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Resonances in Ad scattering and the Z hypertriton
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Using separable NN and AN-ZN potentials in the Faddeev equations, we have demonstrated
that the predicted enhancement in the Ad cross section near the Zd threshold is associated with
resonance poles in the scattering amplitude. The positions of these poles, on the second Riemann
sheet of the complex energy plane, are determined by examining the eigenvalues of the kernel of the
Faddeev equations. This suggests that for a certain class of AN-ZN potentials we can form a Z
hypertriton with a width of about 8 MeV.

PACS number(s): 25.80.Pw, 11.80.Jy, 21.80.+a, 25.10.+s

I. INTRODUCTION
In the realm of nonperturbative quantum chromody-

namics (@CD) our description of nuclear phenomena in
terms of the physically observable baryons and mesons,
the collective modes of the @CD Lagrangian, has enjoyed
considerable success. A nonrelativistic two-body poten-
tial model picture of the H, sHe, and He bound states
as well as few-nucleon low-energy scattering and reac-
tions accounts amazingly well for much of the data. The
addition of the strangeness degree of freedom to the nu-
cleus opens the opportunity to ascertain whether these
models have predictive power or are merely vehicles of in-
terpolation. That is, can one use the models which have
been developed in the conventional, zero strangeness sec-
tor to extrapolate beyond that domain to understand the
nuclear physics involving A's and Z's'?

Although that question remains open, the strong cou-
pling of the AN ZN system h-as been seen to lead to
the enhancement of certain phenomena which appear in
nonstrange nuclei. For example, three-body-force effects
in the binding energy of the hypertriton (s&H), when one
eliminates the ZN channel from the problem, are sig-
nificant [1]; i.e. , AN ZN coupling effect-s in hypernuclei
appear to play a much larger role than do NN AN cou--
pling effects in nonstrange nuclei. Furthermore, charge
symmetry breaking, which is strongly masked in the
sH-sHe isodoublet by the Coulomb force acting between
the two protons in 3He, is clearly obvious in the 4&H-&4He

binding energy difference [2]. Thus, extending our nu-
clear physics investigations to include S g 0 can magnify
certain physical effects.

While the existence of strangeness —1 A hypernuclei
is well established from the observation of many bound
states, such has not been the case for Z hypernuclei.
Although structure in the recoilless production of @-
shell hypernuclei did indicate the possible existence of
Z hypernuclei [3—5], this structure corresponded to un-

bound states. Therefore, it was surprising to many when
Hayano et al. [6] reported that the ir spectrum from the
He(stopped K, sr+) reactions exhibited narrow struc-

ture below the threshold for Z emission. It is the inter-
pretation of such spectra that we address in this investi-
gation.

Charge conservation forbids the conversion of Z n
into any AN charge state. If a Z n bound state were
to exist, it would decay to AN only by the weak in-
teraction. Potential model analyses of hyperon-nucleon
(YN) scattering indicate a weak repulsion in the spin-
triplet state and nonbinding attraction in the spin-singlet
state. [The Z n system belongs to the same SU(3) mul-
tiplet as the nn system, which is almost bound in the
So state. ) The absence of binding in the Z n system

was confirmed by May et aL [7] through investigation
of the H(K, sr+)Z n reaction. However, this did not
rule out the possibility that the Z nn system might be
bound. Such a bound state would also be stable against
ZN —+ AN conversion. However, in an analysis of the
ZNN states, Dover and Gal [8] noted that, if a bound
state were to exist, then the (T = 0, S = 2) configu-
ration should lie lowest while the T = 2 state would be
the least likely to be bound, because of the spin-isospin
dependence of the ZN residual interaction.

An analogous analysis of the A = 4 ZNNN system [8]
indicated that the (T = 2, S = 0) configuration should
lie lower in energy than the (T = 2, S = 0) configura-
tion, although the latter state was expected to be nar-
rower. Thus, the report by Hayano et al. [6] that the ir
spectrum from stopped K in the reaction He(K, ir )
exhibited narrow structure below the threshold for Z pro-
duction was quite exciting. The (K, ir ) reaction can
lead to both T =

2 and T =
z ZNNN states, while

the (K, sr+) reaction leads only to the T =
2 state.

Therefore, because no such structure was observed in
the spectrum from the complementary He(K, sr+) re-
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action, and because the (K, vr ) spin-flip reaction is
small, the structure was interpreted as a bound 4zHe state
having the quantum numbers T = —and J = 0+.

Hayano has recently reported [9 new results for in-
flight He(K, sr+) experiments at Brookhaven National
Laboratory, which confirm the structure in the (K, vr )
reaction and lack of structure in the (K, ir+) reaction
observed in the stopped K absorption experiments.
The peak in the vr spectrum appears to be centered
at B~+ = 4 + 1 MeV, consistent with the earlier re-
sult [6]. The width of the peak is about 10 + 2 MeV,
again consistent with a more refined analysis of the KEK
data [10]. Furthermore, the data are not inconsistent
with the earlier bubble chamber data [11] for the exclu-
sive K 4He~ vr Apd measurement, recently reanalyzed
by Dalitz et aL [12], which appear to show a cusplike
enhancement near the Z+ production threshold. The in-
ferred A = 4 Z hypernucleus would seem to be more
bound (by an MeV) than the A is bound in &He. Al-
though the Z is 10% more massive than the A which
reduces its kinetic energy, it would appear that the Z+
interaction with sH in the (T = 2, 8 = 0) channel must
be more attractive than the corresponding A interaction
with sHe or sH.

Following the work of Dover and Gal on the ordering of
the A = 4 ZNNN states, Harada et at. [13,14] predicted
the existence of an A = 4 ZNNN bound state using
their SAP-1 approximation to the Nijmegen YN poten-
tial model D [15]: B~+ = 4.6 MeV, I' = 7.9 MeV. They
predicted no other bound state for A = 2—5. Nonetheless,
we were motivated to examine the ZNN system in an ef-
fort to understand the properties of the scattering ampli-
tude with respect to observable structure in the physical
cross section. For a sufBciently attractive ZN interac-
tion, one would hope to see evidence of a (T = 0, S =

z )
ZNN bound state or a low lying resonance in the Ad
cross section near the threshold for Z production. (The-
oretical models of the YN interaction can exhibit a cusp
phenomena in the AN channel as one crosses the ZN
threshold [16],but that cusp dissolves into the continuum
in the three-body system, where the lowest threshold is
not a two-body system but the Ad —+ ZNN reaction
channel. ) Although such model calculations are not di-
rectly applicable to the T = 1 inflight sHe(K, sr+) mea-
surements that have been reported by Hungerford [17]
and discussed by Hayano [9], they are relevant to the
T = 0 sH(K, ~ ) reaction as well as to analysis of Ad
scattering.

In this paper we explore the structure of the Ad cross
section in terms of a Hamiltonian model. For Hermitian
Hamiltonians the spectrum consists of the eigenvalues
for the bound and scattering states. From the scattering
state eigenfunctions we can extract the scattering ampli-
tude and, therefore, the cross section. The presence of
rapid fluctuations (structure) in the cross section is nor-
mally attributed to resonances, which can be viewed as
poles in the scattering amplitude on the second Riemann
sheet of the complex energy plane. It is possible to es-
tablish a direct relation between the Hamiltonian for the
system and the resonance energies and widths by real-
izing that the Hermitian Hamiltonian (and correspond-

ing eigenvalue problem) is defined on the first Riemann
sheet of the complex energy plane, while the poles of the
scattering amplitude are on the second Riemann sheet.
Thus, to directly obtain the desired resonance energies
(poles), one must analytically continue the eigenvalue
problem onto that part of the second sheet where the
resonance poles reside. This leads to an eigenvalue prob-
lem for a non-Hermitian Hamiltonian which, therefore,
admits complex eigenvalues. These complex eigenvalues
specify the energy and width of the resonances. The cor-
responding wave functions are normalizable, as we shall
see below, provided one realizes that the solutions of a
non-Hermitian eigenvalue problem and the definition of
the normalization must be appropriately modified.

In terms of the specific problem at hand, if the YN
interaction produces a pole in the Ad amplitude below
the ZNN threshold (and on the top sheet of the ZNN
branch cut but the bottom sheet of the ANN branch cut,
the [bt] Riemann sheeti), then one would anticipate nar-
row structure in Ad scattering below the ZNN threshold.
In contrast, if the YN interaction produces a pole above
the threshold in the ZNN system (and on the top sheet
of the ZNN branch cut but on the second sheet of the
ANN branch cut, again the [bt] sheet), then the effect
of this pole will still be to produce structure in the Ad
cross section below the ZNN threshold. This occurs be-
cause, for energies above the ZNN threshold, the pole
is screened from the physical region by the branch cut
due to the presence of the threshold. To see structure
above the ZNN threshold, there should be a pole on the
second sheet of both the ANN and ZNN branch cut,
i.e. , [bb], above the Z production threshold. That is, any
structure seen below the Z production threshold will be
due to the poles on the [bt] Riemann sheet. Such a pole
might correspond to (i) a bound state of the ZNN sys-
tem in the absence of coupling of the ZN channel to the
AN channel (a pole shifted into the complex plane re-
sulting in the structure seen in Ad scattering when the
AN ZN coupling -is turned on), or (ii) an unbound state
of the ZNN system in the absence of coupling to the AN
channel (a pole which is moved onto the [bt] sheet when
the coupling is turned on). In either case, enhancement
in the Ad cross section below the Z production threshold
corresponds to an eigenstate of the YNN system.

To explore this hypothesis, we present a detailed dis-
cussion of the equations describing the YNN system in
the presence of a YN (AN ZN coupled-cha-nnel) poten-
tial in the following section. A formal solution of the
three-body equations is outlined in the Appendix. Nu-
merical results for specific YN potential models are pre-
sented in Sec. III. A discussion of the results and sum-
mary of our conclusions can be found in Sec. IV.

We adopt the convention of Ref. [16] for the labeling of
the Riemann sheets corresponding to the ANN and ENN
threshold. However, in this problem we have additional sheet
structures from the Ad threshold and any additional branch
points arising from the resonance poles of the YN t matrix.
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II. THEORY

H =Ho+U ) (2.1)

where Ho is the kinetic energy of the three-particle sys-
tem and V is the sum of pairwise interactions. In spec-
tator particle notation U is given by

To establish the connection between the enhancement
in the cross section for Ad scattering and the formation of
a Z hypertriton, we must demonstrate that the structure
found in the cross section for Ad scattering is due to poles
in the scattering amplitude on the second energy sheet,
and that these poles correspond to eigenstates of the
Hamiltonian for the YNN system in which Y = A or Z.
This connection between the cross section and the eigen-
states of the Hamiltonian is achieved by (i) showing for-
mally that the energy at which the scattering amplitude
has a pole on the second energy sheet can be considered
an eigenstate of the Hamiltonian, (ii) demonstrating that
for the specific models of the AN ZN in-teraction consid-
ered, there is a correlation between the enhancement in
the cross section and the position of the poles of the scat-
tering amplitude or T matrix.

To establish the fact that the position of a pole in the
scattering amplitude corresponds to an eigenstate of the
Hamiltonian, we consider the YNN system in terms of
a three-body Hamiltonian given by

IO ) = ) . Go(E) T (E) ~ p IA ) (2.7)

l& ) =) . Gp(E)~ n&n(E) IW~) (2.8)

where

14 ) =). ~ CIA) .
p

(2.9)

It is the solution of Eq. (2.7) or Eq. (2.8) that gives the
bound state of the hypertriton. To that extent, the solu-
tion of either Eq. (2.7) or (2.8) is identical to the solution
of the Schrodinger equation. In fact, the energy at which
these equations have a solution corresponds to a bound
state, and the solution is an eigenstate of the Hamilto-
nian for the three-body system. In momentum represen-
tation this homogeneous integral equation, Eq. (2.8), has
the same kernel as the Alt-Grassberger-Sandhas (AGS)
equations [18] for three-particle scattering, which we can
write as
X' p(E) = 6'

p Gp + ) Gp(E) 6 & T&(E) X&p . (2.10)

given by T~(E) = [1 —V~ Gp(E)] V~, we can write the
equation for the Faddeev component of the wave function
as

3

v=) v. , (2.2)
This suggests that if we convert the homogeneous integral
equation (2.8) to an eigenvalue problem of the form

with Vs being the NN interaction, while Vj and V2 are
the YX interactions. The Schrodinger equation for this
three-body system can then be written as

(E —H, ) ~@) = V ~@), (2 3)

or

I&) =Gp(E) VI&)
3

= ) Gp(E) V i4)

3

—= ) IO) (2.4)

where the free Green's function Gp(E) = (E —Hp)
The last line in Eq. (2.4) corresponds to the Faddeev de-
composition of the wave function. The Faddeev compo-
nents of the wave function ~@ ) then satisfy the equation

I@ ) =).Go(E)v IA) (2.5)

1 —G, (E) v.] ly. ) = ) G, (E) V. 8.~ I«)
p

(2.6)

where b'
p = (1 —6 p). If we now multiply Eq. (2.6) by

[1 —Gp(E) V ] ~, and take into consideration the fact
that the T matrix for the two-body subsystem, T (E), is

A„(E)~y„~) = ) Gp(E) b~p Tp(E) ~y„p), (2.11)
p

where the A„(E)are the eigenvalues and ~P„~) are the
eigenstates, then the solution of the inhomogeneous in-
tegral equation, Eq. (2.10), for the amplitude A~p can
be written in terms of the eigenvalues and eigenstates of
the homogeneous equation, Eq. (2.11), as (see the Ap-
pendix) [19]

A„(E')
X ~(E) = ). I &, (E)), E (&,n(E*)

I

n A

(2.12)

Here, ~P„p) and A„are the eigenstates and eigenvalues
of the adjoint kernel. It is clear from Eq. (2.12) that for
energies at which A„(E)= 1, the scattering amplitude
A p(E) has a pole. Thus, the positions of the poles
of X p(E) on the second Riemann sheet of the energy
plane can be determined by examining the eigenvalues of
Eq. (2.11) for complex energies.

Since resonance poles reside on the second Riemann
sheet of the complex energy plane, we deform our con-
tour of integration in momentum space in order to analyt-
ically continue our eigenvalue equation, Eq. (2.11), onto
the second sheet. However, the deformation of the con-
tour of integration requires a knowledge of the position
of the singularities of the kernel in the energy variable.
In fact, as we will demonstrate, these singularities con-
strain the energy domain onto which we can analytically
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continue our equations. The singularities of the kernel of
the AGS equation are determined by the dynamics of the
two-body interaction we include in our analysis. Since
we will restrict our calculations to separable two-body
potentials that include AN-ZN coupling, we can rewrite
Eqs. (2.10) and (2.11) for this class of interactions. These
separable potentials can be written in matrix form, after
partial wave expansion, as [1]

&- =
I g .) &-. (g-. I

(2.is)
where C„ is the strength of the interaction in the K~
partial wave, while lg„)is the corresponding form fac-
tor. The t matrix, in two-body Hilbert space, for this
potential is then given by

& .(~ ) =
I g .) ~ .(s ) ( g-. I

(2.14)

where the "quasiparticle" propagator, 7„,takes the form

~.(~ ) = &..' —(g-. lgo(s )lg. ) (2.15)

Here, go(E~) is the two-body free Green's function for the
pair (Pp).

With the above results for the two-body t matrix, we
can proceed to write the AGS equations, and the corre-
sponding homogeneous equation for a given total angular
momentum J and isospin T as [1]

(2.i6)

A„(E)P„y (q; E) = )
kP p

x P„A:~(q'; E),

«'~~ ~ (q q' E)

(2.17)

where the kernel of the integral equations is given by

K„.„(q,q', E) = Z„.„(q,q'; E) „[E—E.p(q')] q'

I

are of two kinds: (i) simple poles due to two-body bound
or resonance states, and (ii) square root branch points
which give rise to the unitarity cuts in the two-body sub-
system. Class (i) poles lead to branch points in the three-
body amplitude, which correspond to the thresholds for
the production of a bound or resonant pair. Class (ii)
branch points give rise to thresholds in the three-body
amplitude. Both types of singularities can be exhibited
by writing the quasiparticle propagator as

(2.18)

Here, k refers to the set of quantum numbers that define
the partial wave three-body channel with particle n the
spectator, while z~ is the energy of the spectator particle.
The partial wave Born amplitude, Zk .I, , is given by

~~ ~ (q q';E)

( )]
~ [E ~ .(q)]

K~ K~ q E (
I
)

)

where

Mb for two-body bound states,
M„—2

I'„ for two-body resonances.

(2.21)

(2.22)

q —+qe q'~q'e ' with 8) 0. (2.20)

This should, in principle, extend the energy domain over
which Eq. (2.17) is defined to that part of the second
energy plane for which

I
arg El ( 28. However, the sin-

gularities of the kernel put a constraint on the range of
values 8 can assume. Since both q and q' in Eq. (2.17)
are rotated by the same angle, the singularities of the
Born amplitude are such that the only constraint they
place on 8 is that 8 ( 2 [20, 19]. This, for all practical
purposes, imposes no serious constraint on the energy
domain to which we can extend our equation in order
to search for resonance poles. This leaves us with the
singularities of the "quasiparticle" propagator ~„,which

= 6~p (TJk~q; g„I Gp(E) x Ig„p,q'kp JT) . (2.19)

An explicit expression for this Born amplitude has been
given previously [1].

To analytically continue Eq. (2.17) onto the second
Riemann sheet of the complex energy plane, we rotate the
contour of integration; i.e., we make the transformation

Here, Mp is the mass of the two-body bound state,
i.e. , Mb = mp + m~ —B, with B the two-body bind-
ing energy, while M„and I'„arethe mass and full
width of the resonance in the two-body subsystem. In
Eq. (2.21) the function S„(e)has square root branch
points at z„=mp + m~, while the energy denomina-
tor has the poles of the quasiparticle propagator. For
the YNN system, the deuteron quasiparticle propaga-
tor w~[E —zg(q)] has a pole at the deuteron mass, while
for the AN ZN interactions, -w„has the AN and ZN
threshold. In addition, some YN potentials have a reso-
nance pole in the 3Sq channel near the ZN threshold. In
Fig. 1, we illustrate the position of these branch cuts in
the three-body energy plane when the contour of rotation
is 0.

To determine how far we can analytically continu=

We have defined our energy E to include the mass of the
two nucleons and the A.
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ZNN

0
N(YN) ~

FIG. 1. The branch cuts and thresholds in the complex
energy plane.

q'=+ 2p E —) m, ~. (2.23)

For a three-body resonance with energy E (i.e. , E =
E„—iE, , E, ) 0), these branch points are in the fourth
quadrant of the q' plane and at an angle of p„,where

(2.24)

Thus, in as far as these branch points are concerned, we
need to take 8 & p„to avoid the singularities. On the
other hand, the poles of ~„areat

q' = ++2@, (E —m —z„). (2.25)

For the case of the deuteron bound state (i.e.
mp + m~ —B) the quasiparticle propagator has poles in
the fourth quadrant of the q' plane at an angle pg, where

E'
tan2pg = E„+B—,m,

(2.26)

Since yp & p„,we need not worry about this pole putting
any constraint on the contour rotation. That leaves us
with the resonance poles in the quasiparticle propagator
for the AN-ZN interaction. In this case the angle of the
resonance pole in the q' plane is p„,where

Eq. (2.17) into the complex plane, we must examine how
the singularities of r„eff'ect the rotation of the contour
of integration. Taking

q/2s„.(q') = m +-
2Pcx

where m is the mass of the spectator particle n and p,
is the reduced mass of the spectator n with the pair Pp,
we see that the branch point from S„is at

FIG. 2. Region of the energy plane that can be accessed
via contour rotation. The point A at E = M„—2I'+ m
corresponds to the branch point resulting from the resonance
in the two-body subsystem.

able from the real axis through region I to region III and
then to region IV (see Fig. 2), one of the resonance poles
in the q' plane moves into the region —

4 ( p„(0 ap-
proaching from p„=—4. At this stage the two-body
unitarity branch point is moving towards y„=4. These
two singularities could force the contour to deviate from
the path along the ray, and this in turn will introduce log-
arithmic branch points from the Born amplitude Z&~T&

Thus, the energy domain on the second Riemann sheet,
to which we can analytically continue Eq. (2.17) without
introducing elaborate contours of integration, is shown as
the shaded area in Fig. 3 [21]. In addition to the above
energy domain, we can analytically continue Eq. (2.17)
onto the third Riemann sheet through the branch cut
generated by the resonance pole in 7.„;i.e. , we start
on the real axis in region II, then proceed through the
branch cut to region IV onto the third Riemann sheet,
and then to region III on the third Riemann sheet (see
Fig. 2). In this case as we proceed from region II to re-
gion IV, the resonance pole in the q' plane crosses the
real axis into the fourth quadrant, and we can analyti-
cally continue the equation into region IV and then III
of the third Riemann sheet. However, if we attempt to
go to region I of the third energy sheet, we find that the
contour of integration is forced onto the negative imagi-
nary q' axis by the two-body resonance pole, and here we
encounter the singularities of the Born amplitude. Thus,
the only part of the third Riemann sheet of the complex
energy plane that we can access is the shaded region in
Fig. 4. In the next section we will use the above results

[E

tan 2&@„ E„—M„—m~
(2.27)

For E„((M„+m ) and E, ( 2I'„,the angle 2p„is in
the second quadrant, and therefore, 4 & y„&2. As we
proceed along the real axis to the point E = (M„+m ),
y„attains a value of 4, while proceeding parallel to the
imaginary axis to the point E, =

z I'„,p„attains a value
of 2. If we carry this analysis through, we And that as
we analytically continue our equation in the energy vari-

FIG. 3. The shaded area is the domain of the second Rie-
mann sheet of the energy plane to which we can analytically
continue Eq. (2.17) while maintaining the contour deforma-
tion along a ray in the fourth quadrant of the q' plane.
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FIG. 4. The shaded area is the domain of the third Rie-
mann sheet of the energy plane to vrhich ere can analytically
continue Eq. (2.17) while maintaining the contour deforma-
tion along a ray in the fourth quadrant of the q' plane. Access
to this sheet is via the square root branch cut resulting from
the resonance pole in ~„

to explore the region near the ZNN threshold for possi-
ble resonances that might explain the structure we see in
the cross section for Ad scattering.

III. NUMERICAL RESULTS

To examine the possible existence of Z hypernuclear
states below the Z production threshold in the A = 3
system, we must first consider two-body interactions that
could generate such resonances. In particular, we need
to know what features of the two-body interaction would
produce a resonance in the YNN system. This is par-
ticularly important as the hyperon-nucleon (YN) inter-
actions we use are of separable potential form, and with
the limited data available such separable potentials are
not uniquely determined. Ideally, we would like to carry
out the computational work for the more realistic YN
interaction such as the one-boson exchange (OBE) po-
tentials in which the extensive NN and limited YN data
are considered within the unified framework of SU(3).
However, this is not justifiable at this stage, considering
the lack of information about the correlation between the
results of the two-body YN and three-body YNN sys-
tems. Therefore, as a first calculation we utilize several
separable potentials previously employed in light hyper-
nuclei investigations. We then vary the strength of the
coupling in the Si partial wave between the AN and
ZN channels to explore the variation in the two-body
and three-body results.

A. The two-body input

For the present calculations we restrict our YN two-
body interactions to the S wave. For the NN interaction

we use the same potentials previously used in our study
of the role of AN ZN-coupling in the hypertriton [1].
In particular, we use a Yamaguchi potential for So and
the Phillips [22] potential with P~ = 4%%uo for the Si- Di
partial wave. The parameters of these potentials, in the
present notation, are given in Ref. [1].

For the YN interaction in the So partial wave we use
the potential of Stepien-Rudzka and Wycech (SRW) [23].
Here again the parameters of this potential, in the present
notation, were given previously in Ref. [1]. Since the
coupling between the AN and ZN channels has a one-
pion exchange contribution, we expect the 3Sq channel
to be stronger in its long range behavior than the cor-
responding So. We therefore have chosen to vary the
interaction in this partial wave only. The potentials we
have used are the coupled-channel SRW potential, and
the potentials constructed by Toker, Gal, and Eisenberg
(TGE) [24]. The latter potentials where constructed to
investigate the question of the possible existence of res-
onances in K d —+ 7rNA near the Z threshold. In par-
ticular, potentials B and C, to which we will refer as
TGE-B and TGE-C, respectively, support a ZN bound
state in the absence of coupling between the AN and
ZN channels (see Table I), while potential A, referred
to here as TGE-A, has a virtual state in the absence of
coupling. In Table I we present the parameters of these
potentials, while in Table II we give the positions of the
poles in the complex energy plane with and without the
coupling between the AN and ZN channels. Included in
the tables are also the parameters of the ~So potential of
SRW, and the position of the poles for this potential. In
Table II we have used the notation of Pearce and Gib-
son [16] for specifying the sheet on which the pole resides.
Thus, [tt] corresponds to the top sheet of both the AN
and ZN branch cuts, while [bt] corresponds to the bot-
tom sheet of the AN branch cut and the top sheet of the
EN branch cut. In Fig. 5 we illustrate the sheet label-
ing system for the YN problem, with two square root
branch cuts corresponding to the AN and ZN thresh-
olds. Prom Table II, we observe that potentials TGE-B
and TGE-C have poles on the [bt] sheet and in the ab-
sence of coupling between the AN and ZN channels these
poles become ZN bound states. In fact, as the coupling
between the two channels changes these poles move con-
tinuously, tracing a path on the [bt] sheet. On the other
hand, for the potentials TGE-A and SRW the pole near
the ZN threshold resides on the [tb] sheet. In this case,
turning oK the coupling brings the pole to the real en-
ergy axis and on the second sheet of the ZN branch cut.
This corresponds to a virtual state of the ZN system.

TABLE I. The parameters of the SI AN-ZN coupled-channel potentials, and the So SRW
potential.

Potential
SRW Sy
TGE-A
TGE-B
TGE-C
SRW Sp

—0.42824
—0.11729
0.03569
0.05726

—0.17339

P~
1.6

1.1069
0.9518
0.8752
1.18

&zz
—1.88913
—4.33140
—0.80233
—0.07434
0.45856

Pz
2.0

2.702
1.2789
0.5335
1.44

&~z
0,84289
0.71399
0.43692
0,23226

—0.38471



1006 I. R. AFNAN AND B. F. GIBSON 47

TABLE II. The position of the poles of the AN-EN am-

plitude that lie close to the ZN threshold for the four different
Sq YN interactions being considered. Here and throughout

this paper we have taken our masses to be m~ = 939 MeV,
mg = 1115 MeV, and m~ = 1192 MeV. As a result the
threshold for Z production is 2131 MeV.

Potential

SRW
TGE-A
TGE-B
TGE-t

Sheet

[tb]
[tb]

[bt]
[bt]

Pole with
&~z $0

2132.5 —0.4i
2130.9 —1.9i
2131.7 —5.4i
2138.0 —5.3i

Pole with
C~~ =0

2131.0 + 0.0i
2130.5+ 0.0i
2126.7+ 0.0i
2129.0 + 0.0i

where the T matrix is given in terms of the phase shifts
by the relation

In particular, we should note that for the SRW poten-
tial we have a zero energy bound state in the absence of
coupling.

Because we are considering two classes of potentials,
those with a bound ZN and those with a virtual, or un-
bound, EN in the absence of coupling between the two
channels, one might like to compare at the same time
the effective range parameters for these potentials, and
possibly compare them to the more "realistic" OBE po-
tentials. For that we would like to calculate the effective
range parameters, and particularly the effective range pa-
rameters in the ZN channel. These effective range pa-
rameters, which will be complex for the EN system, are
deGned in terms of the two-body diagonal partial-wave
T matrix in channel o. as

TABLE III. The effective range parameters for the
AN-ZN coupled channels in the Sj partial wave. We have
included both the AN and ZN effective range parameters.

Potential

SRW Sz
TGE-A
TGE-8
TGE-C
SRW Sp

—1.96
—2.46
—1.70
—1.69
—1.98

~AN

2.44
3.94
4.55
4.88
4.03

0.14 —4.72i
—2.60 —2.97i
2.97 —1.83i
3.81 —1.56i
0.59 —0.09i

1.67 —0.20i
1.30 —0.04i
1.97 —0.38i
2.80 —1.88i

—1.30 —0.39i

scattering amplitude, which in general are in the complex
energy plane, before we can make any statement about
whether the EN interaction supports a bound state.

Since we will examine the cross section for Ad scatter-
ing as a means of determining the presence or absence of
resonances, we should study at the same time the cross
section for AN scattering in the Sq channel, to investi-
gate whether there are correlations between the results
for the two- and three-body systems. In particular, we
would like to compare the case when the two-body ZN
system supports a bound state in the absence of AN-EN
coupling, versus the case when there is a virtual state
for the uncoupled EN system. Finally, we would like
to investigate whether the shape of the cross section pro-
vides any indication as to where the resonance pole re-
sides, and to investigate how this shape carries through
to the three-body system. In Fig. 6 we give the cross
section for the potentials TGE-B and SRW as examples
of a potential supporting a "bound state" and a "virtual
state, " respectively. We observe that for TGE-B we have
a classic resonance shape from which we might be able
to estimate the width of the resonance to be —5 MeV.
However, for the SRW potential we have a sharp spike
which could be interpreted as a threshold effect.

T ibe sin 6
7f p~k~

(3.2)

60 I I I I

Here, k~ is the on-shell momentum in a given channel,
while p, and b are the reduced mass and phase shift in
channel o. , respectively. In Table III we present the effec-
tive range parameters for the four sSq potentials under
consideration, and the ~SO SRW potential. From this ta-
ble we observe that potentials TGE-B and TGE-C have
a ZN scattering length with a positive real part, while for
potential TGE-A, which has a virtual state, the real part
of the ZN scattering length is negative. For potential
SRW this simple one-channel interpretation of the sign
of the scattering length does not work. This suggests
that we need to examine the position of the poles of the
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/bb J
fbtJ

fttj

i jtbJ

I"IG. 6. The total cross section for AN scattering in the
Sq channel for the two potentials SRW and TGE-R.

FIG. 5. The labeling of the different Riemann sheets for
the AN-ZN coupled-channel problem. This labeling scheme
is identical to that used in Ref. [16].

Here, we should remind the reader that a bound state cor-
responds to a pole on the fi.rst sheet, while a virtual state
corresponds to a pole on the second sheet of the energy plane.
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To investigate how the shape of the cross section
changes as the resonance pole moves below the ZN
threshold and approaches the real energy axis, we have
considered the potential TGE-8 and varied the strength
of the coupling between the AN and ZN channels. We
know the position of this resonance pole, when the cou-
pling is included, to be on the [bt] sheet at an energy of
(2131.7 —5.4i), which is just above the ZN threshold.
This pole moves to (2126.7 —Oi) when the coupling is
turned ofF. This corresponds to a ZN bound state with
a binding energy of 4.3 MeV. We introduce a new param-
eter R in the coupling

and consider values of B = 1.25, 1.0, 0.75, and 0.5, so
that we can move the position of the resonance pole from
a point above the EN threshold to a point below the
threshold and closer to the real axis. In Fig. 7, we present
the cross section for AN scattering for the above values
of B. We find, as expected, that as we move the pole
closer to the real axis (B —+ 0) the width of the reso-
nance is reduced. More important is the fact that, as
we move below the threshold and reduce the width, the
shape of the resonance in the cross section becomes more
symmetric. This suggests that the ZN branch cut has
a shadowing effect on the cross section. A similar efFect
will be observed for the three-body system.

B. The three-body system

We now turn to the YNN system with the aim of
examining the possible formation of &H states near the
ZNN threshold. If such states exist for the two-body
potentials under consideration, we expect to find them
as poles of the scattering amplitude in the complex en-
ergy plane, or as solutions of the Schrodinger equation
for complex energies. However, before we proceed to ex-
plore the complex energy plane we should examine the
quantum numbers such a state would have. Considering
the results of Dover and Gal [8], we expect such states
to have the lowest isospin possible for the YNN sys-

tern, T = 0. This suggests that we could observe these
states in Ad scattering near the Z production threshold.
Furthermore, because the resonance in the YN system
occurs in the 8 wave, we might expect the YNN reso-

nance to be in the J =
z channel. Thus, as a first stepvr 1. +

in determining the possible existence of Z hypernuclear
states, we examine the total S-wave cross section in the
J =

&
partial wave. We should remind the reader at

this stage that a resonance will appear in just one partial
wave, which will determine the quantum numbers of the
resonant state.

Prom unitarity we can write the total cross section for
Ad scattering as

J rt'

C7~ = OT
Jm

(3.3)

where the total cross section for the partial wave with
total angular momentum and parity J~ is given in terms
of the imaginary part of the partial wave T matrix by

47K ppg(2J + 1) ) ~

ko(2sg + 1)(2sg + 1)
(3.4)

4''
oT' = " (2J+1) l&oz;opal2sp + 1 2sg + 1

(3.5)

while the inelastic total cross section is given by the dif-
ference between the total cross section and the total elas-
tic cross section; i.e. ,

in elo-T = o-T —o~ . (3.6)

In Figs. 8—ll we give the total cross section for the Sq

Here, 8 and l: are the channel spin and orbital angular
momentum of A, respectively, while s& and s& are the
spin of the A and deuteron. The on-shell momentum is
taken to be ko, and pgd is the reduced mass for the Ad
system. For the S-wave we take 2 = 0 and therefore
8 = J. In this case the total elastic cross section can be
written in terms of the S-wave amplitude as

60l I I I I
I

~ I I I
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I'IG. 7. The total cross section for AN scattering in the
Sq channel for the TGE-B potential with the coupling be-

tween the AN and ZN channels C&z replaced by R x C&z.

FIG. 8. The total elastic (solid line) and inelastic (dotted
line) S-wave J" = 2+ cross section for Ad scattering as a
function of the three-body energy for potential SRW. 'I'he
ZNN threshold is at E, = 77 Mev.
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FIG. 9. The total elastic (solid line) and inelastic (dotted
line) S-wave J =

2 cross section for Ad scattering as a
function of the three-body energy for potential TGE-A. The
ZNN threshold is at E, = 77 MeV.

FIG. 11. The total elastic (solid line) and inelastic (dotted
line) S-wave J =

~ cross section for Ad scattering as a
function of the three-body energy for potential TGE-C. The
ZNN threshold is at E, = 77 MeV.
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potentials SRW, TGE-A, TGE-B, and TGE-C. The
solid curve corresponds to the total elastic cross section,
while the dotted curve corresponds to the total inelas-
tic cross section. In general, any structure is more pro-
nounced in the inelastic cross section. Comparing the
results for the difFerent potentials, we may conclude that
the potential TOE-C has marginal structure, if any, while
the others have more pronounced structure just below the
Z production threshold. The other general conclusion we
may draw is that the inelastic total cross section for po-
tentials SRW and TGE-B has a more symmetric shape
than that for potential TGE-A. The important question
now is the following: Does any of this structure in the
cross section correspond to a resonant state? That is, is
it an eigenstate of the Hamiltonian for the YNN system?

In Table IV we present the position of the poles of
the amplitude for the YN and YNN systems near the
threshold for Z production. Here we observe that poten-
tial TOE-C, which produced a very wide resonance shape

in the total inelastic cross section, does have a pole in the
amplitude on the [bt] sheet; the half-width of this reso-
nance is ll MeV which is consistent with what we would
deduce from the cross section. From an experimental
point of view such a wide resonance would be hard to
observe, and to that extent will give little information
on the structure of the Hamiltonian that generated the
eigenstate. We also note that for potential TOE-C the
two-body YN resonance also lies far from the physical re-
gion. Although the half-width of the two-body resonance
is only 5.3 MeV, the pole lies well above the threshold for
Z production. The distance from the pole to the physical
region is more than the half-width, due to the presence
of the branch cut which separates the resonance position
and the physical region. This branch cut actually shields
the resonance from view in the physical region.

We now turn to the potentials SRW (Fig. 8) and TGE-
B (Fig. 10). In this case the two-body system supports
either a "bound" state or a "zero energy" bound state
tUhen the coupling between the AN and ZN is set to
zero. Here we get a true resonance for potential TGE-
B with a half-width of 8.9 MeV, which is similar to the
result for potential TGE-C, but because of the smaller

4 -------- Sig ma inel

3

E
0

0 I I I I s I s s I s I s s s I I I I I s

50 60 70 80

E (Me V)

90 100

FIG. 10. The total elastic (solid line) and inelastic (dotted
line) S-wave J = ~+ cross section for Ad scattering as a
function of the three-body energy for potential TGE-B. The
ZNN threshold is at E, = 77 MeV.

Potential
SRW
TGE-A
TGE-B
TGE-C

Two-body
Sheet Position

tb]
tb]
bt]
bt]

78.5 —0.4i
76.9 —1.9i
77.7 —5.4i
84.0 —5.3i

Three-body
Sheet Position

bt]
bt]
bt]
bt]

79.5 —1.2i
78 —0.5i
75.5 —8r9i

84.0 —11.0i

Because the pole position is close to the ZNN threshold, we
found it difBcult to determine the position of the pole with a
high degree of accuracy.

TABLE IV. The position of the poles of the YNN ampli-
tude near the ZNN threshold. Included also is the position
of the resonance pole in the YN amplitude for comparison.
The energy of the two-body resonance is taken relative to the
AN threshold, 2054 MeV.
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half-width we observe more pronounced structure in the
total cross section. This width is comparable to that
observed experimentally in the A = 4 system. On the
other hand, potential SRW gives a resonance with a half-
width of 1.2 MeV and very pronounced structure. In
this case the resonance is slightly above the threshold
for Z production, but because of its proximity to the
physical region it has considerable influence on the cross
section. In this case, unlike the cross section for potential
TGE-B, . the elastic total cross section falls sharply at
threshold, which suggests that for resonances on the [bt]
sheet and above the Z production threshold the branch
cut produces some shadowing eKect, similar to that seen
in the YN system for potential TGE-C.

Finally, for potential TGE-A we had some difficulty
in determining the actual position of the resonance pole.
This, we think, was due to the fact that the pole is very
close to the Z production threshold, and as a result our
numerical procedures failed. (We performed the search
with 64 Gauss-Legendre points to convert the coupled
integral equations to a set of algebraic equations with
no satisfactory convergence. ) This numerical problem is
primarily due to the fact that no contour rotation can
move the ENN branch point away from the integration
path. The resonance position that we list in Table IV
is presented just to show that (i) the resonance is very
close to the threshold and (ii) as a result it produces a
rapid variation in the cross section over a small energy
region near the threshold. Here again, the structure in
the cross section is not symmetric —a reflection of the
fact that the resonance pole lies above the threshold for
E production and the branch cut due to the threshold
produces a shadowing effect.

From a comparison of the results for the four poten-
tials we may draw the following conclusions regarding
the correlation between the two- and three-body systems
(see Table IV) . As the pole in the two-body system moves
from the [tb] sheet to the [bt] sheet, the width of the res-
onance in the YNN system increases. In other words,
the presence of the third baryon enhances the overall at-
traction in the system, effectively "binding" the ZNN
system. When the situation is such that the strength
in the two-body interaction produces a pole close to the
E production threshold, then the pole in the three-body
problem lies a little farther from the corresponding Z
production threshold. To illustrate this point, we exam-
ine what happens when the interaction is generated from
potential TGE-B by modifying the coupling between AN
and ZN as described in the previous section. In Fig. 12
we present the total cross section for the J =

z par-
tial wave, as defined in Eq. (3.4), for R = 0.5, 0.75, 1.0,
and 1.25. By comparing the results in Figs. 7 and 12
we illustrate that, as the pole in the YN system moves
closer to the real axis, the pole in the YNN also moves
closer to the physical region. However, the width of the
resonance in the YNN system, as reflected in the total
cross section, is in all cases larger than that in the YN
system. The close relation between the result for the
YN and YNN systems indicates that we need to inves-
tigate, experimentally, the cross section for Ap scattering
near the Z production threshold. This need, for more
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I'IG. 12. The total cross section in the J =
2 partial

wave for potential TOE-B with the coupling strength between
the AN and ZN scaled by the factor R; i.e. , CA@ ~ R x CA~.
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experimental information about the Ap cross section, is
further bolstered by the fact that some of the OBE po-
tential models (which are fitted to the existing Ap data)
exhibit a resonance-type structure near or below the Z
production threshold.

To demonstrate that the observed structure in the
cross section is not a threshold eEect, we present in
Fig. 13 the partial wave total cross section oTJ for the
first four partial waves. Two important conclusions can
be drawn from the curves in this figure. First, the reso-
nance structure below the K production threshold is ob-
served only in the J =

z partial wave. The other7r 1+

partial cross sections exhibit a broad bump above the Z
production threshold, which is due to the opening of a
new channel. In fact, this enhancement in the J
cross sections is a threshold effect that can be seen in all
the nonresonant partial waves, while the structure below
the Z production lies only in one partial wave allowing
us to assign a definite quantum number to that struc-
ture. The second interesting feature is that the S-wave
cross section is not the dominant contribution. The P
wave (J =

z ) total cross section is larger. This is not
unexpected considering the size of the deuteron and the
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momentum of the incident A at these energies. Unfortu-
nately, this will make it difBcult to observe such Z hy-
pernuclear resonances in Ad scattering, because the total
cross section will be dominated by nonresonant partial
vaves. We should recall that for Ap scattering it is the
S-wave scattering that provides the main contribution
to the overall total cross section. Thus, to observe a Z
hypernuclear state in the A = 3 system, one must con-
sider reactions that can select, or enhance, the (T = 0,
J =

2 ) channel.

IV. CONCLUSIONS

Using separable NN and YN potentials in the Fad-
deev equations for the YNN system, we have demon-
strated that the structure in the model Ad cross section
near the ZNN threshold is associated with resonance
poles in the scattering amplitude. The positions of these
poles on the second Riemann sheet of the complex energy
plane are, in fact, the eigenvalues of the analytic contin-
uation of the kernel of the Faddeev equations. Perhaps
surprisingly, the cut starting at the ZNN threshold ap-
pears to shield from view in the physical region those
resonance (pole) singularities lying above that threshold.
Therefore, whether the resonance pole, corresponding to
a ZNN eigenstate, lies above or below the ZNN thresh-
old, the structure appearing in the Ad cross section lies
below the ZNN threshold. If the pole resides below the
ZNN threshold, then the structure in the cross section
takes the shape of a classic resonance, symmetric about
the real part of the resonance eigenvalue. In contrast, for
a pole that lies in the shadow of the ZNN cut, the struc-
ture can be quite distorted, falling sharply at threshold
and producing a more cusplike shape. In such a case, the
position of the peak in the structure does not necessarily
correspond to the real part of the resonance eigenvalue,
because the pole position is shielded from view in the
physical region. Clearly, any shape intermediate between
these two extremes is possible, so that one cannot neces-
sarily determine whether a pole lies above or below the
ZNN threshold from the shape of the resonance struc-
ture in the Ad cross section. Nonetheless, structure be-
low the ZNN threshold in the Ad cross section, like that
which has been observed in the 4He(K, vr ) reaction,
does imply the existence of a resonance (an eigenstate
of the Hamiltonian in a particular partial wave) in the
ZNN system.

That the cross section structure in the model Ad scat-
tering calculation is a resonance and not just a threshold
effect was established by demonstrating that the struc-
ture lies only in the ~ partial wave, and not in the
neighboring channels. Unfortunately, the I = 0 partial
wave does not dominate the Ad cross section, as is the
case in Ap scattering. Therefore, to observe a Z hyper-
nuclear state in the A = 3 system, one must consider
reactions that can select, or enhance, the 2 channel.

Finally, in the hypertriton the presence of three
baryons enhances the attraction in the unbound AN sys-
tem, such that the ANN system is bound with respect
to separation of the A from the deuteron. Similarly, the

presence of the second nucleon enhances the overall at-
traction in the ZNN system, effectively "binding" that
system to produce a resonance pole. Furthermore, we
found that, as the pole in the YN system moves closer
to the real axis, the pole in the YNN system moves closer
to the physical region. However, the width of the reso-
nance in the YNN system is always larger than that in
the YN subsystem.
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APPENDIX: FORMAL SOLUTION OF THE AGS
EQUATIONS

X p = Gp(E) 6 p + ) Gp(E) b & T&(E) X&p . (Al)

The corresponding homogeneous equation is given by

) =) G, (E)~.pTpldp)
p

(A2)

This equation is basically the Schrodinger equation for
the three-body system, and the determination of the en-
ergies at which this equation is satisfied gives us the spec-
trum of our three-body Hamiltonian. Thus, any solutions
of this equation for negative real energies correspond to
bound states. To determine the position of the reso-
nance poles which are not on the erst Riemann sheet of
the complex energy plane, we need to extend the energy
domain of Eq. (A2). This can be achieved in momen-
tum space by deforming the contour of integration such
that q —+ qe '8 [19], where 8 is the angle of rotation
of the integration variables, in this case the momentum.
In this way we have extended the energy domain over
which Eq. (A2) is defined to that part of the second Rie-
mann sheet where resonances are normally located. The
resulting equation is denoted by

14" ) = ) Gp(E) ~ p Tp(E) l&p ) .
p

(A3)

Here, the energy E can be in that part of the second Rie-

In this appendix we present a formal solution of the
integral equation for the three-particle scattering ampli-
tude in terms of the eigenstates of the kernel of the cor-
responding homogeneous integral equation. In this way
we establish the relation between the poles of the scat-
tering amplitude on the second Riemann sheet of the
energy plane, and the eigenstates of the Hamiltonian for
the three-body system.

Let us consider the AGS equation for the amplitude
X~p as given in Eq. (2.10),
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& (E) I&',.) =).Go(E)~ nTp(E) I&.',p)
P

(A4)

where A„is the eigenvalue of the kernel of the three-body
integral equation. For those energies for which there is
an eigenvalue, A„(E),whose value is one, Eq. (A3) is said
to have a solution. This solution is an eigenstate of the
full three-body Hamiltonian, even when the energy E is
complex provided it is on the second Riemann sheet.

To expand the three-particle scattering amplitude
A p(E) in terms of the solutions of Eq. (A4) (i.e. , the
eigenvectors of the kernel of the integral equation) we
must determine the orthonormality condition for the
eigenstates ]P„}.For this we need to introduce the
eigenvalue equation for the case when the rotation of the
contour of integration is taken to be q —+ qe'~, and the
resultant equation is

& (E) I&',.) =).Go'(E)~ n&p'(E) l&',p) .

mann sheet where the arg(E) ) —29. In general, there
are limitations on this deformation of the contour im-
posed by the singularities of the kernel. This limitation
puts a constraint on the resonances that can be stud-
ied using this approach. To solve Eq. (A3), we need to
consider the corresponding eigenvalue problem,

Here we note that unlike bound state solutions, the nor-
malization involves the eigenstates of the kernel and the
adjoint kernel. Because the kernel is not Hermitian,
which was the case for bound states, we state the or-
thonormality of the resonance wave function in terms of
two eigenvalue equations.

We are now in a position to expand the scattering am-
plitude X p(E) in terms of the eigenstates ]P„(E)). In
particular, if we want the amplitude on that part of the
second Riemann sheet where the resonance poles reside,
we must write the expansion in terms of the eigenstates
of the rotated kernel; i.e.,

~'p(E) = ) I
&',.) & ~(E) . ( 8)

The constants C„p(E)can be determined by substituting
the expansion in Eq. (A8) in the integral equation for the
scattering amplitude on the rotated contour, Eq. (Al)
on the rotated contour. This gives us an expansion for
the scattering amplitude in terms of the eigenstates and
eigenvalues of the kernel of the integral equation of the
form

A„(E*)
& ~(E) =) l&.',.(E)) I ~ E (&',P(E*)].

n n

T (E') Go (E') = Ts (E) Goo (E), (A6)

we can show that the eigenstates of the homogeneous
equation satisfy the orthonormality condition

).(4",.(E*) lT.'(E) l&.',.(E)) = ~ (A7)

This equation extends the energy domain of our eigen-
value problem to that part of the second Riemann sheet
where the solutions of the adjoint kernel reside. Making
use of the fact that the kernels of Eqs. (A4) and (A5) are
related by

In writing Eq. (AQ), we have established the fact that the
energy at which one of the eigenvalues A„(E)is one, the
amplitude X p(E) has a pole. However, the energies at
which the eigenvalues are one correspond to solutions of
the homogeneous Eq. (A3), which correspond to eigen-
states of the Hamiltonian when the energy domain on
which this Hamiltonian is defined is extended onto the
second Riemann sheet. In this way we have established
the fact that poles of the scattering amplitude on the sec-
ond Riemann sheet of the energy plane, which correspond
to resonances, are also the positions of the eigenstates of
the Hamiltonian when the energy domain is extended to
the second Riemann sheet.
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