5⁻ "octupole" states in ^{146,148}Nd and ¹⁴⁸Sm via proton scattering

P. D. Cottle, K. W. Kemper, and M. A. Kennedy

Department of Physics, Florida State University, Tallahassee, Florida 32306

L. K. Fifield and T. R. Ophel

Department of Nuclear Physics, Australian National University, Canberra, ACT 2601 Australia

(Received 18 September 1992)

The cross sections for populating the 2_1^+ , 3_1^- , and 5_1^- states of 146,148 Nd and 148 Sm have been determined by inelastic scattering of 26 MeV protons and analyzed using coupled-channels calculations. In these nuclei, the 5_1^- states are usually considered to be "octupole coupled" states arising from the coupling of the 2_1^+ and 3_1^- states. It is found that the differential cross sections for excitation of the 5_1^- states are somewhat larger than would be expected for octupole coupled structure. This excess strength can be explained in terms of small admixtures of two quasiparticle excitations in the 5_1^- states.

PACS number(s): 21.10.Re, 25.40.Ep, 27.60.+j

It has long been known that octupole collectivity plays a prominent role in N=84-88 nuclei, but the precise roles of octupole vibrations and static octupole deformation in this region are still in doubt. When bands of negative parity states were observed in the even-even nuclei of this region during the 1970s, they were interpreted as octupole bands arising from the coupling of an octupole phonon to the ground state band (for example, see [1]). The possibility that nuclei in this region may attain static octupole deformation was suggested by Leander et al. [2]. More recently, the possibility that both octupole vibrational behavior and static octupole deformation may play roles in a single nucleus at different angular momenta has been discussed by Nazarewicz and Tabor [3]. They predicted that particular even-even nuclei, including ¹⁴⁶Xe, ¹⁴⁸Ba, ^{146,148}Nd, ^{148,150}Sm, and ^{150,152}Gd, have reflection-symmetric ground states, but develop static octupole deformations at medium spins. In the context of this interpretation, the low-lying negative parity states, such as the 1_1^- and 5_1^- states, would arise from coupling of an octupole phonon to the ground state band, while higher-lying negative parity states would represent rotations of a statically octupole deformed rotor.

One way to examine the role of octupole vibrational behavior in the low-lying negative parity states of an even-even nucleus is to use proton inelastic scattering. Cottle *et al.* [4, 5] have used (p, p') reactions to examine the 5^-_1 states in 144,146 Nd. If a 5⁻ state arises from the coupling of an octupole phonon to the 2^+_1 member of the ground state band, then it is populated in a (p, p')reaction via a two-step process involving successive E2and E3 excitations. However, if the 5⁻ state possesses two-quasiparticle (2qp) structure, then it would be directly populated via an E5 excitation, which yields a much larger cross section than the octupole coupled twostep process. In this way, proton scattering can be used to test the purity of the wave function of a 5⁻ member of an octupole band. In the present article, we report on a study of three nuclei, 146,148 Nd and 148 Sm, which Nazarewicz and Tabor [3] predict to be reflection symmetric in their ground states, but octupole deformed at medium spins. We find that the cross sections for the 5_1^- states of these nuclei are somewhat larger than would be expected for pure octupole band states. The observed cross sections can be understood if the 5_1^- states are dominated by octupole band structure but contain small admixtures of 2qp states.

Data on the ¹⁴⁶Nd(p, p'), ¹⁴⁸Nd(p, p'), and ¹⁴⁸Sm(p, p') reactions were obtained with a 26 MeV proton beam produced by the Australian National University 14UD Pelletron Accelerator. The protons were scattered from self-supporting foils of approximately 1 mg/cm² which were isotopically enriched to 97.8%, 98.2%, and 96.9% for ¹⁴⁶Nd, ¹⁴⁸Nd, and ¹⁴⁸Sm, respectively. Ejectiles were momentum analyzed using an Enge split-pole spectrograph and detected in a position sensitive gas counter. The energy resolution for the experiments was approximately 50 keV full width at half maximum.

Spectra were obtained at laboratory angles between 25° and 55° . Portions of the spectra obtained for the three targets at laboratory angles of 40° are shown in Fig. 1. Individual states in each of the three nuclei studied were obscured at particular angles by peaks corresponding to elastic scattering from carbon and oxygen contaminants. In addition, strong fluorine contaminants were present in the ¹⁴⁸Nd and ¹⁴⁸Sm targets.

The Gaussian peak-fitting program GELIFT [6] was used for integrating the observed peaks in the spectra. Normalization factors for converting inelastic-scattering yields to absolute differential cross sections were determined by comparing elastic-scattering yields at each angle to the differential cross sections for elastic scattering predicted by using Becchetti-Greenlees optical model parameters [7]. Only a single normalization factor was needed at each angle since a single magnetic field setting of the spectrograph allowed all states of interest, including the elastic peak, to be observed.

To allow coupled-channels analyses of the 5^-_1 states, angular distributions were obtained for the 2^+_1 , 3^-_1 , and 5^-_1 states in each of the target nuclei. Deformation parameters β_L were obtained for the 2^+_1 and 3^-_1 states in each nucleus by comparing the data to differential crosssection angular distributions calculated for single-step excitations with the coupled-channels computer code CHUCK [8]. The data and calculated angular distributions for the 2^+_1 states are shown in Fig. 2; 3^-_1 states are shown in Fig. 3. Becchetti-Greenlees optical model parameters [7] and standard collective form factors for vibrational excitations were used, and Coulomb excitation was included in the calculations. The calculated angular distributions for the 3^-_1 states reproduced the shapes

FIG. 1. Portions of the spectra taken at 40° on (a) 146 Nd, (b) 148 Nd, and (c) 148 Sm.

of the observed distributions reasonably well. Contaminant peaks obscured the 2_1^+ states for angles of less than 35° for all three nuclei (the only such data point available is the 25° point for 148 Sm); consequently, a careful comparison to the calculated angular distribution shapes for these states is not possible. The β_2 and β_3 values obtained for the 2_1^+ and 3_1^- states are listed in Table I. Table I also includes the isoscalar strengths G_2 and G_3 calculated using the prescription of Ref. [9], which assumes a sharp edge nuclear matter distribution and a nuclear radius of $(1.2 \text{ fm})A^{1/3}$. The G_L results are given in single-particle units (spu). The energies of the 2_1^+ and 3_1^- states listed in Table I are taken from [10, 11].

The values of β_2 and β_3 obtained here for ¹⁴⁸Sm can be compared with results from two other proton scattering experiments in the same energy range reported by Palla *et al.* [12] and Obiajunwa *et al.* [13]. Palla *et al.* [12] measured the ¹⁴⁸Sm(p, p') reaction at an energy of 25.6 MeV and obtained results of $\beta_2=0.143$ and $\beta_3=0.166$ using a coupled-channels analysis involving the 2^+_1 and 3^-_1 states. Obiajunwa *et al.* [13] reported results of $\beta_2=0.132$ and $\beta_3=0.120$ from a similar coupled-channels analysis of their data, which was taken with 24 MeV protons. Our results are in good agreement with those of Obiajunwa

FIG. 2. Calculated angular distributions and data for the 2_1^+ states of (a) 146 Nd, (b) 148 Nd, and (c) 148 Sm.

Nucleus	J^{π}	Energy $(keV)^a$	eta_L	$G_L \ ({ m spu})^{ m b}$
¹⁴⁶ Nd	2+	454	0.140(10)	28(4)
	3-	1189	0.113(6)	19(2)
¹⁴⁸ Nd	2^+	302	0.160(10)	37(5)
	3-	999	0.103(3)	16(1)
148 Sm	2^+	550	0.120(10)	22(4)
	3-	1162	0.130(10)	27(4)

TABLE I. Results for 2_1^+ and 3_1^- states.

^aEnergies are taken from [10, 11].

^bCalculated as described in the text.

et al. [13], but are somewhat below those of Palla et al. [12].

The present results of $\beta_2=0.140(10)$ and $\beta_3=0.113(6)$ for ¹⁴⁶Nd are in agreement with the results of a previous study [5] performed with 35 MeV protons [$\beta_2=0.14(1)$ and $\beta_3=0.12(1)$]. No comparable proton scattering results are available for ¹⁴⁸Nd.

Two sets of coupled-channels calculations were performed (using CHUCK [8]) for the analysis of the 5_1^- state in each nucleus. The first set of calculations was used to predict the differential cross sections for a pure octupole

FIG. 3. Calculated angular distributions and data for the 3_1^- states of (a) 146 Nd, (b) 148 Nd, and (c) 148 Sm.

band 5_1^- state which arises from the coupling of the 2_1^+ and 3_1^- states. We refer to such a structure as "octupole coupled," or OC. The primary population modes for an octupole coupled 5^- state would be the two-step excitation paths shown in Fig. 4(a). To obtain a prediction for an octupole coupled state, a coupled-channels calculation corresponding to the coupling scheme of Fig. 4(a) was performed with β_2 and β_3 coupling strengths extracted from the 2_1^+ and 3_1^- states.

In the second set of coupled channels calculations, a direct E5 excitation mechanism was added to the two-step excitation paths. The resulting "direct + OC" coupling scheme is shown in Fig. 4(b). For these calculations, the calculated angular distributions were fitted to the data by varying β_5 . In this way, the E5 strength present in each of the 5_1^- states was determined.

The data on 5_1^- states in each of the nuclei studied here are compared to the octupole coupled and direct + OC coupled channels calculations in Fig. 5. The shaded bands around the octupole coupled curves correspond to the range of magnitudes of the calculated cross sections arising from the uncertainties in the values of β_2 and β_3 . For all three nuclei, the octupole coupled calculations somewhat underpredict the data. The addition of a direct E5 excitation mechanism using the direct + OC coupling scheme allows a better fit to the data. The β_5 values obtained through a fitting procedure with the direct + OC scheme are listed in Table II, along with the corresponding G_5 results (calculated in the same way as G_2 and G_3). In all three cases, the extracted E5 strengths correspond to approximately 3 spu.

Proton scattering experiments on other even-even N > 82 nuclei have also identified E5 strength in 5_1^- states. In the N=86 nucleus ¹⁵⁰Sm, Pignanelli *et al.* [14] found

FIG. 4. Coupling schemes used in the multistep coupledchannels calculations: (a) octupole coupled, (b) octupole coupled with a direct E5 excitation route.

Nucleus	$E(5_1^-) \; (\text{keV})^{\mathbf{a}}$	eta_5	$G_5 ~({ m spu})^{ m b}$	
¹⁴⁶ Nd	1517	0.044(3)	3.2(4)	
¹⁴⁸ Nd	1242	0.046(3)	3.5(5)	
^{148}Sm	1594	0.040(3)	2.8(4)	

TABLE II. E5 excitation strengths.

^aEnergies are taken from [10, 11].

^bCalculated as described in the text.

3.6 spu of E5 strength in the 1357 keV 5_1^- state. In their study with a radioactive ¹⁴⁸Gd (N=84) target, de Angelis *et al.* [15] observed 2.5 spu of strength in the $5_1^$ state at 2082 keV. Cottle *et al.* [4] also identified a large concentration of E5 strength in the 2093 keV 5_1^- state of ¹⁴⁴Nd. The E5 strength in this state was originally reported [4] as 8.2(23) spu. However, we have found that their calculation is in error, and that the correct result is 10.1(8) spu. The largest G_5 among the 5_1^- states of N > 82 nuclei is in ¹⁴⁴Nd, while the rest of the nuclei in

FIG. 5. Data for the 5_1^- states and the coupled-channels calculations for each nucleus: (a) 146 Nd, (b) 148 Nd, and (c) 148 Sm.

FIG. 6. G_5 values for the 5_1^- states of even-even N=84-88 nuclei. The values shown are taken from [4, 14, 15] and the present work.

the region have G_5 values near 3 spu. These results are compiled in Fig. 6.

It seems likely that the E5 strength present in ^{146,148}Nd and ¹⁴⁸Sm, as well as other nuclei in the region, indicates the presence of a 2qp component in these states. In ¹⁴⁸Gd, de Angelis *et al.* [15] observed a strong (17 spu) 5⁻ state at 2632 keV, which they attributed to a 2qp excitation of a proton from the $d_{5/2}$ or $g_{7/2}$ orbits, which are below the Z=64 subshell energy gap, to the $h_{11/2}$ orbit, which is above the subshell gap. They concluded that the 2.5 spu of E5 strength present in the 2082 keV 5_1^- state of ¹⁴⁸Gd results from the admixture of a small component of the two-quasiproton excitation into the octupole coupled 5^- state. This particular two-quasiproton excitation may be responsible for the E5 strength observed in the N > 82 Nd and Sm isotopes; however, the $f_{7/2}i_{13/2}$ two-quasineutron excitation is also available.

The situation in ¹⁴⁸Gd suggests a straightforward approach to estimating the size of the 2qp component in a 5_1^- state. If an octupole coupled state with no E5 strength mixes with a 2qp state which has finite E5 strength, then most of the strength remains with the perturbed 2qp state, and a small amount of the 2qp E5 strength is imparted to the perturbed octupole coupled state. In the context of this two-level mixing scenario, the wave function of the 5_1^- state can be written as

$$\Omega = A \mid 3^-_1 \times 2^+_1
angle + B \mid 2 \mathrm{qp}
angle,$$

where $|3_1^- \times 2_1^+\rangle$ is the octupole coupled component and $|2qp\rangle$ is the two-quasiparticle component. The quantity B^2 is given by the equation

$$B^{2} = G_{5}(OC) / [G_{5}(OC) + G_{5}(2qp)], \qquad (1)$$

where $G_5(OC)$ is the E5 strength located in the perturbed octupole coupled state, and $G_5(2qp)$ is the strength found in the perturbed 2qp state. In ¹⁴⁸Gd, we are fortunate enough to know both $G_5(OC)$ and $G_5(2qp)$. For this case, B^2 can be estimated as

$$B^2 = (2.5 \text{ spu})/(2.5 \text{ spu} + 17 \text{ spu}) = 0.13.$$

In a case where the E5 strength is fragmented among

more than two states, B^2 would simply be

$$B^{2} = G_{5}(\text{OC}) \middle/ \left(\sum G_{5} \right), \qquad (2)$$

where the sum is over all 5⁻ states. Equation (2) can be applied to ¹⁴⁶Nd, in which nine 5⁻ states above 2 MeV were measured by Pignanelli *et al.* [14]. The total of the G_5 values given by Pignanelli *et al.* for the higher-lying 5⁻ states is 11.1 spu. Therefore, for ¹⁴⁶Nd

$$B^2 = (3.2 \text{ spu})/(3.2 \text{ spu} + 11.1 \text{ spu}) = 0.22.$$

We do not have data on higher-lying 5⁻ states in either ¹⁴⁸Sm or ¹⁴⁸Nd. However, the G_5 values for the 5_1^- states in ¹⁴⁸Sm and ¹⁴⁸Nd are about the same magnitude as in ¹⁴⁶Nd and ¹⁴⁸Gd. Therefore, it seems likely that the 2qp components of the perturbed octupole coupled wave functions in ¹⁴⁸Sm and ¹⁴⁸Nd are small, just as in ¹⁴⁶Nd and ¹⁴⁸Gd.

The situation is quite different in ¹⁴⁴Nd, where the $G_5=10$ spu value for the 5_1^- state is three times larger than in any of the other nuclei discussed here. While there are no data available on higher-lying 5⁻ states in ¹⁴⁴Nd, it is likely that more than 50% of the E5 strength in this nucleus is located in the 5_1^- state since the total observed E5 strength is less than 20 spu in both ¹⁴⁶Nd and ¹⁴⁸Gd.

It is not obvious why such a concentration of E5 strength occurs in 144 Nd. However, a study of 144 Nd

- [1] P. Vogel, Phys. Lett. **60B**, 431 (1976).
- [2] G.A. Leander, R.K. Sheline, P. Moller, P. Olanders, I. Ragnarsson, and A.J. Sierk, Nucl. Phys. A388, 452 (1982).
- [3] W. Nazarewicz and S.L. Tabor, Phys. Rev. C 45, 2226 (1992).
- [4] P.D. Cottle, S.M. Aziz, K.W. Kemper, M.L. Owens, E.L. Reber, J.D. Brown, E.R. Jacobsen, and Y.Y. Sharon, Phys. Rev. C 43, 59 (1991).
- [5] P.D. Cottle, M.A. Kennedy, K.W. Kemper, J.D. Brown, E.R. Jacobsen, Y.Y. Sharon, E.M. Leitch, H. Mabuchi, Z.Q. Mao, T. Slivka, and E.J. Greene, Phys. Rev. C 44, 1668 (1991).
- [6] D.C. Radford, A.W. Wright Nuclear Structure Laboratory (Yale University) Internal Report 69, GELIFT, 1979.
- [7] F.D. Becchetti and G.W. Greenlees, Phys. Rev. 182, 1190 (1969).
- [8] P.D. Kunz, University of Colorado report (unpublished).
- [9] A.M. Bernstein, in Advances in Nuclear Physics, edited

using the neutron stripping reactions $^{143}Nd(d, p)$ or $^{143}Nd(\alpha, {}^{3}He)$ would provide new information on the origin of the E5 strength in the 5_1^- state. If the 5_1^- state possesses a large $f_{\frac{7}{2}}i_{\frac{13}{2}}$ two-quasineutron component, then the state would be strongly populated in a neutron stripping reaction. The 5_1^- state has $d_{\frac{5}{2}}h_{\frac{11}{2}}$ two-quasiproton structure. A study of the $^{143}Nd(d, p)$ reaction has been performed by Raman *et al.* [16], but the resolution was not sufficient to separate the 5_1^- state from neighboring states.

In summary, the present results on ^{146,148}Nd and ¹⁴⁸Sm confirm that the 5_1^- states of these nuclei are octupole coupled states, as predicted by Nazarewicz and Tabor [3]. Only a small admixture of a 2qp "contaminant" is required to explain the present (p, p') data. This contrasts with the situation in ¹⁴⁴Nd, in which the $5_1^$ state has $G_5=10$ spu, implying a large 2qp component. A simple octupole coupled interpretation is clearly inadequate for ¹⁴⁴Nd.

ACKNOWLEDGMENTS

We wish to acknowledge C. Reed for assistance in data analysis. We also wish to thank R. Turkentine and A. Smith for fabricating the targets used in this study. This work was supported by the National Science Foundation and the State of Florida.

by M. Baranger and E. Vogt (Plenum, New York, 1969), Vol. 3, p. 321.

- [10] L.K. Peker, Nucl. Data Sheets 60, 953 (1990).
- [11] L.K. Peker, Nucl. Data Sheets 59, 393 (1990).
- [12] G. Palla, H.V. Geramb, and C. Pegel, Nucl. Phys. A403, 134 (1983).
- [13] E.I. Obiajunwa, L.H. Rosier, and J. van de Wiele, Nucl. Phys. A500, 341 (1989).
- [14] M. Pignanelli, N. Blasi, S. Micheletti, R. De Leo, M.A. Hofstee, J.M. Schippers, S.Y. van der Werf, and M.N. Harakeh, Nucl. Phys. A519, 567 (1990).
- [15] G. de Angelis, P. Kleinheinz, B. Rubio, J.L. Tain, K. Zuber, B. Brinkmoller, P. von Rossen, J. Romer, D. Paul, J. Meissburger, G.P.A. Berg, A. Magiera, G. Hlawatsch, L.G. Mann, T.N. Massey, D. Decman, G.L. Struble, and J. Blomqvist, Z. Phys. A **336**, 375 (1990).
- [16] S. Raman, R.L. Auble, J.B. Ball, E. Newman, J.C. Wells, Jr., and J. Lin, Phys. Rev. C 14, 1381 (1976).