURITY IN THE NEUTRON MATTER: A. . . 1081

show curves corresponding to different Skyrme force pa-
rametrization from Ref. [8].

The strength of the proton-phonon coupling o., Eq.
(12), is derived from the proton chemical potential. One
can notice in Fig. 2 that this coupling strength is a linear
function of the neutron density at high densities.

The second quantity we must specify is the proton
effective mass m~ in neutron matter due to nuclear in-
teractions. Sjoberg [4] calculated m, in strongly asym-
metric nuclear matter, containing a small proton frac-
tion, in the framework of the Landau Fermi-liquid
theory. He has found m~ to be about a half of the bare
mass and slightly decreasing with density. We use here
for m, the values obtained in the Appendix for the FPR
parametrization (dashed curve 1 in Fig. 3). These are
somewhat lower than the Sjoberg's mass. For compar-
ison we also present results corresponding to the bare
proton mass m, =939 MeV. The effective mass m,
serves as a bare mass in our calculations.

The last important quantity is the sound velocity c, in
the neutron matter. In order to calculate its value one
should discuss the nature of density waves in the neutron
matter. This is beyond the scope of the present paper.
Let us only mention that at zero temperature there exists
a zero sound in degenerate Fermi systems. The normal
sound, however, cannot propagate. For neutron matter
the zero sound velocity was calculated by Haensel [10],
who has found the values c, =0.6—0.7. In real physical
systems where the neutron matter is present, i.e., in neu-
tron stars, the temperature is low as compared to the Fer-
mi energy, but it may be still high enough, that normal
sound can also exist [11]. In our calculations we adopt
the values obtained by Haensel [10].

The main results are presented in Fig. 3 where we show
the proton effective mass m, ~, Eq. (41), as a function of

the neutron matter density for two different choices of
the bare mass m, . The curves labeled 1 and 2 corre-
spond to m, =939 MeV and the values obtained from the
FPR formula in the Appendix, respectively. The varia-
tional results, Eq. (41), are shown as solid lines. One
should notice that the behavior of the proton effective
mass is similar in both cases: The effective mass starts to
increase significantly at the density about 3no and be-
comes twice the bare mass at about 4no. For comparison
we also show perturbative results, Eq. (20) (long-dashed
lines). The effective mass in this case has a singularity,
however, it occurs outside the range of validity of the
first-order perturbation theory.

The single-phonon approximation is justified as long as
the number of phonons is less than on [6]. In Fig. 4 we
show the number of phonons as a function of neutron
matter density for two different "bare" proton masses. It
is higher for m„=939 MeV (dashed line) than for the
FPR proton mass m, , which decreases with the density
(solid line). The condition of validity is satisfied for den-
sities below 5no (solid line) and 4no (dashed line), respec-
tively.

Let us finally mention that by changing the values of
the sound velocity c, and the cutoff phonon momentum

q,„one also changes the results shown in the Figs. 3 and
4. Higher values c, move the singularity in the effective
mass to higher densities, and the same happens for lower
values of q,„. The general behavior, however, is not
very sensitive to such variations.

IV. STRONG PROTON-PHONON COUPLING:
LOCALIZATION OF PROTON IMPURITIES'P

It is instructive to express the wave function (16) in the
coordinate representation in order to see that there is a
tendency for localization. The wave function (16) can be
written in the form

4000-
8.0—
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E
~ 2000

N

0
4-.0—0

1000-
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FIG. 3. The proton effective mass as a function of neutron
density. Solid lines are the canonical transformation technique
results and long-dashed lines are the perturbative results.
Short-dashed lines represent the effective mass m +. The labels
1 and 2 correspond to rn + =939 MeV and to the FPR m +, re-
spectively.
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FIG. 4. The mean number of virtual phonons. Solid and
dashed lines correspond to the FPR m ~ and m ~ =939 MeV, re-

spectivelyy.
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—iq rg

e'"'q(r) ~0&,
1

Vy (42)

where ~0) is the phonon vacuum. The approximate form
of the function g(r) can be obtained using the variational
method of the previous section. The operator a can be
replaced by fq. We approximate f* assuming (=0:

1 8*(q)
v'y D(k, q)

The function g(r) now reads

e -rq'~a(q) ~'

q D(k, q)

(43)

(44)

The last integral can be expressed by the integral sine and
cosine functions.

We show the function g(r) in Fig. 5 for a few values of
the neutron density. One can see, that although the pro-
ton is not localized, the probability to find it near the ori-
gin is enhanced. The origin r =0 is chosen as a center of
the neutron density displacement. Generally, with in-
creased density the value of g(0) increases. This process
is accompanied by a displacement of the neutron matter
which has a maximum slope at the origin. According to
Eq. (6), the corresponding density fiuctuation is also at its
largest at the origin, i.e., the potential well has its bottom
there. One thus finds that the interaction of the (zero-
momentum) proton with the phonons results in a defor-

3.00

For a zero-momentum proton there is a spherical symme-
try and one finds

2 2
r)Pp m niv 1 1 ~ - sin(qr )g(r) =1+ (niv) 2

— dq
BiLi, iv Ec, 7r r 0 (q+Q)

(45)

mation of the neutron background which in turn attracts
the proton.

One can easily imagine that with increased coupling
the neutron density Auctuations become larger, and the
potential well felt by the proton becomes deeper. We can
ask a question if there exists a critical coupling above
which the potential well becomes deep enough to bind
the proton. The proton wave function would be localized
in such a potential well.

To describe this state we shall treat the Hamiltonian (5)
in a local-density approximation [12]. We must also take
into account the neutron background since now the de-
formation is real. To see if the proton can be localized we
compare energies of two phases: a normal phase and a
phase with localized protons. The energy of the latter
one is calculated variationally, treating the neutron back-
ground in the Thomas-Fermi approximation. In the spir-
it of the Wigner-Seitz approximation we divide the sys-
tem into cells, each of them enclosing a single proton.
For simplicity the cells are assumed to be spherical. The
volume of the cell is V=1/n~, where nI, is the proton
density. In the following we consider limit V~ ~.

The normal phase is of uniform neutron density n~. In
this phase protons are not localized and their wave func-
tions are plane waves. The energy of the cell, which is a
sum of proton and neutron energies, for small proton
density n p, is approximately

Eo=pp(niv )+ Ve(niv ) . (46)

In the localized phase the protons are trapped into po-
tential wells, corresponding to the nonuniform neutron
density distribution. Let us consider a Wigner-Seitz cell
with nonuniform neutron matter distribution n(r) sur-
rounding the proton whose wave function is +z. In the
local density approximation the proton's effective poten-
tial varies locally with neutron matter density n (r). We
identify this effective potential with the local proton
chemical potential p (n). This results in a potential well

pp(n(r) }which affects the single proton wave function.
The energy of the Wigner-Seitz cell is

p2
Ez = f d r %f,(r) — +pz(n(r) } +p(r)

V 2m~

+ f d r e(n(r)}+Biv f d r[Vn(r)]
v v

(47)

2.00—

0.00 1.00 2.00 3.00 4-.00 5.00
i-((m)

FIG. 5. The function q(r), Eq. (45), for various densities.
Curves 1 —4 correspond respectively to neutron density 0.5, 0.8,
1, and 1.2 fm

The first term is the energy of the proton confined to an
effective potential well v,s(r)=pp(n(r)}. This is by con-
struction an attractive potential well. At high densities
the derivative of the proton chemical potential is positive
and n (r) is assumed to have a minimum at the center of
the cell.

The two other terms in Eq. (47) describe the neutron
background contributions to the energy. These represent
the neutron Fermi sea energy and the curvature energy
due to the gradient of the neutron distribution, respec-
tively, in the Thomas-Fermi approximation. Here
e(n (r) ) is the local neutron matter energy per unit
volume. The parameter B& is the curvature coefficient
for pure neutron matter.

In order to decide which is the ground-state
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configuration we should compare the energies Ep, Eq.
(46), and EL, Eq. (47), assuming the same number of neu-
trons in the cell:

f d r n(r)= Vn& . (4&)

This means that the neutron density variation
5n(r)=n(r) —n& conserves the baryon number:

f d r 5n(r)=0 . (49)
v

Calculations presented here are variational. We as-
sume a simple trial form of the proton wave function and
the neutron density variation. For the proton wave func-
tion we use a Gaussian:

0
0, 6—

Q3

0.4—

0 0.2—
0

—3/4
3I'

exp
4Rp

(50)
O. O

0.00 2, 00 3.001.00
I I I I

[
I I I I I I I I I [ I I I I I l 1 I I

25n(r)=a —mR N
3l'

exp
2RN

1—a—, (51)
V

'

where RN is the rms radius of the neutron distribution
and a is the amplitude of the neutron density variation.
The neutron density is

n(r)=n&+5n(r) . (52)

We assume R& and e to be variational parameters; a) 0
corresponds to the neutron density enhancement around
the proton and a & 0 corresponds to the reduction of the
neutron density in the proton vicinity as compared with
the uniform background. The neutron density n(r), the
proton s probability distribution, and the potential well

v, tr(r) are shown in Figs. 6 and 7 in a specific case.
Using the trial forms of the proton wave function and

the neutron density variation the energy difference hE
becomes

bE=, + f d'r %p(r)[p~(n(r))9 1

8@i~ Rp v

pI (n~))WI (r—)

+ f d r[e(n(r)) e(nz)]—

Here Rp is the rms radius of the localized proton proba-
bility distribution. We treat this quantity as a variational
parameter and minimize the energy difference
6E =EL Ep with respect to Rp.

The neutron density variation 6n(r), satisfying Eq.
(49), is also chosen to have a Cxaussian shape:

—3/2

FIG. 6. The proton probability distribution (dashed line) and
neutron density distribution (solid line) in the Wigner-Seitz cell.
The neutron density is n& =O. 8 fm

of nuclear interactions. The energy AE as a function of
the proton localization radius displays a typical polaron
behavior [6]: It is positive for both very large and very
small values of Rp with a negative minimum occurring at
intermediate Rp. The density, at which AE becomes neg-
ative, is the critical density for proton localization.

In Fig. 8 we show the minimum energy difference bE
obtained by minimizing hE for two choices of m, . For
m, =939 MeV (curves 1) the minimum occurs for
R&=1.3Rp and e= —1.2. The gradient term coeKcient
B~=31.6 MeV fm is used [12,13]. Also, results for
BN=0 are shown. We only show negative values of hE,
which indicate that the localized protons form the
ground state of the system. The critical density is
n, =4no For t.he FPR effective mass m, (curves 2) the
minimum occurs for R&=1.3Rp and a= —2. The criti-
cal density is higher, n, =9np. Corresponding effective

—3/2
29 4w

N
1

RN
(53)

-1 50-

The first term is the proton kinetic energy. The second
term, which is attractive, originates from the interaction
of the proton with the neutron background. The third
term accounts for the local change of the neutron Fermi
momentum. The last term is due to the gradient term in
Eq. (47). This term plays a stabilizing role for small
values of RN.

We have evaluated the energy AE for the FPR model

-200-

-250
0.00

I I I I I I I i I I I I I I I I I i I I I I I I I I I

1.00 2.00 3.00

FICx. 7. The effective potential well in which the proton is lo-
calized for neutron density n& =0.8 fm
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FIG. 8. Binding energy of localized proton. The labels 1 and
2 correspond to m ~ =939 MeV and the FPR m ~, respectively.
Solid line is for B&=31.6 MeVfm' and dashed lines are for

mass is m, =220 MeV. The critical density n, turns out
to be quite sensitive to the value of the effective mass m,
used in the kinetic-energy term in Eq. (53).

V. CONCLUSIONS AND DISCUSSION
OF THE RESULTS

We have shown, in simple model calculations, that the
effective mass of a proton impurity in the neutron matter
can be much higher than the "bare" mass as a result of a
strong proton-phonon coupling. At high densities the
proton impurity can eventually be localized. This behav-
ior is in contrast to the Fermi-liquid case [4] when pro-
tons form a Fermi sphere. The reason is that while the
phonon contribution to the proton energy can be small
compared with the Fermi energy, it is always large when
compared with (zero) kinetic energy of the impurity. One
can expect that other excitations coupled to the proton
impurity can further increase its effective mass.

The problem we consider here is similar to that of an
electron interacting with phonons in solids, which is
called the polaron. The mechanism of a self-trapping of a
proton into the potential well produced by the deformed
neutron background is analogous to that of localization
of an electron strongly coupled to lattice vibrations (small
polaron). In particular, the proton-phonon Hamiltonian
(11) has precisely the form of the deformation potential
introduced by Bardeen and Shockley [14] to describe
electron-phonon interaction in covalent crystals. The po-
laron problem is thoroughly treated in textbooks [5,6].
The most interesting feature is the localization of the po-
laron above a critical value of the coupling constant: The
electron is trapped into the potential well due to the lat-
tice deformation, and can move only together with it.
This makes the effective mass of the localized polaron
much higher than the electron mass. The results present-

ed here show, that the same can occur for a proton im-
purity in the neutron matter. In our calculations the cou-
pling of a proton to the phonons increases with density,
and the critical coupling corresponds to critical density
for localization of the proton.

An important quantitative difference of the nuclear po-
laron considered here as compared with the electron one
is in the values of the integrals Iz, Eq. (21), and I, , Eq.
(23). They are functions of the ratio q,„/Q. It is of the
order of 100 in solids while of order 1 in our case and in-
creases with the neutron density. The integral I2 is thus
bigger for the electron in crystals than for the proton in
the neutron matter. The phonon contribution in our case
is thus of importance at high densities.

In the ground state a single polaron should be at rest,
i.e., the center of the probability distribution of the local-
ized proton should not move, minimizing in this way the
kinetic energy. Thus at low proton concentrations, when
the wave functions of the individual protons do not over-
lap, we would expect the ground state to be a collection
of polarons which have their centers fixed. They could
form an arrangement which can become a regular lattice
if there is any residual repulsive interaction between pro-
tons.

The results found in this paper are based on several
model assumptions, whose validity in case of our nuclear
polaron problem is less certain than in the case of elec-
trons in crystal. The first one is the use of a Debye ap-
proximation when calculating the sum over phonons, Eq.
(19). Since the Debye momentum q,„ is of the order of
the neutron Fermi momentum one can worry that the
long-wavelength approximation is not applicable and one
should use a momentum-dependent coupling o.. A simi-
lar problem occurs in the case of local density approxi-
mation which we use in Sec. IV. There also can exist de-
viations of the proton effective interaction U,& at short
distances from the form we use in Eq. (47). In this case
also new terms in the Thomas-Fermi energy of neutron
matter can be important.

The uncertainties mentioned above are the reason that
we restrict ourselves to a simplified treatment of the nu-
clear polaron problem, and not attempt to solve the prob-
lem rigorously. One should regard the results found here
as indicative that a proton impurity in neutron matter
forms a polaron, whose effective mass can be large at
high densities. A detailed microscopic discussion of this
problem is presented elsewhere.

This work was supported by KBN Czrant No. 2 0204
91 01.

APPENDIX:
THE FRIEDMAN-PANDHARIPANDE-RAVENHALL

MODEL

The energy density, for uniform matter, in the FPR
model is
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where

n =n~+np

x =np/n,
—b3n8, =(a9n+a, on;)e ', i =N, P,

+n [a, +a2e ' +(—,
' —x) (a3+a4e ' )]

—b n
+ne ' [a, +asn+(a, +a, n )( —,

' —x)'],

The parameters are [8] a& = 1054 MeV fm, az = —1393
MeV fm, a3 = —2316 MeV fm, a4 =2859 MeV fm,
a5= —1.78 MeV, a6= —52 MeV fm, a7=5. 5 MeV,
Q8 = 197 MeV fm Q9 =89.8 MeVfm a&p = 59
MeV fm, b

&
=0.284 fm, b2 =42.25 fm, b3 =0.457 fm .

The effective mass m, of the proton impurity in neu-
tron matter is

1 3+Q9n~e
2mp
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