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Using a G-matrix folded diagram method and the Bonn nucleon-nucleon potential, the 8-d shell
effective interaction is derived and applied to evaluate the spectra of some light ad-shell nuclei. Due
to the relatively weak tensor-force characteristic for the Bonn potential, the effective interaction
matrix elements, particularly those with isospin T=O, come out generally more attractive than in
earlier derivations in which local, strong tensor-force potentials were used. As a consequence of
this, our results for the effective interaction and the spectra are in considerably better agreement
with empirical determinations and experimental data. The sensitivity of the above nuclear struc-
ture calculations to the strength of the nuclear tensor force is demonstrated systematically and the
dependence of the 8-d shell matrix elements on the nuclear mass number is studied.

PACS number(s): 21.30.+y, 21.60.Cs, 27.20.+n, 27.30.+t

I. INTRODUCTION

Nuclear structure predictions based on microscopic ap-
proaches, which employ the bare nucleon-nucleon (NN)
potential, depend sensitively on the strength of the
tensor-force component of the potential. To date, the
strength of this tensor force is not well determined [1—3].

The common recipe by which NN potentials are con-
structed is to start from a mathematical ansatz that is
based more or less on theory and to determine the pa-
rameters involved by a best fit to the NN scattering
data below pion production threshold and the deuteron
properties. It is generally agreed that for the long- and
intermediate-range part of the potential, meson theory is
appropriate and, in particular, all present-day potentials
contain a one-pion-exchange tail. Differences between
various models occur essentially at short ranges or, ex-
pressed in momentum-space language, in the off-energy-
shell behavior of the potentials. Thus, the uncertainty in
the strength of the tensor force concerns the short-range
part of this component. The long-range tensor force is
fixed by the undisputed one-pion exchange,

Most commonly employed potentials [4—6] are
parametrized in terms of local functions which can be
obtained in the nonrelativistic, local approximation to
one-meson=exchange Feynman-- amphtudes. Vv'ith such-
local expressions the empirical two-nucleon parameters
sensitive to the nuclear tensor force (e.g. , the deuteron
quadrupole moment and asymptotic D/S state ratio, and
the e~ mixing parameter up to about 300 MeV labo-
ratory energy used in the phase-shift analysis of elas-
tic NN scattering data) can be fit only if a relatively
strong tensor force is assumed. A practical measure for

the strength of the tensor-force component contained in
a nuclear potential is the predicted D-state probability of
the deuteron, P~. While from nonrelativistic, local po-
tentials [7] P~ —

6%%uo is obtained (the precise values are
Reid [4]; 6.5%%uo, Paris[5; 5.8%%uo, Argonne Vq4 [6]; 6.1%%uo),

the Bonn potential [1,2 predicts 4.4'%%uo. The Bonn poten-
tial is based on relativistic meson theory which typically
includes nonlocalities leading to a weak tensor force.

Recently, the relevance of the tensor force for the
bound three-nucleon system has been investigated sys-
tematically and demonstrated clearly [1, 8]. Applying
the Bonn potential, a triton binding energy of 8.35 MeV
is obtained [8], while other potentials [4—6] predict about
7.5 MeV (the experimental value is 8.48 MeV). Also the
other empirically known quantities of the three-nucleon
system (as, e.g. , the charge radius [9] and the sH-sHe
binding energy difference [10]) fall into place for the case
of the more attractive Bonn prediction.

It is a well-known fact that also the binding energy of
nuclear matter is very sensitive to the strength of the ten-
sor force [1, 11,12]. In an energy versus density plot, the
saturation points as predicted by conventional nuclear
matter calculations using a variety of two-nucleon poten-
tials are located along a band which has become known
as the " Coester line" [13]. The essential parameter of
this Coester band is the strength of the tensor force at
low energy (as measured by P~) with low P~ potentials-
predicting more binding energy than high-PD potentials.
The typical problem with the Coester line is that when
a suKciently large binding energy is obtained, the satu-
ration density is in general too high as compared to the
empirical value. However, relativistic effects, which are
repulsive and strongly density dependent, lower the sat-
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uration density. Thus, applying a low-PD potential and
including relativistic effects, nuclear matter saturation
can be explained rather satisfactorily [1, 14].

So far, our discussion has been concerned with nuclear
ground states. Another important and interesting area
are the excited states of nuclei. In a microscopic ap-
proach, one starts from a bare NN potential and derives
the Brueckner G-matrix which, in turn, is used to cal-
culate certain classes of diagrams defining the effective
interaction in an open shell, V,ff. The matrix elements
of V,ff can then be used to calculate, for example, the
energy spectrum of an open-shell nucleus including both
the ground state and the excited states.

First work along this line was done by Kuo and Brown
[15], who derived matrix elements of the effective inter-
action between two nucleons outside an rsO core. As is
well known, these s-d shell matrix elements have been
remarkably successful, at least qualitatively, in nuclear
shell-model calculations. They were, however, derived
some twenty-five years ago and during this time there
have been developed both more realistic NN potentials
and more systematic many-body methods for calculating
these matrix elements. It should be worthwhile, then,
to incorporate these improvements into the calculation.
An attempt in this direction has been carried out by
Shurpin, Kuo, and Strottman [16]. They performed a
folded-diagram calculation of these matrix elements us-
ing both the Reid and Paris NN interactions. The result-
ing matrix elements and the energy spectra seem to have
a general deficiency when compared with the recent and
highly successful empirical matrix elements of Wilden-
thal [17]. As will be illustrated shortly, a main prob-
lem appears to be that, in general, there is not enough
attraction provided by the calculated matrix elements.
This fact was stressed recently also by Daehnick [18] who
found, particularly, for the T=O matrix elements a large
and systematic discrepancy between theory and experi-
ment due to a general lack of attraction on the theoretical
side.

In the quoted theoretical work, conventional, local,
strong-tensor-force NN potentials were used. In view of
the problems mentioned, it is natural to raise the ques-
tion of how sensitive the effective interaction is with re-
gard to the bare two-nucleon potential used as input in
these calculations. As discussed, in particular, there is
latitude in the strength of the tensor force. Therefore
it should be worthwhile to examine the influence of the
strength of the bare two-nucleon tensor force on the the-
oretically derived effective interaction and its resultant
energy spectra.

Thus, in the present work, we will use the Bonn poten-
tial to derive the s-d shell effective interaction [19] and
then apply it in the calculation of the spectra of some
light s-d shell nuclei. As discussed, the particular fea-
ture of the Bonn potential relevant to this application is
its weak tensor force. To further investigate this aspect,
other versions of this potential have been constructed [1],
in which the strength of the nuclear tensor force is varied
systematically. In the subsequent discussion, we will de-
note the original Bonn potential by Bonn A (P~ = 4.4%)
while the stronger tensor-force versions will be denoted

by Bonn B and C (P~ = 5.0% and 5.6%, respectively).
(See Ref. [1] for more details concerning the potentials. )

Another interesting aspect is the A-dependence of the
effective interaction (where A denotes the nuclear mass
number). In a recent study of the A=17 to 2=39 nuclei,
Wildenthal et at. [17] used the following law:

M(A) = M(18)(18/A) (1)
where M(A) denotes a matrix element of the effective
interaction for a nucleus with the mass number A. This
formula implies that the strength of all matrix elements
decreases with the mass number, the cause of which is
assumed to be the mass dependence of the nuclear ba-
sis states [17]. Note that the very successfully empirical
analysis by Wildenthal et at. is based on the above law.
Therefore, it is of interest to examine the A dependence
in a microscopic model. Recently, Hosaka, Kubo, and
Toki [20] have studied the A dependence for the bare
G matrix in the sd-shell and found an average mass de-
pendence of A r~ . Our microscopic calculations include
besides the bare G matrix also diagrams of second order
in G and folded diagrams. We will compare our result
with the assumption Eq. (1) and the findings of Ref. [20].

Since the formalism applied in this work has been pub-
lished in length before, we will only briefly review it in
Sec. II. The results of our calculations are presented and
discussed in Sec. III. Section IV contains summary and
conclusions.

II. FORMALISM

In this work, we will use the folded-diagram approach
by Kuo, Lee, and Ratcliff [21, 22] in which the effective
interaction is expressed as a series in the number of folds.
Namely,

Veff = +0 + +1 + +2 + F3 + ' ' '

where E„de ntoes a (n+1) Q-box term (see below) con-
nected with n sets of folded lines. For example, the three-
times folded term has the form

+s = —Q' Q Q Q

where J stands for a generalized folding operation. Q is
in principle an infinite sum of irreducible diagrams while
Q' is obtained from Q by removing terms of first order
in the reaction matrix G. The calculation of Q can only
be made approximately by selecting certain classes of di-
agrams. We include in the Q box all the 2-body and
1-body valence irreducible diagrams up to second order
in the model-space G matrix, i.e., diagrams D1—D7 of
Fig. 1 (see Ref. [16] for more details). Although there
is no rigorous theoretical proof that the higher-order Q-
box diagrams could be dropped, it is however indicated
in the calculation of Ref. [16] that their effects can be
largely reduced when the corresponding folded diagrams
are included as well.

To evaluate those diagrams of the Q box, we need first
to calculate the model-space G matrix, which is defined
by the integral equation
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FIG. 2. Pauli exclusion operator q2 used in the calcula-
tion of the model-space reaction matrix G.
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III. RESULTS AND DISCUSSION

A. Matrix elements

FIG. 1. Q-box diagrams included in the present work. U
is the single particle potential. D1—D3 are one-body diagrams
while D4—D7 are two-body diagrams.

1
G(~) = VivPr + Vm~Q2 T Q2G(w),

Cd — 2T
(4)

where Q2 is the shell-model Pauli exclusion operator
shown in Fig. 2 and T is the two-nucleon kinetic-energy
operator. Using Tsai and Kuo's method [23] and a ma-
trix inversion approach [24], the exact solution of Eq. (4)
can be written as

G(u)) = G ((u)+ AG

with GF the free reaction matrix, defined as,

G (u)=V„+V G (u)
1

and AG given by

1 1 1

e P2 [I/8 + (1/e) G„(l/8)] Pg 6

(7)

with e = cu —T and P2 = 1 —Qq.
In practical calculations, it is customary to use har-

monic oscillator wave functions for the low-energy states
and p1ane waves for the states of higher energy. The har-
monic oscillator states depend on the chosen frequency
parameter hu. As we will discuss below, this introduces
the dependence on the nuclear mass number A.

Once the effective interaction is obtained, the spectra
of light sd-shell nuclei can be calculated by a diagonaliza-
tion procedure. In our work, we employ the shell-model
code developed by the Rochester —Oak-Ridge Collabora-
tion [25].

Applying the formalism outlined in the previous sec-
tion and using the numerical methods described in
Refs. [16, 24], we have first calculated the folded-
diagram sd-shell effective interaction. For the bare
NN interaction we employ the energy-independent one-
boson-exchange parametrization of the Bonn potential
of Ref. [1], which we will denote by Bonn A (Pri
4.4'). This potential is derived from relativistic meson-
exchange theory and defined in the framework of the
Blanckenbecler-Sugar reduction of the Bethe-Salpeter
equation using one-boson-exchange (OBE) terms. As
mentioned earlier, the essential difFerence between this
interaction and other commonly employed potentials lies
in the strength of the tensor force. Due to relativistic
nonlocal terms, the tensor force of the Bonn potential
is weaker than in local parametrizations of the nuclear
force. To elucidate systematically the effect of the tensor
force strength on the effective interaction, we will also
apply two variations of the Bonn potential with system-
atically increased tensor force strength, denoted by Bonn
B and C (PD = 5.0%%up and 5.6%, respectively) [1].

In Table I, we list some typical s-d shell matrix el-
ements derived from these three potentials. Wilden-
thal's empirical matrix elements are shown for compari-
son. The sensitivity to the tensor force strength can be
clearly seen. For instance, let us look at matrix element
(TJ, abed)=(01, 4444) first. It is —1.49, —1.24, and —1.09
MeV for Bonn A, B, and C, respectively. The weaker the
tensor force the more attractive the matrix element. The
result obtained from the weakest tensor force potential
(Bonn A) is closest to the empitical value of —1.63 MeV.

This trend is known from nuclear groundstate calcula-
tions (e.g. , triton, rsO, nuclear rnatter; see Ref. [1] for an
overview) and can be understood in terms of medium ef-
fects on the Brueckner G matrix. All realistic NN poten-
tials are fit to the NN scattering data and the deuteron
binding energy for which a certain intermediate-range at-
traction is required. A strong tensor force potential pro-
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TABLE I. Shell model matrix elements (abT J[V,s [cdTJ)
(in units of MeV), as derived from the Bonn A, B, and C
potentials [1]. The empirical data are from the analysis by
Wildenthal et al. [17]. The orbital notation is 4 = Od5,
5 = 1s 1, and 6 = Ods. For non-Hermitian matrix elements
the average is given. 4u = 14 MeV. T J abed D4 D5 D6 D7 Sum

TABLE II. Individual two-body contributions contained
in the Q box, derived from the Bonn A potential. D4—D7
refers to the diagrams in Fig. 1. The total is listed in col-
umn sum. For notation, parameters, and units see legend of
Table I.

10

01

4444
4455
4466
5555
5566
6666
4444
4455
4466
5555
5566
6666

T J abed A

-2.77
-1.13
-3.51
-2.05
-0.83
-1.28
-1.49
-1.02
+1.45
-3.53
+0.03
-0.76

B
-2.63
-1.06
-3.41
-1.90
-0.80
-1.21
-1.24
-0.88
+1.29
-3.20
-0.01
-0.61

-2.60
-1.04
-3.35
-1.85
-0.79
-1.18
-1.09
-0.79
+1.18
-2.98
-0.02
-0.52

Empirical

-2.82
-1.32
-3.19
-2.12
-1.08
-2.18
-1.63
-1.18
+0.72
-3.26
+0.03
-1.42

10

01

4444
4455
4466
5555
5566
6666
4444
4455
4466
5555
5566
6666

-1.72
-0.81
-3.41
-2.45
-0.66
-0.33
-0.52
-0.54

+2.80
-3.91
-0.32
-0.33

-0.29
-0.12
-0.11
-0.07
-0.10
-0.25
-0.55
-0.31
+0.13
-0.44
+0.12
-0.26

-0.41
-0.10
-0.26
-0.07
-0.08
-0.30
-0.28
-0.09
-0.06
-0.28
-0.09
-0.08

-1.10
-0.40
-0.81
-0.10
-0.24
-0.53
-0.34
-0.20
-0.76
+0.21
+0.25
-0.11

-3.52
-1.43
-4.59
-2.69
-1.08
-1.41
-1.69
-1.14
+2.11
-4.42
-0.04
-0.78

vides a large part of this attraction by means of a term
of second order in the tensor potential. On the other
hand, a NN potential with a weaker tensor component
yielding a smaller second-order term will have a more at-
tractive central force to provide the necessary attraction
to fit the NN data. In the nuclear many-body system,
terms of second and higher order are quenched by Pauli
and dispersive effects [1]. The larger the tensor force, the
larger the second-order term, and the larger the absolute
value of the quenching of this attractive term (yielding a
net repulsive medium effect).

Though in the free two-body channel, the tensor force
plays an important role only for the T = 0 states (par-
ticularly, Sq- Dq), the effective interaction for the T=l
states is also affected by the tensor-force strength. This
is mainly due to the core polarization diagram (diagram
D7 of Fig. 1). To see this point more clearly, we tabulate
the individual two-body diagram contributions to the Q
box in Tables II and III. As seen in these tables, for T=l
the core polarization diagram (D7) is sensitive to varia-
tions of the strength of the tensor force, while for T=O
the bare G matrix (diagram D4 of Fig. 1) shows this sen-
sitivity. Generally speaking, the effective interaction for
the T=1 states has a weaker dependence on the tensor-
force strength than that for the T=O states, as shown in
Tables II and III.

Comparing the predictions in Table I with the empiri-
cal matrix elements of Wildenthal, it is clearly seen that
with the weakest tensor force potential (Bonn A) the best
agreement is achieved. This point becomes even more
clear, when comparison is made with predictions from
local strong-tensor force potentials, like Reid and Paris
(Table IV). As example, let us consider the matrix ele-
ment (TJ, abed)=(10, 4444). The results based on the
Reid and Paris potentials, -2.07 and -2.22 MeV, respec-
tively, are significantly weaker than the Wildenthal re-
sult of -2.82 MeV, with which the Bonn A prediction of

TABLE III. Same as Table II, but for Bonn C.

T J abed D4 D5 D6 D7 Sum

10

01

4444
4455
4466
5555
5566
6666
4444
4455
4466
5555
5566
6666

-1.77
-0.82
-3.39
-2.45
-0.67
-0.38
-0.20
-0.43

+2.53
-3.49
-0.45

+0.00

-0.30
-0.13
-0.12
-0.07
-0.10
-0.25
-0.51
-0.28
+0.09
-0.43
+0.11
-0.24

-0.41
-0.10
-0.27
-0.07
-0.08
-0.31
-0.21
-0.05
-0.09
-0.25
-0.09
-0.08

-0.94
-0.35
-0.73
+0.03
-0.21
-0.39
-0.38
-0.23
-0.68
+0.15
+0.28
-0.10

-3.42
-1.40
-4.51
-2.56
-1.06
-1.33
-1.30
-0.99
+1.85
-4.02
-0.15
-0.42

T J abed BonnA Paris Reid Empirical

10

01

4444
4455
4466
5555
5566
6666
4444
4455
4466
5555
5566
6666

-2.77
-1.13
-3.51
-2.05
-0.83
-1.28
-1.49
-1.02
+1.45
-3.53
+0.03
-0.76

-2.22
-0.89
-3.09
-1.61
-0.69
-0.95
-1.01
-0.67
+1.12
-2.73
-0.06
-0.51

-2.07
-0.88
-3.05
-1.47
-0.69
-0.85
-1.01
-0.56
+0.92
-2.63
-0.07
-0.53

-2.82
-1.32
-3.19
-2.12
-1.08
-2.18
-1.63
-1.18
+0.72
-3.26
+0.03
-1.42

TABLE IV. Shell model matrix elements
(abT J[V,s]cdTJ) (in units of MeV) calculated from the Bonn
A [1], the Paris [5), and the Reid potential [4]. Notation as in
Table I.
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-2.77 MeV is in close agreement. For the (TJ, abed) =(01,
4444) matrix element the situation is quite similar. The
better agreement is in general due to an increase of at-
traction.

In this work, the convergence properties of the folded
diagram series have also been studied. Terms up to F4
are displayed in Table V (for the exact definition of F„see
Ref. [16]). It is seen that the contributions from the three
plus four folds are very small. Thus, in agreement with
earlier findings [16], the folded-diagram series appears to
converge rather satisfactorily. A previous study using the
Bonn potential [26] has also shown that a weaker tensor
force potential has a negligible Vary-Sauer-Wong effect
[27], leading to better convergence.

The overall improvement on the theoretically derived
efFective interaction can be seen in the total y2 [28] cal-
culated for the 63 matrix elements (see Table VIII of the
Appendix) which is 20.1, 24.9, and 25.3 MeV2 for Bonn
A, Reid, and Paris potentials, respectively. For the T=O
matrix elements only, it is 15.0, 17.5, and 18.5 MeV2, and
for T = 1 one obtains 5.1, 7.4, and 6.8 MeV2, again, for
Bonn A, Reid, and Paris potentials, respectively.

We should note that some of the calculated matrix
elements still lack attraction. An example is the [6666]
multiplet. Though the Bonn A prediction is more attrac-
tive than any other, still substantial attraction is missing
in this case (cf. Tables I and IV). It appears that large
differences occur mostly for the matrix elements which
involve the d3g2 orbit. A possible reason for this is the
following. First, this orbit is nearly unbound and it is
probably not well represented by a harmonic oscillator
wave function. More realistic would be a wave function
derived from a Woods-Saxon potential or obtained in a
Hartree-Fock calculation.

A more pertinent reason may be the following. The
s.p. (single-particle) energies are treated as adjustable pa-
rameters in Wildenthal's calculation, while in our folded-
diagram formalism we are supposed to use the A=17 ex-
perimental s.p. energies whose relative spectrum is (0,
0.87, 5.08) MeV for the orbit 4, 5, 6, respectively. In
contrast, the corresponding "best-fit" s.p. energies used

TABLE V. Representative V,g matrix elements in the F„
series (using the Bonn A potential). Notation, parameters,
and units as in Table I; F„as defined in Ref. [16].

by Wildenthal are (0, 0.78, 5.59) MeV. In fact, the to-
tal two-body effective Hamiltonian H,g, i.e. , the sum of
the s.p. energies and the effective interaction matrix el-
ements, for the [6666] multiplet given by our calculation
is actually quite close to that of Wildenthal. The above
comparison may have brought with it an important mes-
sage concerning the many-body forces which have not
been taken into account in our derivation. The above
multiplet involves only two valence nucleons and we have
reproduced Wildenthal's H, fr well. Many-body effective
forces are not involved in this case. However, when there
are more than, e.g. , two d3~q nucleons, such forces may
be needed in order to reproduce Wildenthal's H, fr. We
feel that Wildenthal's choice of the s.p. energies contains,
to some extent, an effective way to compensate for the
many-body forces which have not been considered in his
empirical matrix elements.

B. Spectra

Besides the comparison with so-called empirical ma-
trix elements, it may be instructive to also compare di-
rectly with the experimental data. For that purpose, we
have calculated the spectra of some light sd-shell nuclei
(Fig. 3). These spectra are calculated using the above-
derived sd-shell effective interaction with an A depen-
dence as proposed by Wildenthal and co-workers [17],
Eq. (1). In these figures, the potential predictions are
arranged such that the tensor force strength (and the
P~) decreases when going from left to right (cf. Table
VI). Besides the experimental spectra, we also show those
obtained when using Wildenthal s empirical matrix ele-
ments.

It is evident that a number of low-lying experimen-
tal levels are not reproduced by our calculation. This is
mainly because of the model space which we have chosen
for our calculation. Our model space consists of a closed

0 core with active valence nucleons confined in the sd-
shell. Thus, for instance, our calculated levels for isO
and F are those whose wave functions are predominan-
tely of 2p0h (two-particle —no-hole) nature. The states
whose wave functions are mainly of 4p2h structure are
not supposed to be adequately described by our model-
space calculation. The experimental 3.63 MeV 0+, 5.26
MeV 2+, and 7.12 MeV 4+ states of 80, see "Exp." col-
urnn of the isO spectrum (Fig. 3), are well known to be

T J abed Fp R+F~ F3+ F4 Vea

10

01

4444
4455
4466
5555
5566
6666
4444
4455
4466
5555
5566
6666

-3.52
-1.43
-4.59
-2.69
-1.08
-1.41
-1.69
-1.14

+2.11
-4.42
-0.04
-0.78

+0.60
+0.23
+0.94
+0.56
+0.26
+0.07
+0.13
+0.12
-0.83
+0.79
+0.01
-0.03

+0.15
+0.06
-0.00
+0.08
+0.02
+0.06
+0.07
+0.02
+0.07
+0.10
-0.01
+0.05

-2.77
-1.14
-3.65
-2.05
-0.80
-1.28
-1.49
-1.00

+1.35
-3.53
-0.04
-0.76

Potential

Reid [4]
Paris [5]
HM1 [29]
Bonn C [1]
Bonn B [1]
Bonn A [1]

Po (%)
6.47
5.77
5.75
5.61
4.99
4.38

TABLE VI. Deuteron D-state probability, P~, for the
NN potentials applied in the calculation of the spectra dis-

played in Fig. 3.
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members of a 4p2h band. Hence it is not unexpected that
these states are not reproduced well by our calculation,
nor by Wildenthal's calculation which is also based on a
closed 0 core model space. We note that Wildenthal
included only the lowest 0+, 1.98 MeV 2+, and 3.55 MeV
4+ states in his fit [17]. This is clearly a resonable thing
to do as these states are well known to be of 2p0h na-
ture. The second 4+ state given by Wildenthal and by
our Bonn A calculation are both at about 9 MeV, which is
in good agreement with the recent measurement by For-
tune et at. [31]; they identified that the predominantly

dsyqdsy2 4+ level is at 9 MeV.
We now turn to the energy levels of sF (Fig. 3), which

have been rather extensively studied [32]. Wildenthal
included the lowest six states ("Wild. " column) in his fit,
as these states are generally believed to be predominately
of 2p0h nature. Our calculation has given these six levels
but with a much broader spread. This may indicate that
the 4p2h admixture is more important in 8F than in
18O

Our calculated lowest 3+ level for ~sF (see Fig. 3) is
too close to the ground state, as compared with Wilden-

-2.5

-5.0

-7.5

-10.0

-12.5

5
3

J=i
5
3
J=i

-7=i

-15.0
Reid Paris HM1 Bonn C Bonn B Bonn A Wild. Exp.

Energy Levels of ' F (T=O) [MEV]

0.0

-2.5

-5.0

-7.5

—10.0

—12.5
T=O J=O J=O

J=O T=O

Reid Paris HM1 Bonn C Bonn B Bonn A Wild. Exp.

Energy Levels of 0 [MEV]

FIG. 3. Positive-parity energy spectra of some A = 18 —21 nuclei. For the calculated spectra the Reid [4], Paris [5), HM1
[29], and Bonn A, B, C [1) potentials are used. The spectra obtained by using Wildenthal s empirical interaction (Wild. ) [17]
and the experimental data (Exp. ) [30) are also shown.
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thai's calculation and with experiment. Note that the
second 3+ state in the "Exp." column of Fig. 3 appears
to be entirely missed by our calculation. A possible ex-
planation is that this state is mainly an "intruder" state
in the sense that its wave function is predominantly out-
side of the model space we have employed. The lowest
3+ state may also have a significant amount of intruder
components, and our calculation may be improved if an
extended model space is used where some of the main
components of the intruder state are explicitly included
in the basis vectors. The low-lying states of the 2=20
nuclei are rather satisfactorily reproduced by our calcu-
lations. Our results for A=21 are also reasonable.

From the above figures, a general trend is observed,

namely the spectra become more attractive when the ten-
sor force strength of the NN potential decreases. This
trend can be seen in all nuclei calculated. In general
there is good agreement between the spectra calculated
from the Bonn A or B potential and experiment. Notice
that the tensor force of the Bonn B potential (though
stronger than Bonn A) is still rather weak as compared
to potentials like Reid or Paris (cf. Table VI). In particu-
lar, the spectra of the heavier nuclei Ne and 21Ne are in
remarkably good agreement with experiment when Bonn
A is used. We also like to point to the fact that the good
agreement is not destroyed when going to higher isospin
levels, like ~oF(T = 1), soO(T = 2), or ~1F(T = 3/2).

Our results are consistent with those of a recent inves-
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tigation by Maglione and Ferreira [33], where two ver-
sions of the Bonn potential were used. The difference
between Ref. [33] and the present work is that in the for-
mer study local configuration space versions of the Bonn
potential are employed (while we use the original, nonlo-
cal momentum-space versions). By comparison, we find.
that the spectra derived in this work are even more at-
tractive than the corresponding ones of Ref. [33). This
indicates that nonlocality brings about extra attraction
in nuclear structure calculations.

As mentioned earlier, the T=l effective interaction has
a weaker dependence on the tensor force strength than

the T=O interaction. This can be clearly seen, for exam-
ple, by comparing the calculated spectrum of isO(T = 1)
with that of F(T = 0) (Fig. 3). The spectrum of isO
shows a much weaker dependence on the potentials than
that of SF. This is also seen in the predictions for the
ground state energy. The difference between the ground-
state energies obtained from the Reid and Bonn A po-
tentjal js 2.5 MeV for F whjle jt is only 1 MeV for 80.
This energy difference increases with the nuclear mass
number A, and it is ~4.5 MeV for Ne. This is simply
due to the fact that in a heavier nucleus there are more
interacting pairs.
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C. A dependence relationship

We turn now to the A dependence of the effective in-
teraction. As mentioned earlier, in the present work a
harmonic-oscillator single-particle (s.p. ) potential is used
to describe the unperturbed s.p. orbits. This s.p. po-
tential has one parameter, namely h~. The s.p. wave
functions and the corresponding s.p. energies depend on
this oscillator parameter. It is reasonable to assume that
the oscillator parameter depends on the mass number A
of the nucleus, with a larger A implying a smaller h~
(corresponding to a larger nuclear radius). We use the

hu = 41.47A 3 MeV. (8)

Some matrix elements as a function of A are listed
in Table VII. As samples, we have calculated the cases
A=18, 23, 28, 33, and 38 corresponding to ha=15.8, 14.6,
13.7, 12.9, and 12.3, respectively. In Fig. 4 these matrix
elements are plotted versus hw. It is seen that the depen-

1
dence on hw (or equivalently on A &) is almost linear,
which is in qualitative agreement with the assumption
made in the empirical analysis by Wildenthal, Eq. (1).
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TABLE VII. A dependence of some typical matrix ele-
ments of the s-d shell effective interaction (derived from the
Bonn A potential). For notation and units see Table I.

T J a b c d A=18 A=23 A=28 A=33 A=38

10 444
445
446
555
556
666
444
445
446
555
556
666

01

-2.62
-1.10
-3.89
-1.99
-0.76
-1.11
-1.27
-0.89

+1.33
-3.54
-0.12
-0.72

-2.73
-1.13
-3.74
-2.03
-0.79
-1.23
-1.42
-0.96
+1.35
-3.54
-0.07
-0.75

-2.79
-1.14
-3.61
-2.06
-0.81
-1.30
-1.52
-1.02
+1.36
-3.53
-0.02
-0.77

-2.82
-1.15
-3.48
-2.07
-0.82
-1.36
-1.61
-1.08

+1.36
-3.52

+0.02
-0.78

-2.83
-1.15
-3.38
-2.06
-0.83
-1.40
-1.67
-1.12
+1.35
-3.51
+0.06
-0.79

This suggests that the A dependence of the efFective in-
teraction largely comes from the A dependence of the nu-
clear wave function or, equivalently, the s.p. mean field.

Our mass dependence of A 1~s is close to the A
dependence obtained for the bare G matrix in Ref. [20].
The slight difference can be understood by considering
the range of the various contributions to the efFective
interaction. As is known (see Brown et at. [17]), us-
ing harmonic-oscillator radial wave functions with ha
assumed to be proportional to A 1~s, the efFective in-
teraction for a delta interaction varies as A 1~ while
for a Coulomb interaction it varies as A 1~s. Thus, as-
suming the general form A ~, n is larger for the shorter
range. Thus, the shorter range of the higher-order G ma-

trix and folded diagrams included in our work explains
the shift from A ~ for the G matrix ([20]) to A ~ in
our calculations.

We note that there are some exceptions from the rule
Eq. (1). As seen from Table VII and Fig. 4, with the
increase of A (or decrease of hu), the magnitude of the
matrix elements does not decrease in all cases. For exam-
ple, the strength of the matrix elements (TJ, abed)=(10,
4444), (10, 5555), (10,6666), (01, 4444), and (01, 4455)
is increasing with A, though most of them still have the
linear dependence on A ~ . This peculiar behavior is
also observed by Hosaka et at. [20] in studying the mass
dependence of the bare G matrix. It is certainly not a
surprise since the scaling law used by Wildenthal rep-
resents only an overall average for the reduction in the
matrix elements as the size of the nucleus increases. But,
from our microscopic calculation, it appears that a dif-
ferent scheme may be needed to summarize the A de-
pendence of the 8-d shell effective interaction. The em-
pirical A-dependence formula of Wildenthal, as displayed
in Eq. (1), seems to oversimplify the detailed A depen-
dence of our calculated matrix elements. It should be of
interest to study the efI'ect of this calculated mass depen-
dence on the nuclear spectra and on the fitted two-body
effective interaction. It may be noted that our calculated
T=1 matrix elements show a generally weaker A depen-
dence than the T=O ones, as can be seen from Fig. 4.
This may be an indication that the nucleon-nucleon ten-
sor force plays a role for the A dependence.

IV. SUMMARY AND CONCLUSIONS

We have derived the matrix elements for the s-d shell
effective interaction from the Bonn potential using a G-
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TABLE VIII. 8-d shell matrix elements calculated &om the Bonn A potential. Notation, parameters, and units as in Table I.

TJabcd

014444
014446
014455
014465
014466
014646
014655
014665
014666
015555
016555
016565
016655
016665
016666
024545

V g,g

-1.4899
3.5445

-1.0178
0.2951
1.4522

-6.4045
2.2509
1.9065

-0.2461
-3.5329
-0.5565
-2.9886
0.0273

-0.8229
-0.7629
-0.4683

TJabcd

024565
024645
024646
024665
026565
034444
034445
034446
034466
034545
034566
034645
034646
034666
036666
044646

Vabed

-2.3296
-1.3985
-4.1049
-1.4808
-1.2532
-0.7392
-1.5783
1.9458
0.6098

-3.4145
0.0671
1.1185

-0.8800
2.0155

-2.0657
-3.8224

TJabcd

054444
104444
104455
104466
105555
106655
106666
114646
114665
116565
124444
124445
124446
124465
124466
124545

Vabcd

-3.3831
-2.7?02
-1.1265
-3.5088
-2.0511
-0.8341
-1.2810
-0.2191
-0.0590
0.4112

-0.9482
-0.8269
-0.2285
0.8472

-0.8947
-1.1223

TJabcd

124565
124566
124645
124646
124665
124666
126565
126665
126666
134545
134645
134646
144444
144446
144646

Vabc~

1.2664
-0.6302
-0.2372
-0.2028
0.6953

-0.9748
-0.1412
0.2636
0.2949
0.2104

-0.0790
0.4279
0.0533

-1.3148
-1.2952

matrix folded-diagram method Furt. hermore, we have
applied these matrix elements to calculate the energy
spectra of light sd-shell nuclei. The main result is that
these matrix elements are generally more attractive than
in former derivations. This increase of attraction leads
to a substantially better agreement with the empirical
matrix elements as well as with the experimental en-
ergy spectra. The reason for these improvements can be
clearly traced to the weaker tensor force characteristic
for the Bonn potential.

The present results derived from the Bonn potential
together with earlier Endings like, e.g. , the successful pre-
diction of the triton binding energy [1,8) and the quanti-
tative explanation of nuclear-matter saturation [14], may
indicate that modern genuine meson-theoretic potentials
allow for a more consistent and successful description of
nuclear structure phenomena than traditional, simplistic

(local) nuclear force models.
As a by-product of our calculations, we have also in-

vestigated the dependence of the effective interaction on
the nuclear mass number A. An overall mass dependence
of A ~~s is obtained in close agreement with the assump-
tions by Wildenthal et al. , the source of which is found
to be the nuclear wave function, or equivalently, the s.p.
field. There are a number of cases where the A depen-
dence of our calculated matrix elements appears to be
different from the empirical A dependence of Wildenthal.
This point deserves further study in the future.
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TABLE IX. s-d shell matrix elements calculated from the Bonn B potential. Notation, parameters, and units as in Table I.

TJabcd

014444
014446
014455
014465
014466
014646
014655
014665
014666
015555
016555
016565
016655
016665
016666
024545

Vabca

-1.2359
3.3070

-0.8770
0.2793
1.2933

-6.0576
2.049?
1.9576

-0.1343
-3.1975
-0.6323
-2.9317
-0.0103
-0.8146
-0.6071
-0.3808

TJabcd

024565
024645
024646
024665
026565
034444
034445
034446
034466
034545
034566
034645
034646
034666
036666
044646

Vases

-2.2593
-1.3311
-4.0229
-1.3998
-1.1728
-0.6294
-1.5161
1.8798
0.5631

-3.2427
0.0536
1.0856

-0.8183
1.9997

-1.9807
-3.6831

TJabcd

054444
104444
104455
104466
105555
106655
106666
114646
114665
116565
124444
124445
124446
124465
124466
124545

Vance

-3.2498
-2.6360
-1.0640
-3.4128
-1.899?
-0.8008
-1.20?4
-0.203?
-0.0399
0.4156

-0.9233
-0.8069
-0.2238
0.8326

-0.8909
-1.0918

TJabcd

124565
124566
124645
124646
124665
124666
126565
126665
126666
134545
134645
134646
144444
144446
144646

Vabcd

1.2312
-0.6008
-0.2202
-0.1957
0.6877

-0.9436
-0.1204
0.2586
0.2834
0.2176

-0.0789
0.3975
0.0418

-1.2806
-1.2338
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APPENDIX: COMPLETE LIST OF s-d
SHELL MATRIX ELEMENTS

In Tables VIII and IX we give a complete list of all 63
8-d shell matrix elements derived from the Bonn A and
Bonn B potentials, respectively.
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