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QCD sum rules for vector mesons in the nuclear medium
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A consistent treatment of quantum chromodynamical (QCD) sum rules in the nuclear medium is

developed. Its close relation to the structure functions of the nucleon in the deep inelastic scattering is

emphasized. The formalism is applied to the spectral changes of vector mesons (p, co, and P) in the nu-

clear rnatter. A linear decrease of the masses as a function of density is found. The four-quark conden-
sate ((qq) ) and a twist-two condensate iqy„q„D,q ) in medium play dominant roles for the mass-shift
of light mesons. Physical implications of the result in finite nuclei and in heavy ion collisions are also
discussed.
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The quantum chromodynamical (QCD} description of
the elementary excitations in the nuclear medium is one
of the current problems in hadron physics, since it has
direct relevance to the phenomena in finite nuclei and in
the relativistic heavy ion collisions [1,2]. In this Rapid
Communication, we will report a first serious attempt to
calculate the resonance parameters of the vector mesons
(p, to, and P) in medium with nonzero baryon density (p)
on the basis of the QCD sum rules (QSR). As we will
show later, the system with p%0 is the better place to
study the partial restoration of chiral symmetry and asso-
ciated phenomena than the finite temperature ( T} system
with p=0.

The purpose of this paper is twofold: The physical aim
is to make a solid connection between QCD and the vari-
ous suggestions related to the vector mesons in finite nu-
clei [2] and in the relativistic heavy ion collisions [3,4].
Another aim is to point out and clarify a vital role of the
twist-two quark condensates in QSR at finite p which do
not show up in the vacuum QSR [5] because of the
Lorentz invariance. We will analyze such new terms by
relating them to the structure functions of the deep-
inelastic lepton-nucleon scattering (DIS).

In the following, the X=Z cold nuclear matter with
density p is taken as a ground state. We consider a rela-
tively low density region, where the first-order expansion
by p is valid and a model independent prediction is possi-
ble. (The validity range of this approximation will be dis-
cussed later. ) Let us start with the longitudinal part of
the current correlation function with zero three-
momenturn in the rest frame of matter:

III (to )= lim[II"„(co,q)/( —3to )]
q~O

with

II„(to,q)=i f d x e'e (TJ„(x)J„(0))

where J„=(u y„u + d y„d)/2 (
—for the p meson and +

for the co meson) and sy„s (for the P meson). ( )z
denotes the ground-state expectation value, while we will

use ( )o as a vacuum expectation value. The operator
product expansion (OPE) of Eq. (1) gives

ReII (co )=QC„(co,p )(8„(p )) (2)

with p being a renormalization point of the local opera-
tors 8„. The Wilson coefficients are independent of den-

sity and all the medium effects are hidden in the expecta-
tion values (8„) . Furthermore, the operators with un-

contracted Lorentz indices can survive in the medium,
since we have only O(3) invariance in the ground state.
One such example is the vector operator qy„q; its time
component is nothing but the quark number density
which is equal to 3p [6]. (This operator, however, does
not show up in OPE for the vector mesons. )

By using the external field method with the Fock-
Schwinger gauge [7], one can list all the possible local
operators with and without spin up to six dimensions and
calculate their Wilson coeScients. This procedure is
similar to OPE in DIS [8] except that our expansion pa-
rameter is the dimension of 8„ instead of twist. For ex-

ample, the operators with nonzero Wilson coefticients in
the chiral limit include [9] (i) four-quark operators with
six dimensions such as qI „A,'q qI P'q, (ii) quark opera-
tors with four and six dimensions such as qy„D q and

qy„D D&D~q which are related to the twist-two opera-
tors in DIS, (iii) mixed operators like qD G y ysq, and
(iv) pure gluon operators such as G = —2(E —B'),
E +B, and GDDG Note that (a) .the tensor or scalar
condensates of quark bilinear do not arise in the vector
channel in the lowest order of u„and (b) only the opera-
tors with an odd number of covariant derivative (D„)ap-

pear among the twist-two operators. The detailed ac-
count will be given in Ref. [10].

Now let us examine the p dependence of the matrix ele-
ments of these operators. Up to linearity in p, one can al-

ways make a decomposition (8) =(8)o+(8)~p
where ( )z denotes the spin-averaged nucleon matrix
element with the noncovariant normalization for the nu-
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cleon state (pip') =(2~) 5 (p —p'). Since the Fermi
motion of nucleons just increases the power of p, one can
regard ( )z as a matrix element taken by the static nu-

cleon (p=0). The scalar condensates, which have both
(8)c and ( 6)&, can be written as (see, e.g. , Ref. [11])

( ss ) = ( ss )0+y pP 2m

'62 = '62 ——MN" p

(3)
+xx)—

where X„z——m (uu+dd )z is the m-NX term with m be-

ing the averaged value of the current masses of u and d
quarks, y —=2 ( ss )~ /( ( u u )~ + (dd )~ ) is the strangeness
content of the nucleon and MN ' is the nucleon mass in
the chiral limit defined by the QCD trace anomaly. We
have suppressed the obvious p dependence in the above
relations. Empirical values of X z and m (1 GeV) read
(45&7) MeV [12] and(7+2) MeV [13], respectively. y
and MN' are not well determined yet and we quote two
typical values here: (y, M~( ')—(0. 12, 830 MeV)
(Nambu-Jona-Lasinio model [14]) and (y, MN')-(0. 22,
770 MeV) (improved chiral perturbation [12,15]). At
normal nuclear matter density (p0=0. 17 fm ), absolute
values of the condensates decrease by 20—30%, 4—8%
and -8% for (uu ), (ss)z, and ((a, /m)G )z, respec-
tively [16]. Such shifting of the condensates at finite p is
much faster than those at finite T, since the density (tem-
perature) correction to the condensates starts with linear-
ity in p (quadratic in Q.

For the four-quark condensates, by combining the
linear p approximation and the ground-state saturation,
i.e., the Hartree approximation (which is a similar as-
sumption to the vacuum saturation in the vacuum QSR
[5]), one can show that only the product of the scalar
condensate is relevant, i.e., (qq ) expanded up to linear
density ( = ( qq )0+2( qq )0( qq )zp).

The quark bilinear operators with four and six dimen-
sions have nonvanishing matrix element only in medium.
They can be related to the corresponding twist-two
operators in DIS (and hence the parton distribution)
aside from six-dimensional mixed condensates which we
will discuss later:

(Sqy„D„.D„q(p')) =(—i)" '&„'(p )T„.. .„

A„'i(p')=2 f dx x" '[q(x,p')+( —)"q(x,p')] .
0

Here 4 makes the operator symmetric and traceless with
respect to the Lorentz indices. T„.. .„=[pz p„i"n Pl I' n

(trace terms)]/2MN, with p„being the nucleon four-
momentum (p~"=M&), and the factor 1/2MN comes
from our choice of the noncovariant normalization for
the state vector. The "trace terms, " which contain at
least one g„are as important as the leading term in con-
trast to the DIS case. q(x, p ) is the usual parton distri-

FIG. 1. (a) The contribution of (qy„D„q)~ to II& in Eq. (2).
(b) One of the contributions of the four-quark operator to IIL.

bution at scale p . Since the relevant p in QSR is the
scale of the optimal Borel mass (-1 GeV), we evolve
q(x, p ) from an initial distribution at p =10 GeV to
that at low p . We adopt the LO scheme in Ref. [17] for
this p evolution to calculate the nth moment A ~(p ).
As p becomes small, the sea-quark and gluon com-
ponents tend to be "absorbed" into the valence quark dis-
tribution as the perturbative QCD tells us.

As for the pure gluonic operators newly appearing in
the medium (such as E +B and GDDG), there is always
a well-known quantum suppression in the %ilson
coefficients compared to the quark operators of the same
dimension [5]. Furthermore, the nucleon matrix ele-
ments of these operators, which is related to the moments
of gluon distribution g(x,p ), tends to be suppressed at
low p as we mentioned. Therefore we can safely neglect
them compared to the quark contributions of the same
dimension [18]. For example, the term proportional to
E +B2 in Eq. (2) turns out to be a few percent of that
proportional to qy„D„q. As for the mixed condensate of
six dimensions, some of them reduce to the four-quark
condensate by the equation of motion which we have al-
ready considered. Others are supposed to be small, since
the gluon component in the nucleon wave function is
again small at low p, which is explicitly discussed by
Jaffe and Soldate [8] in the context of DIS. We will
neglect them compared to the four-quark operators fol-
lowing their argument.

Summing up all these, one finds that the main p depen-
dence in OPE originates from the four-quark condensate
and (uy„D„u ) for p and co mesons and m, (ss) for the

P meson. In Fig. 1, the diagrammatic illustrations of the
first two are shown. To get the resonance parameters, we
use the standard dispersion relation in mediuin [19]

ImIIL (u )
III (ni ) =—f du +subtractions .

(u i e) co— —
(5)

ImIIL(u ) (hadronic part) is composed of three terms:
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+ 1+ 8(u —So), (6)

with R =4m (Sm) for the P meson (p and co mesons) and
p„denotes the contribution of the Landau damping on
the hadronic side [4]. Matching the left- and right-hand
sides of Eq. (5) in the asymptotic region tu ~—ao by the
method of Borel sum rule (BSR) [5] or the finite energy
sum rule (FESR) [21], one can relate the resonance pa-
rameters to the p-dependent condensates. Here, for the
qualitative argument, we will write down the FESR for
the p (co) meson in the chiral limit:

a,F —S 1+ = —2~ M~ p
2 —1

So cz,
Fm — 1+

2 7T

= —Q —2~2"+M p

So n,3

Fm — 1+
3 7T

= —Q
—

m A"+M p
10

the scattering term, the resonance, and the continuum
[20]

R ImIIL(u )=5(u )p„+F6(u —m )

fore, we take 0 &p & 2po as an optimistic validity range of
our analysis. More systematic analysis of the higher or-
der terms will be given in Ref. [10].

The numerical calculations for the density dependent
masses shown in Fig. 2 have been done by using the BSR.
We took one of the canonical procedures to determine
the resonance parameters: First So is determined to make
the meson mass m least sensitive to the Borel mass M in
the region M~;„&M &M,„determined by the 30%%uo cri-
terion. Then the minimum of m(M) is adopted as the
physical mass. We have also checked that the FESR has
the same qualitative result with BSR. Since we are only
interested in the medium modifications of the resonances,
the same Uacuum parameters with those in Ref. [22] are
adopted without any fine tuning [23]; for instance,
Q4 =0.05 GeV, Q6 =0.06 GeV, m, (ss )o= —(210
MeV), etc. As for the parameters in Eq. (3), the central
values are taken to calculate the curves in Fig. 2. The
masses of p, co, and P mesons decrease almost linearly in
density. (The deviation from the linearity above po in the
p-co channel should be regarded as an uncertainty of our
procedure of the Borel analysis [24].)

From Fig. 2, one can make a linear fit of m (p) using

1.50

where Q4 and Qs are m /3((a, /n)G ) .and

—,9,'n. (Qa, qq ), respectively, taken up to linearity in p.
The first sum rule (the local duality relation) essentially
identifies the pole residue with the threshold parameter.
The rhs of the first equation, which is a contribution from
the hadronic scattering term p„, is negligible at low den-
sity. In the second sum rule, the twist-two quark conden-
sate (the second term in the rhs with A 2+ ——0.90 at 1

GeV) plays a significant role: its magnitude becomes
comparable to the uacuum gluon condensate with the
same sign, which makes the vector meson mass smaller in
the medium. (Remember that the gluon condensate con-
tributes to the mass negatively. ) The four-quark conden-
sate in the third sum rule decreases by the medium effect
according to Eq. (3), which also makes the vector meson
mass smaller. (Remember that the four-quark conden-
sate contributes to the mass positively. ) Contribution of
the twist-two condensate in the third sum rule is small
because it corresponds to the higher moment of the struc-
ture function (34+ =0. 12 at 1 GeV).

One can also write down similar sum rules for the P
meson. In this case, because of the OZI suppression, the
contributions of twist-two operators are rather small
(A2 —-0.05 and 34=0.002 at 1 GeV). However, still a
small mass shift occurs mainly due to the decrease
m, (ss ) which is the main term in OPE for the P meson.

To find the validity range of the linear p approximation
for (8„),we have estimated some of the p" ' terms in

the quark condensates. They include the p term and
the p term in (qq ) due to the Fermi motion of nucleons
and the two-body nucleon-nucleon interactions respec-
tively, and also the p terms that appear in the four-quark
condensates ((qq) ) and ((q q) ) . They affect at most
15% (30%) of the linear terms in p at p =po (2po). There-
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FIG. 2. (a) The p-co meson mass m and the continuum

threshold So ' as a function of p/po. (b) The same figure for the
P-meson mass with two typical values of y (the strangeness con-

tent in the nucleon). Dashed lines indicate the K E and
K+K threshold at p=0 which are the main decay modes of P.
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the values at p =0 and po, which results in

m (p)/m (0)=1—C(p/po), (8)

with C=0. 18 (0. 15y) for p-co (tIt). Error for the numbers
0.18 and 0.15 is —+30% which comes from the uncer-
tainty of X„z/2m(1 GeV)=3.21+1.05. In the P chan-
nel, there is an extra uncertainty due to y which is shown
in Fig. 2. The threshold parameter +SO has also a
linear decrease. The above result tells us that vector
meson masses almost scale like the quark condensate
&qq &,.

Much implicit evidence of the dropping p-co mass in
finite nuclei is extensively discussed by Brown and Rho in
Ref. [2], which includes the K+ scattering off medium-
heavy nuclei, polarization observables in nucleon-nucleus
scattering, the enhancement of the spin-orbit part of the
G-matrix element, and the enhancement of tensor-force
due to the p meson in nuclei. These phenomenological
studies require C-0. 15 which is comparable to our value
in Eq. (8). In this sense, our result seems to support the
above phenomenological idea. However, one should also
notice that m (p) in our calculation is the pole position of
the propagator in the medium, while the relevant quanti-
ty in most of the nuclear physics application is the
"mass" defined in the space-like momentum (i.e., the
screening mass). These two are different in general and
one needs to study QSR with q%0 in Eq. (1) to check
whether they are close or not. On the other hand, the
direct measurement of the pole position in the medium is
possible through the leptonic decay of vector mesons
created in the hot/dense hadronic system by the relativis-
tic heavy ion collisions [3,4] or created in finite nuclei by
the electron machines. In particular, only a few percent

change of the P-meson mass can affect its decay property
drastically, since m& is very close to the threshold of its
main decay mode (K K and K+K ) [3]. Figure 2 sug-
gests that the P-meson is going to be more stable in medi-

um, if the kaon mass (mx ) does not change in medium

[25].
Now let us briefly compare our result at (T =0,p&0)

with that at TWO, p=O. In the latter case, the FESR at
finite T tells m (T)/m (0)-(qq ) T

—(1—T /T, )'/ with

T, =2f [1]. (Here we have assumed a mean field behav-

ior for the condensate (qq)T-Ql —T /T, . ) This
shows one can see the considerable change of m (T) only
near the critical point [26]. Therefore, the finite p system
(such as the finite nuclei or the high density region of the
heavy ion collisions) will be a better place to see the effect
of the partial restoration of chiral symmetry and its asso-
cited changes of hadron properties in experiment.

To go beyond the linear density approximation, we
have to introduce models for the behavior of the conden-
sates at high p. This point together with the full details
of the present paper and the discussions on the other vec-
tor mesons (A „K*,and J/ql) will be reported elsewhere
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