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Rho meson in dense hadronic matter
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The spectral function of a rho meson that is at rest in dense hadronic matter and couples strongly
to the pion is studied in the vector dominance model by including the effect of the delta hole
polarization on the pion. With the free rho-meson mass in the Lagrangian, we find that both
the rho-meson peak and width increase with increasing nuclear density, and that a low-mass peak
appears at invariant mass around three times the pion mass. Including the decreasing density-
dependent hadron masses in the Lagrangian as suggested by the scaling law of Brown and Rho, we
find instead that the rho peak moves to smaller invariant masses with diminishing strength when the
nuclear density increases. The low-mass peak also shifts down with increasing density and becomes
more pronounced. The relevance of the rho-meson property in dense matter to dilepton production
in heavy-ion collisions is discussed.

PACS number(s): 25.75+r, 14.40.Cs, 12.40.Vv

In heavy-ion collisions the nuclear matter can be com-
pressed to many times the normal nuclear matter density
[1]. The study of the property of hadrons in dense matter
has recently attracted a lot of attention [2]. We have pre-
viously studied dilepton production from the pion-pion
annihilation in heavy-ion collisions to see whether one
can learn about the pion dispersion relation in a dense
medium [3—5]. In particular, we have considered dilep-
tons of invariant mass around twice the pion mass. Gale
and Kapusta [6] were the first to show that the dilepton
yield around this invariant mass would be enhanced if
the softening of the pion spectrum in the nuclear matter
is included. This is due to the large momentum range
available for the two pions when the pion dispersion rela-
tion develops at high densities a minimum at energy less
than the pion mass. We have obtained a similar result
when the pion self-energy in the nuclear matter is cal-
culated in the delta-hole model [3, 4]. But for dileptons
with zero three-momentum the enhancement is canceled
by the delta-hole polarization correction to the zero ver-
tex as shown by Korpa and Pratt [7], and one obtains
instead a suppression of the dilepton yield for invari-
ant mass around twice the pion mass. This cancella-
tion is, however, reduced for dileptons with finite mo-
menta, so there is still some enhancement of the dilepton
yield around this invariant mass [5]. The experimen-
tal data [8, 9] from the Bevalac on the dilepton invari-
ant mass spectra from heavy-ion collisions have already
shown clearly the contribution from the pion-pion anni-
hilation [10, 11). But for dileptons with invariant masses
below about 500 MeV, it is dominated by the eta Dalitz
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decay and also has an appreciable bremsstrahlung con-
tribution [12]. This makes the enhancement of dileptons
with invariant masses around 280 MeV difBcult if not
impossible to be observed.

Since the electromagnetic form factor of a pion is domi-
nated by the rho meson, the dilepton invariant mass spec-
trum should also reveal information about the property
of the rho meson in dense matter. Since the background
from the eta Dalitz decay and bremsstrahlungs is neg-
ligible for large dilepton invariant masses, it should be
easier to identify the rho meson (770 MeV). In all pre-
vious studies [3—6, 10, 11], the free rho-meson mass and
width are used in the pion electromagnetic form factor.
But studies based on the /CD sum rules show that the
rho-meson mass decreases with increasing density as a re-
sult of the partial restoration of chiral symmetry in dense
matter [2, 13]. This result is similar to the scaling law of
Brown and Rho [14] who have shown that the in-medium
hadron masses decrease with density and their density
dependence is roughly identical when the scaling prop-
erty of /CD is suitably incorporated in effective chiral
Lagrangians. They have also suggested that the resid-
ual interactions between in-medium hadrons can then be
introduced using effective Lagrangians.

In this paper, we shall report our study of the medium
effect on the rho-meson property. This is carried out in
the vector dominance model (VDM) [15] together with
the in-medium scaling masses of Brown and Rho [14].
The vector dominance model has been previously used
by Gale and Kapusta [16] to study the property of a rho
meson in a hot pion gas; The details of our study will be
published in a lengthier paper.

We shall consider the case of a rho meson at rest in
the nuclear matter. Then the strong tensor coupling of
the rho meson to the nucleon can be ignored because
it is proportional to the rho-meson momentum. Also,
the vector coupling of the rho meson to the nucleon can
be neglected as the nonrelativistic nucleon particle-hole
polarization vanishes at zero momentum. The self-energy
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FIG. 1. The rho-meson self-energy diagrams. The wavy
and dashed lines with a solid circle denote the rho meson and
the pion, respectively.

of a rho meson in the nuclear medium is thus determined

by its coupling to the pions, which are modified by the
delta-hole polanzation in the nuclear matter. This is
shown in Fig. 1, where the rho meson is denoted by the
wavy line while the dressed pion is given by the dashed
line with a solid circle. The second diagram in the figure
results from treating the rho meson as a gauge boson in
the VDM.

For a rho meson with four-momentum k in the nuclear
matter, its self-energy can be expressed as

d4q r" (k, q)r" (k, q) 2r&"

(2x)4 [q~ —mi —II(q)[[(q —k)~ —mi —II(q —k)[ q~ —mi —II(q) ) '

In the above, g~ is the pzz coupling constant and has

a value gz/(4z) = 2.94 determined from the rho meson

width in free space; the pion mass is denoted by m
The paar vertex I'~ (k, q) in Eq. (1) is shown in Fig.

2 and is given by
I'" (k, q) = (2q —k)" + (q —k) II""(q—k)

+q„II""(q). (2)

The first term is the bare pzz vertex given by the first
diagram in Fig. 2 while the next two terms take into ac-
count vertex corrections from the delta hole polarization
as shown in diagrams two and three in Fig. 2. There are
two other vertex correction diagrams in Fig. 2 which are
neglected in the present study as they are expected to
be less important than the first three diagrams because
of the extra delta or nucleon propagator in the diagrams.
When multiplied by k„and k„, the quantity II~"(q) gives
the pion self-energy II(q) due to the delta-hole polariza-
tion, i.e., II(q) = k„ll~"(q)k„.

The pprrx vertex I'z~ (k, q) in Eq. (1) is given by

r~"..(k, q) = g~" + 11~"(k—q). (3)

In the above, the first term is the bare pp7rz vertex shown

by the first diagram of Fig. 3 while the second term is
the vertex correction from the second diagram of Fig.
3. The last three vertex correction diagrams in Fig. 3
contain an extra delta or nucleon propagator and are
again neglected.

The pion self-energy in the nuclear matter has been
extensively studied in the past using the delta-hole model
[17]. In the nonrelativistic approximation, it is given by
II(q) = q~X(q), with

„( )
xo(q)

1 —g'xo(q)'
(4)

where g' = 0.6 is the Migdal parameter representing the
short-range delta-hole interaction. For pions with energy

qo larger than the nucleons' kinetic energy, the delta-hole
polarization xo(q) has the approximate form

Xo(q) = -[
I pN 2 2 exp( 2'q/b ) (5)

8 (f~& vR 2 2

9 (m ) qo2 —ur&~

with +R = gq2+m~z —m~ —il'~/2. In the above,

f~ 2 is the 7rNb coupling constant; the width of the
form factor is b 7m~; and pN is the nuclear matter
density. The masses of nucleon and delta are m~ and

m~, respectively. The width F~ of the delta in matter
can be calculated self-consistently by extending the usual
delta-hole model to include the effect of the softening of
the pion spectrum in the nuclear matter [4]. For simplic-

ity, we use here the value in free space, i.e., I'& —115
MeV. We note that according to Ref. [5] IIo„——II„o -- 0
and II,&(q) 6,&X(q) in the nonrelativistic limit.

We have introduced the factor i in Eq. (1) so that the
rho-meson propagator in the medium D is related to the
free propagator Do by (D )I"" = (Do )""—Z~". The
imaginary part of the rho-meson self-energy is obviously
finite. But the real part of the self-energy is divergent
and needs to be renormalized. This is done by writing it
as ReZ~' = (ReZ"" —ReZ~o") + ReZo"". The difference
Z~&" ——ReZ~" —ReZ&", shown in the parentheses, be-

tween the real part of the rho-meson self-energies in the
medium and in free space is finite as the pion self-energy
in the nuclear matter vanishes at large momenta. The di-
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FIG. 2. The purer vertex. The double and single solid lines

denote, respectively, the delta particle and the nucleon hole. FIG. 3. Same as Fig. 2 for the ppn7r vertex.
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vergent rho-meson self-energy in free space ReZO" in the
last term is then replaced by the square of the measured
rho-meson mass m~ = 770 MeV.

For a rho meson at rest in the nuclear matter, both
Z~R" and the imaginary part of the rho meson self-energy
ZI" = ImZ" involve only two-dimensional integrations
over the energy and momentum of the pion. We have
carried out the energy integration analytically using the
Cauchy residue theorem, and the remaining momentum
integration is evaluated numerically.

If the gauge invariance is kept in the calculation, then
the renormalized rho meson self-energy tensor given by
ZI'" = Z~R" + iZ~z" has only three nonvanishing compo-
nents of the same magnitude: Z~~ = Zzz = Zss—:Z.
The rest are all zero [16]. Neglecting the last two dia-
grams in Fig. 2 and the last three diagrams in Fig. 3
violates the gauge invariance, and Zoo turns out to be
nonzero but is much smaller than Z.

The property of a rho meson in the medium can be
expressed by its spectral function which is given by 2vr

times the imaginary part of its propagator, i.e.,

)
2ZI (M)

[M rn ZR(M)] + [ZI(M)]
(6)

where ZR and ZI are the real and imaginary parts of
Z, respectively. We have calculated the rho-meson spec-
tral functions at different nuclear densities. They are
shown in Fig. 4. We find that as the nuclear density
increases the rho peak shifts to larger invariant masses
and its width also becomes larger. These results are sim-
ilar to those of Chanfray et al. [18] who have studied
the property of a rho meson in the nuclear matter us-
ing a potential model for the interaction between two
pions. Our results also show differences from theirs. At
high nuclear densities they have found a low-mass peak
around twice the pion mass while we have found a peak at
masses around three times the pion mass, i.e., the sum of
the pion mass and the delta hole energy. Our low-mass
peak comes from the delta-hole polarization correction
to the ppIrn vertex shown by the second diagram in Fig.
3. Their low-mass peak is due to the neglect of the ver-
tex correction in their calculations. Indeed, if we neglect

the vertex correction diagrams in both Figs. 2 and 3,
and use only the bare vertices in Eq. (1), we also ob-
tain a low-mass peak around twice the pion mass in the
rho-meson spectral function at high densities. We note
that this low-mass peak in the rho-meson spectral func-
tion is related to the predicted enhancement of low mass
dilepton pairs from the pion-pion annihilation in heavy-
ion collisions [3—6]. The disappearance of the low-mass
peak as a result of including the vertex correction is sim-
ilar to the cancellation found by Korpa and Pratt [7]
for the delta-hole polarization correction to the ~a p ver-
tex in the pion-pion annihilation to dileptons with zero
three-momentum. This cancellation is, however, reduced
for dileptons with finite momenta [5]. It would be in-
teresting to study the smaller invariant mass region of
the rho-meson spectral function for nonvanishing three
momentum. In this case, the strong vector and tensor
couplings of the rho meson to the nucleon need to be
included.

As pointed out in the introduction, the rho-meson mass
in the effective Lagrangian should be density-dependent
as well [14]. This can be included by adopting the scal-
ing law of Ref. [14] and using the empirical density-
dependent nucleon effective mass, i.e. ,

rn~ m~ m~ I'~ 1

m'" ~'" r"& 1+o 25plpa'
(7)

where po is the normal nuclear density. As the pion is a
Goldstone boson, its mass in the medium behaves differ-
ently and has been assumed to remain unchanged [14].
Because of the small pion mass, we have assumed in the
above that the delta width in the medium scales in a
similar way. Using this value of rho-meson mass in Eq.
(6), we have repeated the above calculations. The results
are shown in Fig. 5. It is seen that the rho peak in the
spectral function moves to a smaller invariant mass with
diminishing strength when the density becomes higher.
The low-mass peak also shifts down with increasing den-
sity but becomes more pronounced than in the case with
bare hadron masses.

In summary, we have studied the rho-meson property
in dense matter using the Vector Dominance Model by
including the medium effect on the pion in the delta-
hole model. With the free rho-meson mass in the VDM
Lagrangian, we find that both the mass and width of
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FIG. 4. The spectral function of a rho meson. The solid
curve is for a rho meson in free space. For a rho meson in
the medium, the dotted, dashed, and dash-dotted curves cor-
respond, respectively, to nuclear densities of po, 2po, and 3po,
where po is the normal nuclear matter density.
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FIG. 5. Same as Fig. 4 with the density-dependent
hadron masses in the e8'ective Lagrangian.
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a rho meson in dense matter are increased but with
fragmented strength leading to a low-mass peak around
3m . With a decreasing density-dependent rho-meson
mass in the VDM Lagrangian as suggested by the scal-
ing law of Brown and Rho [14], we find instead that
the rho-meson mass becomes smaller in dense matter
but its strength is reduced significantly. The low-mass
peak in the rho-meson spectral function moves to a
smaller invariant mass and its strength becomes more
pronounced. This result is consistent with what one ex-
pects from the restoration of chiral symmetry in dense
matter. We thus believe that for the two cases we have
studied the one with a decreasing density-dependent rho-
meson mass is more realistic. The relation between our
result and that from the /CD sum rules [13] is, how-
ever, not well understood and deserves further study. Al-
though it will be more difficult to identify the rho meson
from the dilepton invariant mass spectrum as its mass

becomes smaller because of the background from eta de-
cay and bremsstrahlungs, future experiments to measure
the dilepton invariant mass spectrum from heavy-ion col-
lisions still provides a good and probably the only oppor-
tunity to verify experimentally the predicted property of
rho meson in dense nuclear matter.

Note added in proof. Similar studies have also been car-
ried out by Herrmann, Friman, and Norenberg [Z. Phys.
A 343, 119 (1992)]. They have not, however, included
the delta width and the scaling in-medium hadron masses
of Brown and Rho.
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