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Level densities of Al, Si, and 'Ca inferred from Auctuation measurements
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Neutron total cross sections for 'Al, Si, and Ca have been measured with good statistics ( —1%)
and good energy resolution over the energy range 4 ~ E„~20 MeV. Two techniques have been used to
infer the level density of the compound nuclei. The first is the conventional procedure of deducing an
average level width and relating this to the level density. An alternative method is to deduce the level

density from the magnitude of the variance of the cross section. A previous study of these two tech-
niques suggested that the two yielded results which were not completely consistent. Our examination of
the discrepancies indicates that they are reduced but not eliminated with better data. It seems likely that
a part of the problem is the uncertainty in input parameters.

PACS number(s): 21.10.Ma, 24.60.Ky

I. INTRODUCTION

Fluctuation measurements have been used extensively
to study level densities in the continuum (E ~ 12 MeV)
[1—3]. Even when the energy is high enough that levels
in the compound nucleus overlap, it can be shown [1]
that cross sections for compound nuclear processes will
show variations with energy on a scale consistent with
the average level width. Either cross sections to particu-
lar final states or total cross sections may be used for this
analysis. An interesting result of the theory of fluctua-
tions is that two separate techniques exist for inferring
the compound nuclear level density from the fluctuation
behavior. The first involves determining the average level
width I and then relating this to the level density in the
compound nucleus through the expressions

(2)

where i denotes a particular decay channel, I; is the de-
cay width to that channel, DJ is the level spacing in the
compound nucleus with spin J, and T; is the transmission
coefficient for the ith channel coupled to spin J. As can
be seen, this approach relates the D value (inverse of the
compound level density) to sums of transmission
coefficients over decay channels and to the average level
width.

A second approach is to study the variance of the cross
section. It has been shown that

where o.z is the total neutron cross section for a particu-
lar target, A, is the reduced wavelength of the neutron, J is
the spin of the compound nucleus, and i and I are the
spins of the projectile and target, respectively. T is the
transmission coefficient, and the compound level density
is p(E,J)=H(J)co(E). Note that this method, in fact, re-
quires both I and the variance, but does not need the lev-
el densities in the residual nuclei. Virtually all of the fluc-
tuation measurements reported have based level density
determinations on method 1 (the gamma method), but a
few analyses [4,5] have utilized method 2 (the variance
technique). To our knowledge, only Ref. [6] has com-
pared the two procedures. The results were not com-
pletely consistent, and Mishra et al. [6] considered a
number of possible explanations for the discrepancies. In
addition to difficulties with assumptions in the analysis, a
possible explanation could be the limitations imposed by
the quality of the data. Although the resolution of the
measurements of Mishra et al. was superior to previous
measurements, the statistical accuracy was only 2 —3%,
which limited the reliability of the comparison.

The present measurements were undertaken as part of
a program to measure total neutron cross sections for a
number of targets at energies between 5 and 600 MeV.
These data [7,8] were acquired at the WNR facility at
Los Alamos National Laboratory and were intended to
give additional information about optical model poten-
tials above 50 MeV. The quality of the data was such
that for some targets the measurements yielded measure-
ments of better quality than were previously available in
the region below 20 MeV as well.
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II. EXPERIMENTAL TECHNIQUES

The neutron total cross section is determined by
measuring the attenuation in a neutron beam produced
by a known amount of material. If No is the number of
counts without a sample and N& is the number with a
sample, then
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WNR Data: 6=0.3125 ns
Carl son

where n is the number of nuclei per unit volume and L is
the length of the sample.

Neutrons were provided by the white source at WNR
(Los Alamos). A beam of 800-MeV protons impinges on
a W target and produces neutrons over the range from ki-
lovolts to nearly 800 MeV. The time width of the beam is
less than 1 ns, allowing the identification of neutron ener-
gies from time of Aight.

Open beam and target spectra y peaks were shifted to
coincide. The analytic dead time correction [9] takes into
account that low-energy neutrons have a smaller proba-
bility of being counted than high-energy neutrons. It also
corrects for variations of the beam intensity. Typical
correction factors applied to the observed number of
counts were as high as 1.7. Inclusion of beam intensity
variation altered factors by less than 0.1%.

While events were being processed by the data acquisi-
tion system, no other events could be accepted. By
knowing the total number of beam pulses and the number
of times the system was alive, the true spectra are ob-
tained by multiplication with the ratio of these numbers.
Typical factors ranged between 1.1 and 1.8. The number
of live beam pulses was corrected for the number of veto
counts.

The spectra were normalized to the monitor counts,
and the time-independent background was subtracted.
Using the two-sample technique [10], the time-dependent
background was determined and found negligible.
Corrections because of inscattering and beam hardening
were found inconsequential.

The energy resolution was found to be better than 3
and 19 keV at 4 and 18 MeV neutron energy, respective-
ly. Accuracy due to counting statistics is better than 1%
for Al and Si and better than 2% for Ca. Unlike the
previous reports on this experiment [7,8] in which the
data were averaged over 1% energy bins for spherical op-
tical model analysis, the present study utilizes the full en-
ergy resolution of the original experiment.

A plot of the data for the lowest-energy region for Al
is shown in Fig. 1. Also shown for comparison are the
data points of Carlson and Barschall [4]. Good agree-
ment in the structure and magnitude of the cross section
is seen, with somewhat sharper structure found in the
present data.

III. ANALYSIS

Determination of the average level width can be made
in three different ways. Originally, widths were deter-
mined by calculating the autocorrelation function

F(e)=
& [~(E +e) &~ & ][~(E—)

—
& ~ & ] &

F(0)
1+(egr)' '

where F(0) is the variance of the cross section. By calcu-
lating this expression for various values of e, that value
for which F(e)= —,'F(0) can be found. Subsequently, it
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FIG. 1. Comparison of the present total cross section data on
"Al with the data of Carlson and Barschall [4] in the energy
range 5 MeV ~ E„~7 MeV. The better resolution of the
present data causes sharper peaks and valleys in the energy
dependence, but good agreement in energy scale and average
magnitude can be seen.

was proposed that the number of maxima, N, per unit en-
ergy be counted; the value of 1 would then be [11]

I =0.55/N . (4)

where m will be 6/d, where 6 is the energy interval to be
expanded and d is the spacing between points, and az
and bz are the usual Fourier expansion coefficients. It
has been shown that the quantity Sz defined as

=a +b =4m.—(varo )e
r

K K K

providing a method for determining I .
Richter [3] concludes that of these three methods there

is a slight preference for the Fourier series method. All
of the three can be adversely affected by poor resolution
or poor statistics, but for good data, Richter [3] finds
somewhat smaller errors due to the finite range of data
with the Fourier series method. Statistical errors cause a
"white noise" contribution to the spectrum; this
effectively adds a constant to each Sz, and so a fit is usu-
ally made with a constant term added to the right-hand
side of Eq. (5). Finally, modulations in the energy depen-
dence of the cross section due to optical model effects or
long-range changes in cross section can affect I as well;
these can be dealt with by discarding the lowest-order Sz
values and fitting only the values beyond a certain Sz,
since variations over large energy ranges are seen in low-
order K values.

Similarly, the variance is also affected by long-range
energy modulations. Instead of calculating the variance
directly, the value was calculated from the constant mul-

Finally, the cross section can be expanded in a Fourier
series in the form

2mKE g b
. 2vrK'E
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tiplier in Eq. (5), since once I is determined all other
quantities are known. In fact, since the variance method
depends on the product of the variance and width, errors
in I will not necessarily be compounded in using the
variance method, given the appearance of the product
I varo. in the constant to be fitted. A typical fit is shown
in Fig. 2.

Figures 3—5 show the level densities inferred for Al,
Si, and 'Ca from fluctuations. The combination of

data with good resolution and statistical accuracy and the
large energy range yields a number of values for the level
density.

To provide a comparison between the gamma and vari-
ance methods, the level density values were calculated us-
ing both techniques. For the variance method, the only
additional input parameters needed are transmission
coeScients for neutrons incident on the target and the
spin cutoff parameter, which is needed to specify B(J).
Optical potential parameters of Rapaport, Kulkarni, and
Finlay [12] were used to calculate transmission
coeScients for neutrons, and those of Becchetti and
Cxreenlees [13] and McFadden and Satchler [14] were
used for protons and alpha particles, respectively, while
the single-particle energies proposed by Seeger and Per-
isho [15] and Seeger and Howard [16]were used to calcu-
late the spin cutoff parameters using a microscopic Fermi
gas code [17]. Relatively small uncertainty exists in the
spin cutoff parameter ( & 10%%uo) based on the comparison
between the two single-particle sets, and small differences
are also seen if the neutron transmission coefficients are
evaluated with the potential of Becchetti and Greenlees
[13] instead of that of Rapaport, Kulkarni, and Finlay
[12]. Other uncertainties could come from the fact that
the derivation of Eq. (3) assumes that the total level width
is independent of J, which allows I to be factored out of
the sum. If this assumption is relaxed, the sum can be
evaluated using the relative J dependence predicted by a
Hauser-Feshbach calculation. Less than 10%%uo changes
resulted from this alternative calculation. Other uncer-

'Si: ln[S(k)]=f(k), 6.9&K &8.1 MeV
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FIG. 2. Plots of the SI, values for the total cross section data
for silicon for energies in the range 6.9 MeV E„~8.1 MeV.
The solid line shows a fit of the form exponential plus constant
to the S& distribution.

tainties result from the determination of the product
I varo. . As was previously discussed, this was done using
the procedure of Mishra et al. [6]. Fits to the Sx. values
from a Fourier series expansion were calculated for vari-
ous minimum values of K. Eliminating the first few
values produced successively smaller values of y for the
fit of Eq. (5) to the data. As the point where the y stabi-
lized was reached, it was found that the value of I, which
to this point dropped as each term was deleted, also stabi-
lized. This value of I was selected, and the value of
I varcr obtained with this minimum K was used to
deduce the level density. Note that this value of varo. is
not the one which would be calculate/ directly from the
data, but is modified because of the deletion of long-range
modulation effects.

Evaluation of the level density from the gamma values
is carried out with the same approach as by Mishra et al.
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FIG. 3. Level density of Al inferred from
fluctuation measurements compared with cal-
culations and predictions. The X and +
marks denote values derived from the gamma
method with level densities in the final nuclei
given by microscopic predictions based on
Seeger-Perisho [15] and Seeger-Howard [16]
single-particle states, respectively. The 0 sym-

bols denote values obtained from the variance
method, and the symbols those derived from
the nonoverlapping level formalism. Solid and
double solid lines denote the microscopic cal-
culation with Seeger-Perisho and Seeger-
Howard levels, respectively, and the dashed
and dot-dashed curves show the predictions of
Cxilbert and Cameron [20] and Rohr [19], re-
spectively.
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FIG. 4. Level density of ' Si inferred from
fluctuation measurements compared with cal-
culations and predictions. The X and +
marks denote values derived from the gamma
method with level densities in the final nuclei
given by microscopic predictions based on
Seeger-Perisho [15] and Seeger-Howard [16]
single-particle states, respectively. The 0 sym-
bols denote values obtained from the variance
method, and the symbols those derived from
the nonoverlapping level formalism. Solid and
double solid lines denote the microscopic cal-
culations with Seeger-Perisho and Seeger-
Howard levels, respectively, and the dashed
and dot-dashed curves show the predictions of
Cxilbert and Cameron [20] and Rohr [19), re-
spectively.

[6]. These authors assumed that the average gamma was
defined by the expression

r, =yp, r, ,
J

where I'z gives the probability that the compound nu-

cleus is formed with spin J. It has been more common in
the past to average lifetimes rather than widths [18], in
which case

1==gP~/1 J .
I q

In fact, if one constructs an autocorrelation function
from equal contributions of functions with two or three
different widths, the best fit gamma is actually between
the values I

&
and I 2, although the difference between I,

and I 2 is normally less than 25%, making this distinction
less important. We have calculated the level density us-
ing both I, and I 2 and have averaged these to give the
value denoted by level density from gamma.

A far more important question is that of level densities
in the residual nucleus. As can be seen from the formulas
for co(E), the level density in the compound nucleus
varies linearly with the sum of the transmission
coefFicients over all outgoing channels. For the lowest
energies, the Hauser-Feshbach calculation depends only
on known levels, while as the energy increases, the largest
decay branches move to regions of the continuum. The
present calculations include the lowest 20 levels in each
final nucleus as individual levels, with the continuum for-
mula used beyond this point.

Calculations were carried out with the tabulation of
Rohr [19] and Gilbert and Cameron [20] and with pa-
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FIG. 5. Level density of 'Ca inferred from
Auctuation measurements compared with cal-
culations and predictions. The X and +
marks denote values derived from the gamma
method with level densities in the final nuclei
given by microscopic predictions based on
Seeger-Perisho [15] and Seeger-Howard [16]
single-particle states, respectively. The 0 sym-
bols denote values obtained from the variance
method, and the symbols those derived from
the nonoverlapping level formalism. Solid and
double solid lines denote the microscopic cal-
culations with Seeger-Perisho and Seeger-
Howard levels, respectively, and the dashed
and dot-dashed curves show the predictions of
Crilbert and Cameron [20] and Rohr [19], re-

spectivelyy.
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rameters obtained from statistical mechanical calcula-
tions [17] with the single-particle states proposed by
Seeger and Perisho [15] and Seeger and Howard [16]. In
general, the various predictions show a consistent shape,
but differ somewhat in magnitude.

The general trend of the values obtained from the Auc-
tuation analysis follows the slope predicted by the statist-
ical mechanical calculation and by the compilations. A
tendency for the experimental results to agree better with
the Rohr and Seeger-Perisho tabulations is seen, with
poorer agreement for the Seeger-Howard and Gilbert-
Cameron tabulations. Note that the values deduced from
the gamma technique are almost completely insensitive to
the choice of level density parameters in the residual nu-
clei at the lowest energy (where only the tabulated level
energies are used), but as the energy increases, they
diverge. This is as expected, since the level density
values in the compound nucleus for a given value of gam-
ma show a linear dependence on the level densities in the
residual nuclei ~ Thus, in this energy range, the level den-
sity results depend sensitively on the assumed final nu-
cleus level densities with method 1. A substantial advan-
tage to method 2 is that the residual level densities do not
enter in the calculation. At the top energies, the uncer-
tainty in the values of the level density deduced from
method 1 increases substantially, while that for values
from method 2 should remain roughly the same until the
fluctuations become too small to measure reliably.

The fundamental requirement for Ericson theory to be
valid is that the level width I be comparable to or greater
than the level spacing D. Using the widths and spacing
deduced from the Ericson analysis enables a check of this
assumption. I varies slowly with J, but D varies rapidly
with J, having a minimum for J=3. The ratio I J /DJ in-
ferred from the Ericson analysis suggests that the funda-
mental assumption of Ericson theory is not met in the
lowest 2 —3 MeV of the excitation region studied.

Carlson and Barschall [4] have utilized a related pro-
cedure to obtain level density information at lower ener-

gies. In this limit it is assumed that interference between
levels is small and that fluctuations are due to variations
in the number of levels in an energy bin of given width as
the energy varies or variation in the average neutron
width of the levels. They show that if the cross section is
averaged over a bin width 6 and the variance F of this
averaged cross section relative to an average over an even
larger averaging interval I is calculated, one obtains

g'(J)(T„, )'
F b=( X ) g (k +k„),

where g(J)=(2J+ I)/(2I+1)(2i+1) and k~ and k„
are Var( I „)/( I „) and Var(N) /( N ), respectively.
They thus define the magnitude of the variances of the
width and spacing distributions, since N is the number of
levels in the energy bin. Under the usual assumptions [4],
k~ is 2 and k, is 0.27 at low energy, while the corre-
sponding high-energy limits are 1 for both k, and k~.
Thus the sum will be about 2 in both limits and this value
was used in the present analysis.

An analysis procedure of the type performed by Carl-
son and Barschall [4) was performed on the present data.
The bin widths 6 were determined so as to compensate
for the increase in level density over the range; i.e., 6
over the range was varied as 1/p(E), where a first-order
estimate of p(E) was obtained from the parameters of
Rohr [19]. Varying the value of b, in the lowest bin
scaled all other 6 values by the same factor. The ap-
propriate value for the large averaging interval was
chosen as in Ref. [4], by examining the magnitude of Fb,
as a function of the large averaging interval I. This varia-
tion is large for small I, but eventually reaches a plateau;
an I value corresponding to this region was used in the
analysis.

Values obtained from this analysis are shown in Figs.
3 —5 labeled "FA method. " No systematic differences
were found between the values extracted from this pro-
cedure and those deduced with the use of Ericson theory.
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FIG. 6. Level density of "Al. Triangles
denote values derived from Endt [21], while X
and C' symbols denote results from the width
and variance method, respectively, based on
the level density of Rohr [19] in the residual
nuclei. In addition to the predictions ex-
plained in Fig. 3, the prediction of Beckerman
[22] is also shown.
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FIG. 7. Level density of ' Si. Triangles
denote values derived from Endt [21], while X
and C' symbols denote results from the width
and variance method, respectively, based on
the level density of Rohr [19] in the residual
nuclei. In addition to the predictions ex-
plained in Fig. 3, the prediction of Beckerman
[22] is also shown.
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These similarities are an obvious result of the very close
relationship between Eqs. (3) and (6).

A broader test of the level density predictions can be
made with the use of low-energy level density data. The
levels listed in Endt [21] were summed to obtain values
for the level density in the region below 6 MeV, and these
results are shown in Figs. 6—8. Comparisons are present-
ed with Gilbert and Cameron [20], Beckerman [22], and
Rohr [19]. Of these compilations, the results of Rohr
agree better than the other two, with a tendency to be
above the data for all three compilations. The unortho-
dox level density form used by Beckerman may explain
why the level density for his parameters has a somewhat
different shape. Also shown are microscopic calculations
based on the level schemes of Seeger and Perisho [15] and
Seeger and Howard [16]. These are also somewhat too
large. It is interesting to note that the Seeger-Perisho

predictions are better for Al and Si, while the Seeger-
Howard predictions are superior for 'Ca.

A comparison of the present data was also made with
the results of Ignatyuk, Smirenkin, and Tishin [23].
These authors propose that an energy-dependent a be
used to deal with shell and collective effects. The form
for a used is

a(E)=a 1 ——(1—e r )
E

eff

where y is 0.05, a,ff is the asymptotic value of a at high
energies, and 6 is the shell and pairing energy shift. The
above form shows an increase of a with E if 6 is positive
and a decrease of a with E if 6 is negative. Also, the
same authors propose a dependence of a,ff on 3 of the
form

10
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FIG. 8. Level density of 'Ca. Triangles
denote values derived from Endt [21], while X
and 0 symbols denote results from the width
and variance method, respectively, based on
the level density of Rohr [19] in the residual
nuclei. In addition to the predictions ex-
plained in Fig. 3, the prediction of Beckerman
[22] is also shown.
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the data points presented in Fig. 6 and the pre-
dictions of Rohr [19] (dot-dashed line) and a fit
optimizing the representation of the data by
varying a and the energy shift 6 (solid line).
The double line shows a fit based on the for-
malism of Ignatyuk, Smirenkin, and Tishin
[23] where b, is varied and the dashed line a fit
where both a,& and 4 are varied.
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a,ir/3 =a+PA

Level densities for Al, Si, and 'Ca derived from
these values are compared with the present data in Figs.
9—11, where a, ir was determined from Eq. (8) and the 6
was varied to optimize the fit. As can be seen, the values
of a,z are too large, causing the best fit level density to
have a steeper slope than the data.

A fit was also made by allowing both a,z and 5 to
vary. This gave results which were much better, and the
a,z values dropped by more than 30%. The results of Ig-
natyuk, Smirenkin, and Tishin included many heavier nu-
clei and appear to have too large a value for a,& in this
mass region.

A further search was conducted using a conventional
(constant a) Fermi gas form. This fit is marked "Rohr
fit," since the starting points for the parameters a and 6

were the values of Rohr. The fits of Ignatyuk, Smirenkin,
and Tishin and Rohr produce similar quality representa-
tions of the data and are consistent roughly with
a = A /10 and a back-shifted value for b, (i.e., more nega-
tive than the usual 0 for odd-odd, 6 for even-odd or odd-
even, and 2b, for even-even nuclei).

A more recent paper by Ignatyuk, Istekov, and
Smirenkin [24] has proposed alternative forms for a, ir.
These include one in which a,z is proportional to 3 and
two forms in which a second term proportional to 3 is
also included. These produce predictions which are
closer to the present results than those of Ref. [23], with
the forms

a,ir=0. 0792( g + g '~')

and

&,g =0.0913,

10 i I I
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Rohr Fit:
Ignatyuk
Ignatyuk
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FIG. 10. Level density of Si. Shown are
the data points presented in Fig. 7 and the pre-
dictions of Rohr [19] (dot-dashed line) and a fit
optimizing the representation of the data by
varying a and the energy shift 5 (solid line).
The double line shows a fit based on the for-
malism of Ignatyuk, Smirenkin, and Tishin
[23] where 6 is varied and the dashed line a fit
where both a,z and 5 are varied.
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the data points presented in Fig. 8 and the pre-
dictions of Rohr [19] (dot-dashed line) and a fit
optimizing the representation of the data by
varying a and the energy shift 6 (solid line).
The double line shows a fit based on the for-
malism of Ignatyuk, Smirenkin, and Tishin
[23] where b, is varied and the dashed line a fit
where both a,z and 5 are varied.
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providing the best representation.
Further work on the topic of level densities deduced

from Auctuations will require use of partial cross sections
or lower neutron energies, if the region 3 )40 is ex-
plored. The precision of these data is about 1%, but the
fluctuations for the Ca total cross section are already
small enough for E„)10 MeV that the errors in level
density are large. Presumably, an experiment which mea-
sured total cross sections between 1 and 6 MeV would
have better prospects for obtaining level density informa-
tion for 3 )40 than one in the present energy range.
Partial cross sections are harder to measure, but the Auc-
tuations are much larger.

IV. SUMMARY

Measured values of the total neutron cross section for
Al, Si, and Ca have been subjected to an Ericson

analysis. Two separate procedures have been used to
deduce the level density. The most commonly used
method is based on determining the average level width;
this method has reasonable errors for low energies, but
suffers in reliability as the excitation energy exceeds 15

MeV. Level density values can also be inferred from the
variance of the cross section. These values are subject to
similar errors as those from the width method at low en-
ergies, but do not show the same dramatic increase in er-
rors as the energy increases. For Al and Si, the results
from the I method are consistently higher than those
from the variance method, while for 'Ca, the low-energy
region has the variance method results above the I
method and the reverse situation at high energies. It ap-
pears that level densities may be obtained over a range of
8 —12 MeV from total cross section measurements, but
the errors are still approximately 40%. Nonetheless,
such measurements reach an energy region which is
difticult to study using other techniques and are particu-
larly valuable. The present study clarifies the dependence
of the I method on the level density parameters of the re-
sidual nuclei and finds somewhat better agreement be-
tween the two methods than was found previously. An
obvious conclusion from this analysis is that Auctuation
data on partial cross sections through the same com-
pound nucleus would be helpful since these would not
only provide additional level density values, but would
also provide constraints on the residual level densities if
the average cross sections are matched.
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