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I

We perform 2vPP and OvPP calculations for ' Ge, ' 'Te, and "Te using effective interactions derived
from the Paris and Bonn-A potentials. Extended model spaces are employed in setting up the quasiparti-
cle random phase approximation (QRPA) equations, on which our present calculations are based. For' Ge the model space consists of nine orbits, the two major shells from Of~/2 to 2s, /2, and for the telluri-
um case we include eleven orbits spanning three major shells from 1p3/2 to 1f7/2 The bare-G-matrix ele-
rnents are first calculated, with the Pauli exclusion operator carefully treated with a matrix inversion
method, so that double counting between the calculated effective interaction and the above model spaces
is strictly avoided. We then calculate the renormalized effective interaction, including corrections from
core polarizations and folded diagrams. The effect of core polarization is found to be highly significant,
especially for ' Ge. There appears to be a compensating effect from the folded diagrams; the net results
with core polarizations and folded diagrams both included become rather close to the bare-G results.
Unlike earlier QRPA calculations, our calculated MGr matrix elements for 2vPP do not seem to exhibit
strong dependence on gpp the particle-particle interaction strength parameter, in the vicinity of
gpp= 1.0. For OvPP decays, our calculated values for T, /2(m„) are typically 5X10 ' yreV for ' Ge,
2X10 yr eV for ' Te, and 9X10 yreV for "Te. Although the Bonn-A potential gives generally
more pairing force, the final results for PP decays given by the Paris and Bonn-A potentials are rather
close to each other.

PACS number(s): 23.40.Hc, 21.30.+y, 27.60.+j, 27.50.+e

I. INTRODUCTION

A new generation of nuclear double-beta- (g-) decay
experiments, using direct-counter methods, are rapidly
progressing [1—3], and it may be of interest to carry out
further theoretical studies of nuclear PP decays. Tradi-
tionally nuclear PP experiments were mostly performed
using geochemical methods. This is an inclusive mea-
surement, including both the neutrinoless (OvPP) modes
and the 2v ones. An advantage of direct-counting experi-
ments is their ability in differentiating the above two
modes. Thus the moment of directly observing the fun-
damentally important OvPP decays of nuclei in the labo-
ratory seems to have finally "arrived. " In fact a number
of this type of experiments are in progress, such as the
Heidelberg-Moscow experiment using enriched Ge
[2,3]. As of now, the OvPP mode of Ge seems to have
not been observed, remaining to be elusive. However, a
number of experiments have reported direct observations
of the 2vPP modes. For instance, Moe and collaborators
[4] have observed the 2vpp decay of Se. Ejiri and colla-
borators [5] have observed the 2vPP decay of ' Mo. And
two groups, a Russian and an American group, have ob-
served the 2vPP decay of Ge [6,7].

The above suggests that it may be worthwhile to carry
out further calculations for the 2vPit3 decays, as they can
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be compared with the latest experimental results. The
main purpose of the present work is to perform 2vPP and
OvPP calculations for nuclei ' Te, ' Te and 7 Ge, using
renormalized effective interactions derived from realistic
nucleon-nucleon (NN ) potentials —the Paris [8] and
Bonn-A [9,10] potentials. A brief account of our Ge
work, where the Reid NN potential was also used, has
been reported [11].

The study of tellurium is of particular interest since
there are two neighboring isotopes, ' Te and ' Te,
which are expected to disintegrate by PP decay. One may
argue that these two isotopes, which only differ by two
neutrons, are likely to exhibit similar nuclear structure
effects in the calculation of the relevant transition ampli-
tudes. The ratio of the PP half-lives of both isotopes have
recently been determined in geochemical measurements
[12,13]. This ratio provides a test of theoretical matrix
elements and together with the latter can also help to de-
cide whether the decays are dominated by the 2v or the
Ov mode [14]. However, there exists a disagreement be-
tween the measurements by Kirsten et al. [15] and those
of [12,13,16]. The reason for this discrepancy seems not
yet to be fully understood.

Nuclei where PP decays take place are usually rather
far from the closed shells. And calculations for these nu-
clei using full-Qedged shell-mode1 approaches become
generally prohibitive. One has to adopt some approxima-
tion scheme. A commonly adopted one is the pn QRPA
(proton neutron quasiparticle random phase approxima-
tion) (see, e.g., [14,17,18,28], and references quoted
therein). Although it is the OvPP mode which provides
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the crucial test about the nature of neutrino; whether it is

a Dirac neutrino or a Majorana one and whether it is

massive or not, theoretical studies have so far, however,

concentrated more on the 2vPP decays. This is mainly

because of the availability of experimental data; one can
cheek the calculated results with the experimental 2v/3P
half-lives T, &2, and thus has a check of the underlying
theory. In this case the primary quantity to be calculated
is the Gamow-Teller (GT) matrix element Mo'T. Howev-
er, the calculated values of this matrix element were,
within the framework of pn QRPA, often too large, indi-
cating the need of certain quenching mechanism to
suppress the theoretical MGT values. The inclusion of
the particle-particle (pp} correlations in pn QRPA has
been found to be important in providing the needed
quenching [14,17,18]. Such calculations depend, howev-
er, rather sensitively on the strength of the pp interaction

pp
which we shal 1 discuss in some detail later on. Our

earlier calculation [11]has indicated a significant reduc-
tion of this sensitivity by the use of the renormalized
effective interactions. We shall further investigate this
point in the present work.

In the following section we shall first briefly describe
the pn QKPA formalism, discussing the model spaces em-

ployed for the calculation and the respective model-space
effective interactions which enter. In Sec. III we shall
present some details about the derivation of the above
effective interactions. We shall use a 6-matrix interac-
tion derived from realistic NN potentials (Paris and
Bonn-A). A diff'erenee of the present calculation with
earlier ones is the treatment of the Pauli exclusion opera-
tor Qz, we have employed a method [19,20] which treats
this operator essentially exactly. As indicated earlier
[11], the inclusion of core polarizations and folded dia-
grams seemed to have some significant effect on the nu-
clear matrix elements for /3/3 decays of Ge. We shall
study if this trend also hold for ' Te and ' Te. Some de-
tails about the calculation of core polarizations and fold-
ed diagrams, which were not reported in [11],will be also
included in this section. Our results will be presented
and discussed in Sec. IV. A summary and conclusion will
be presented in Sec. V.

II. MODEL-SPACE pn QRPA

We employ a model-space pn QRPA framework for
our calculation, and it may be necessary to first briefly de-

I

where the elements of the submatrices A and 8 are

Ap„p „=6(pn,p'n'}(e +e„)

+g VPP „(u u„u u„+vpu„u .U„.)

+gph Vp„p n (u U„u U„+U u„U,u, ), (2a)

~pn, p'n' gpp Vpn, p'n' pun p n +'U'p nup un }''
ph

gpss Vpn p'n' ( up vn Up'un'+ vp un up Un ) (2b)

In the above e and e„are single quasiparticle energies,
obtained, respectively, from the proton and the neu-
tron BCS gap equations. The u's and U's are the well-
known BCS transformation coefticients. The particle-
particle (pp) and particle-hole (ph) interactions are
given by VPP .„=(jpj „~ V,fry pj„)J and VP„" .„

As to be described in the next section, the effective in-
teraction V,ff is obtained from realistic NN potentials.
We solve the secular equation (1) within a chosen model
space P. The idea is that NN correlations within P are to
be generated by the solution of this equation. The corre-
lations outside P are intended to be included within V,ff

itself, and it is important to avoid double counting in the
sense that these two sets of correlations should not over-
lap. There are formal theories (see, for example, [21—23])
for deriving such an effective interaction starting from
free NN potentials Vzz. One type of theory gives an

energy-dependent effective interaction in the sense that

Veff is dependent on the eigenvalue co. This is not so con-
venient for treating Eq. (1). There exists another type of
theory which gives an energy independent V,ff. We shall

adopt the latter, and in so doing we need to include the
so-called folded diagrams [21—24].

The nuclear matrix element of 2v decay is defined as
[25—28]

scribe some of its essential features, to see, for instance,
how does the model-space effective interaction enter in
our calculation. The pn QRPA secular equation can be
written as [14]

8 X X
—8 —3 Y Y

1 1

E, +Q&&I2+m, E; Eb+Q&&I2—+m, E, —

where we have replaced the intermediate-state lepton en-
ergy by Q&~I2+m„Q&& being the PP-decay Q value.
The Gamow-Teller reduced matrix elements in the pn
QRPA are given by

p, n

(4a)

p, n

The overlap integral in Eq. (3) is given as

(1+ 1+ ) = g (X "XP"—Y "YP")
p, n
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The quantities without (with) an overbar are defined with
respect to the parent 0,+. (daughter of ) state. It is a com-
mon practice to include the above overlap integral in pn
QRPA calculations and has been discussed in the litera-
ture [25—28].

For the OvPP mode we express the inverse half-life as

&rn„) +c„„&q)'+ c„())'[2 i/2]
me

(rn„)
+C „"(ri)

m,

(m„)+c., " (x)+c„,(q)(x) .
me

(6)

For a definition of the effective values of the neutrino
mass ( m „) and the coupling strengths of the right-
handed currents (ri), (A, ) and the coefficients C„we
refer to [28]. The coefficients C,» consist of products of
electron phase-space integrals GI, and the nuclear matrix
elements M

M. = y &0/+~~r .r „e:„[~0,+),
m, n

where 0 „are the relevant two-body transition opera-
tors. Neglecting contributions of right-handed currents,
only the matrix elements M~~ and MF

Gi2 =rr, .o2H (r),
'2

Si2=H (r) gv

(8a)

(8b)

X(p'p;J& t

The transition densities are expressed as

(9)

contribute, where H (r) is the "neutrino potential" [28]
which represents the exchange of a virtual neutrino be-
tween two nucleons. The internucleon short-range corre-
lations and the nucleon finite size effects are taken into
account in a standard way [28,29].

Because of the two-body character of the operators 8;2
the nuclear matrix elements can be reduced to a sum of
products of two-particle transition densities and two-
particle matrix elements

Z(p'p, n'n; J2J")
p'pn'n J2 Jm

Z(p'p, n'n; JzJ )=(—1) ' (2J2+1)(2J+1)W(p'pn'n; J2J) g (X» "'
v» u„Y, " ' "u»—V„)

a'a

X(J, ~J, )(X»"' "u v„—YP' v u„) (10)

with the overlap defined in Eq. (5). The QRPA equation
is solved for each multiplicity J of intermediate states
possible in the model space for both parent and daughter
states.

III. MODEL-SPACE EFFECTIVE INTERACTIONS

We describe here some details about the derivation of
the effective NN interactions used in our double-beta-
decay calculations. Nuclei where double-beta decays
take place are nearly all far from the closed shells. Con-
sequently, one usually needs to include a large number of
active orbits in the respective nuclear structure calcula-
tions. We include in the present work eleven active orbits
(from Ip3/p to 1f7/p) for ' Te and ' Te, and nine active
orbits (from Of7/2 to 2s, /2) for Ge. These orbits are
schematically displayed in Fig. 1. We employ a number-
ing system to label the single-particle orbits which is also
indicated in the figure. For example, the orbit h&&&2 is
denoted as orbit 16.

It is important to avoid double counting in deriving the
effective interactions. The correlations generated by solv-
ing the secular equation within a chosen model space P
should not be included once more in the G-matrix inter-
mediate states. To make sure about this point we have
used a matrix inversion method [15,16] in treating the G
matrix, which is defined by the integral equation

2p
) = I'x + I'm

~ —
Q2» T(2p) Qz»

where V&~ denotes the NN potential such as the Paris
potential. T(2p) refers to the kinetic energy of the two in-
termediate particles. Note that we use orthogonalized
plane-wave intermediate states. The Pauli exclusion
operator Q2» is to ensure that the intermediate states are

0 i 13/2 3 s 1/2 Q22 Q28

0 h 11/2 2p 1/2 16 21

0 9 9/2 2 s1/2 Q11 Q15

0 f 7/2 1 p1/2 Q7 Q10

0 d 5/2 1 s1/2 Q4 Q6

FIG. 1. Numbering system to label the single-particle orbits
in the present work.
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orthogonal to the active orbits included in the model
space. As shown in Fig. 2, Qz equals to 0 within a
domain defined by (n, , n2, n3) and equals to 1 elsewhere.
That is, the intermediate states in G must lie outside the
shaded region in Fig. 2. We have used
(n, , n2, n3)=(6, 15,28) for Ge and (8,19,28) for ' Te
and ' Te. The single-particle orbits defining n, , n2, n3
have been explained in Fig. 1. Strictly speaking, n3
should be infinite. For practical reasons, we must use a
finite and not-too-large n3 in carrying out the calculation.
(The amount of calculations increases rapidly with the in-

crease of n3 )T. here have been indications that when n3
is reasonably large, the results are fairly stable with
respect to small changes of n3 [19,20]. It should be
remembered, however, that the use of a finite n 3 is an ap-
proximation and should be further investigated when
computer resources permit.

An advantage of our present G-matrix method is that
the solution for the G matrix is given rigorously as the
sum of the following two terms:

Gy.(~)=GrF(co)+ AG(cu),

where G~~ is the free G matrix defined as

1
TF ~NN+ VNN TF( ~)

co —T(2p)

(12)

(13)

b 6 ( co ) is a correction term defined entirely within the
model space P, given as

b, G(ro) = —GrF(co) P2—1 1

e F Pz [(1/e)+(1/e)GrF(1/e)P~

Veg =FP +F
&
+F2 +F3 + 7 (15)

where F„denotes a (n+1)Q-box term connected with n

sets of folded lines. For example, the three-time-folded
term has the form

tion requires considerable amount of computer time.
Once they are calculated, the calculation of the Pauli
correction terms b,G of Eq. (4) is then straightforward,
involving simple matrix operations within the model

space P.
We note that the above G matrix contains an energy

variable cu, and it is not yet suitable for use in nuclear
structure calculations. We need a prescription for deter-
mining the value of co. In nuclear matter calculations, a
common practice is to use the on-shell G matrix in the
sense that ~ is set to be equal to the sum of the single-

particle energies of the two nucleons incoming to the G
vertex. This is made permissible by a specific choice of
the diagrams to be included in the nuclear matter calcula-
tion (see, e.g. , [30]). In this way the G matrix is made
effectively independent of co. A corresponding approach
for finite nuclei is the so-called folded-diagram theory
which has been formulated in several different ways and
has been applied in nuclear physics as well as in atomic
and molecular physics (see, e.g. , [23], and references
quoted therein). For convenience we adopt here a time-

dependent folded-diagram formulation [24] in obtaining
an energy (co) independent effective interaction. In this

way the effective interaction V,z is expressed as a folded-

diagram series, grouped according to the number of folds.
Namely,

(14) P, = Qf -Q f Q fQ, (16)

where e —= co —T(2p). In this way the basic quantities to
be calculated are just the free-6 matrix elements G~
within the model space. Since Gz does not contain the
troublesome projection operator Qz~, its matrix elements
can be easily calculated. When using a large P space such
as the (8,19,28) space mentioned above, the number of GF
matrix elements is, however, quite large and their calcula-

where f stands for a generalized folding operation.

The next step of the calculation is the irreducible ver-
~ ~ ~ ~ ~

tex Q box. As indicated in Fig. 3 we consider in the Q
box seven irreducible diagrams; these are the same set of
seven diagrams included in the sd shell calculations of
Shurpin, Kuo, and Strottman [31]. These diagrams are

first and second order in G. The equations for computing
them are well known and can be found, for example, in

the above reference.

dl d2

d5 d6 d7

FIG. 2. The Pauli exclusion operator Q~~ used in the calcula-

tion of the G matrix. It is specified by (n „n2,n3) with the orbit

numbering as explained in Fig. 1.

FIG. 3. The one-body (dl, d2, d3) and two-body (d4, d5, d6,
d7) diagrams included in the calculation of the Q box. The Q
box is approximated by all linked and irreducible diagrams up

to second order in the G matrix.
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There are both two-body and one-body diagrams in the
above Q box. Only two-body connected terms should be
retained for V,z. Hence we have used a subtraction
method [31] to remove the one-body-only diagrams from
the folded-diagram series so that the resulting effective
interaction has only two-body terms. For convenience it
is common that one first leaves out the folded diagrams,
in evaluating the effective interaction. In this case one
just calculates the two-body diagrams of the Q-box and
taking co, the energy variable, equal to some average
value based on the single-particle energies of the initial
states of the diagrams [31].

Our model space spans more than one major shell. For
example, in our Te calculation the active orbits included
in our QRPA calculations are the Of lp shell, Ogld2s
shell and the two h orbits Oh»/z and Oh9/z and the two f
orbits lf7/z and lf, /z. There are a few subtle points
concerning the Q-box diagrams shown in Fig. 3. We use
a Qz~ operator defined by (n&, n zn 3)=(8, 19,28). Thus
we actually do not have diagram d5 in our present calcu-
lation. (Its inclusion would introduce double counting).
The Of lp shell is essentially full and is treated as hole
states in calculating the core polarization diagrams. Our
QRPA calculation includes, however, this shell as active
orbits, and hence core polarizations due to the hole exci-
tations of this shell are already included, to a large ex-
tent. Thus we have suppressed the Of lp shell in calculat-
ing the core-polarization diagrams d2, d3, d6, and d7.
For example, the hole states h of diagram d7 are restrict-
ed to be within the Od ls shell, for our ' Te and ' Te cal-
culations.

For Ge we use a different prescription. Here the
Of lp shell is n-ot as full as in the tellurium case, and we
treat this shell as particles in core polarization calcula-
tion.

There is uncertainty concerning the energy denomina-
tors coming into the evaluation of the core-polarization
diagrams. There are various choices. If the experimental
single-particle energies are available, one may want to use
them in determining the respective energy denominators.
But this appears to be not the case. The single-particle
wave functions used by us are those of a harmonic oscil-
lator. It seems then a "simplest" prescription is to use a
harmonic-oscillator spectrum for the single-particle or-
bits, as far as the evaluation of the core-polarization dia-
grams is concerned.

For some cross shell matrix elements, the use of pure
harmonic single-particle spectrum will, however, give
vanishing energy denominators for core-polarization dia-
grams. An example is diagram d7 of Fig. 3 with
a =b =7, c =d =11,p =7, and h =4 (see Fig. 1 for orbit-
al notations). For cases like this the above choice of
single-particle spectrum is clearly not reasonable. When
situations like this arise, we have set the energy denomi-
nator equal to ISA, %co being the harmonic-oscillator
spacing. In view of the extended model space we use in
our calculation, the above is perhaps a best-one-can-do
approach and has been adopted in our present work. In
short, the energy denominators are set to be either %co or
2A'c0. (We use Ace=8. 1 MeV for ' Te and ' Te, and 9.2
MeV for Ge.} Only particle-hole excitations with exci-

tation energy less than or equal to 2Am are included in the
core-polarization diagrams.

There are diSculties in calculating the core-
polarization diagrams when the model space encompasses
more than one major shells, and this problem is
worthwhile for further study. In the present work, our
intention is to make a preliminary calculation of these di-
agrams, to see what may be their main effect to the
double-beta-decay matrix elements. In fact our calcula-
tions indicate that core polarizations seem to have an im-
portant effect for the pairing gap, as we shall now discuss
in the next section.

IV. RESULTS

A first step in our calculation is to calculate the needed
effective interaction matrix elements, as discussed in the
preceding section. Let us present some sample matrix
elements calculated by us in Table I. Here we list the
various (f—', ) diagonal matrix elements for Ge. The
core-polarization diagram d7 of Fig. 3, denoted by 63plh
in the table, is clearly quite important for the T= I, J=0
case. In fact for this case G3plh and 6, diagram d4, are
essentially equal to each other, both being about —I
MeV. The formula for computing 63plh can be found,
for example, in [31].

We have found that diagram 63plh is generally impor-
tant for the T=I, J=O pairing-force matrix elements.
This is, of course, not new; it has been discussed in a
number of earlier works [31,32]. For heavier nuclei, the
contribution from 63plh to the pairing force seems to be
particularly important, being generally comparable to
that from the bare 6-matrix diagram. We display some
matrix elements for ' Te and ' Te in Table II, which
also exhibit this trend. The table contains the various
(g—,') diagonal matrix elements. In this and other tables
we do not have diagram d5 of Fig. 3; it is identically
equal to zero because of our choice of the model space as
discussed in the previous section.

Because of its important contribution to the pairing
force, one expects 63plh to play an important role in the
solution of the BCS gap equations. To facilitate our dis-
cussion, we have chosen three schemes to construct the
effective interactions and present our results: (1) Bare:
Here the effective interaction V,& is taken as the bare-6
matrix only, namely, diagram d4 of Fig. 3. (2) Gz: Here
we include in V,z two-body 6-matrix diagrams first and
second order in G, but without any folded diagrams. In
other words, we just include diagrams d4, d6, and d7 of
Fig. 3; they are denoted as G, G4p2h, and G3plh in
Tables I and II. This scheme is basically the choice made
sometime ago by Kuo and Brown [32]. We note that
here and in the above scheme we use a fixed starting ener-
gy of co= —10 MeV in evaluating the various diagrams.
(3} Lesu: This is the "full" calculation where the folded-
diagram series of Eq. (16) is summed up to all orders us-
ing the Lee-Suzuki iteration method [33]. In the Q box
we have included the seven diagrams of Fig. 3. In this
case the effective interaction is energy independent.

In Tables III and IV we show some results from the
neutron BCS gap equation for Ge calculated with
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TABLE I. ComParison of the (jjJTiV rr~jj JT), j=Of7/p matrix elements used in our '6Ge calcula-
tion. Contributions from diagrams d4, d7, and d6 of Fig. 3 are listed in the first three columns, with
their sum given in the fourth column. The last column contains the folded results of Eq. (15) calculated
with the Lee-Suzuki iteration method. Two XN potentials are used: Paris (top row of each pair) and
Bonn-A (bottom row of each pair). All entries are in MeV.

—0.308
—0.420

~3plh

—0.384
—0.433

64,2h

—0.207
—0.278

Sum

—0.898
—1.130

With folds

—0.800
—0.967

—0.244
—0.291

+0.044
+0.055

—0.054
—0.070

—0.254
—0.307

—0.123
—0.165

—0.612
—0.669

+0.156
+0.179

—0.039
—0.049

—0.496
—0.539

—0.251
—0.300

—2.103
—2.217

—0.044
—0.049

+0.000
+0.000

—2.147
—2.266

—1.480
—1.620

—1.004
—1.138

—0.904
—1.064

—0.316
—0.370

—2.224
—2.573

—1.736
—1.968

—0.660
—0.683

—0.120
—0.144

—0.054
—0.061

—0.833
—0.888

—0.464
—0,521

—0.323
—0.335

+0.210
+0.243

—0.017
—0.019

—0.130
—0.111

+0.107
+0.100

—0.160
—0.164

+0.367
+0.429

+0.000
+0.000

+0.207
+0.265

+0.407
+0.430

TABLE II. Comparison of the (jjJT~ V,s~jj JT), j=Og9i„matrix elements used in our "'"Te cal-
culation. Top row of each pair: Paris potential, bottom row of each pair: Bonn-A potential. All en-
tries are in MeV.

—0.104
—0.189

G3plh
—0.204
—0.233

G4p2h

—0.030
—0.048

Sum
—0.338
—0.469

With folds
—0.343
—0.487

—0.048
—0.079

—0.026
—0.030

—0.007
+0.010

—0.080
—0.119

—0.071
—0.111

—0.218
—0.253

—0.558
—0.607

+0.047
+0.053

+0.062
+0.070

—0.003
+0.004

+0.000
+0.000

—0.174
—0.204

—0.496
—0.537

—0.147
—0.181

—0.418
—0.461

+0.002
+0.006

+0.001
+0.000

+0.000
+0.000

+0.003
+0.006

+0.003
+0.005

—0.569
—0.660

—0.508
—0.523

—0.263
—0.272

—0.162
—0.170

—0.004
—0.002

—0.426
—0.504

—0.106
—0.125

+0.027
+0.033

+0.075
+0.087

+0.132
+0.155

—0.082
—0.099

—0.013
—0.016

—0.003
—0.004

+0.000
+0.000

+0.000
+0.000

—1.077
—1.263

—0.627
—0.664

—0.240
—0.243

—0.087
—0.083

+0.128
+0.153

—0.965
—1.145

—0.538
—0.574

—0.205
—0.209

—0.073
—0.071

+0.112
+0.135
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TABLE III. Solutions of the BCS gap equation, for ' Ge neutrons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
text. The last rows (bf ) list the Bonn-A-with-folds results.

J
e (MeV)

v(p1)
v(p2)
v(pf)
v(bf)

7/2
—16.00

0.9974
0.9872
0.9929
0.9901

5/2
—11.15

0.9762
0.9512
0.9876
0.9796

3/2
—11.59

0.9881
0.96S8
0.9870
0.9803

1/2
—9.86

0.9625
0.9242
0.9719
0.9570

5(p 1 ) (MeV)
6(p2) (MeV)
b, (pf ) (MeV)
5(bf ) (MeV)

—1.1677
—2.7448
—1.9826
—2.3567

—1.5397
—2.4813
—1.0750
—1.4218

—1.1903
—2.2348
—1.2539
—1.5776

—1.2223
—2.1173
—1.0335
—1.3479

TABLE IV. Solutions of the BCS gap equation, for ' Ge neutrons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
test. The last rows (1f) list the Bonn-A-with-folds results.

J
e (MeV)

v(p1)
v(p2)

v(pf)
v(bf )

9/2
—7.76

0.6665
0.7105
0.6624
0.6769

7/2
—0.75

0.0969
0.1400
0.0798
0.0959

5/2
—3.39

0.0749
0.1233
0.0644
0.0877

3/2
—0.73

0.0528
0.0840
0.0464
0.0609

1/2
—1.90

0.0413
0.0682
0.0389
0.0525

5(p1) (MeV)
6(p2) (MeV)
h(pf ) (MeV)
A(bf ) (MeV)

0.9575
1.7053
0.7711
1.0361

1.3856
2.0268
1.1278
1.3842

0.6798
1.1045
0.5816
0.7942

0.7616
1.1981
0.6668
0.8756

0.4968
0.8073
0.4673
0.6296

TABLE V. Solutions of the BCS gap equation, for ' Ge protons, with different effective interactions.
pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the text.
The last rows (bf ) list the Bonn-A-with-folds results.

J
e (MeV)

v(p1)
v(p2)

v(pf )

v(bf )

7/2
—6.13

0.9871
0.9520
0.9794
0.9709

5/2
—1.12

0.5330
0.5791
O.SS88
0.5677

3/2
—1.65

0.6914
0.6482
0.6914
0.6748

1/2
0.03

0.3516
0.4222
0.3431
0.3740

b(p1) (MeV)
5(p2) (MeV)
b, (pf) (MeV)
b(bf) (MeV)

—1.4581
—2.9378
—1.8825
—2.2706

—1.2476
—2.6594
—1.4659
—1.8197

—1.4487
—2.4136
—1.4324
—1.7542

—1.5298
—2.4712
—1.4730
—1.7771

TABLE VI. Solutions of the BCS gap equation, for ' Ge protons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
text. The last rows (bf ) list the Bonn-A-with-folds results

J
e (MeV)

v(p1)
v(p2)
v(pf)
v(bf )

6(p1) (MeV)
6(p2) (MeV)
b(pf) (MeV)
h(bf) (MeV)

9/2
1.61

0.1707
0.2406
0.1568
0.1856

1.1892
1.9349
1.0794
1.3428

7/2
8.61

0.0510
0.0909
0.0600
0.0712

1.0596
1.9708
1.2483
1.5026

5/2
5.58

0.0531
0.0765
0.0507
0.0627

0.7824
1.1817
0.7464
0.9384

3/2
7.89

0.0402
0.0612
0.0402
0.0498

0.7782
1.2294
0.7800
0.9756

1/2
6.64

0.0250
0.0423
0.0269
0.0354

0.4210
0.7415
0.4528
0.6043
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TABLE VII. Solution of the BCS gap equation for ' Te protons using different effective interactions
derived from the Paris potential.

J
e (Mev)

U(pl)
v(p2)

U(pf)

3/2
—3.73

0.998
0.997
0.998

1/2
—2.53

0.997
0.994
0.996

9/2
—2.14

0.998
0.997
0.998

7/2
2.73

0.373
0.379
0.381

5/2
2.92

0.346
0.333
0.338

3/2
5.02

0.134
0.156
0.135

e(p1) (MeV)
e(p2) {MeV)
E(pf) (MeV)

6.144
6.068
6.133

4.965
4.922
4.967

4.550
4.455
4.531

0.500
0.659
0.533

0.719
0.844
0.733

2.743
2.895
2.763

5(pl) (MeV)
5(p2) (MeV)
b(pf) (MeV)

0.675
0.923
0.729

0.764
1.102
0.880

0.552
0.654
0.547

0.346
0.462
0.375

0.467
0.531
0.468

—0.730
—0.894
—0.740

TABLE VIII. Solution of the BCS gap equation for ' Te protons using different effective interac-
tions derived from the Paris potential.

J
e (MeV)

U(p1)

v(p2)

v(pf )

1/2
4.78

0.168
0.191
0.166

11/2
4.40

0.091
0.098
0.087

9/2
11.04

0.016
0.019
0.016

7/2
9.03

0.000
0.000
0.000

5/2
11.39

0.000
0.000
0.000

e(p1) (MeV)
e(p2) (MeV)
e(pf ) (MeV)

6(p1) (MeV)
6(p2) (MeV)
b, (pf) (MeV)

2.552
2.717
2.568

—0.843
—1.020
—0.839

2.061
2.178
2.076

—0.374
—0.425
—0.360

8.669
8.780
8.687

—0.268
—0.331
—0.271

6.655
6.764
6.673

0.000
0.000
0.000

9.020
9.129
9.038

0.000
0.000
0.000

TABLE IX. Ratios g of the predicted 2vPP decay half-lives of" Te and '"Te for different choices of
the effective interaction. The matrix elements are evaluated at gpp 1 0.

10

Paris G

3.5

Paris G'

3.6

Paris fold

3.4

Bonn G

3.4

Bonn G

3.6

Bonn fold

3.4

TABLE X. OvPP matrix elements for Ge with different effective interactions derived from the Paris
potential. For the Ge calculation we have chosen gpp 0 9 only for the second-order G matrix gpp

equals 0.87 because of the collapse of the QRPA equation.

76~

M~T
MF

MGT
MF

Mr, Tq

MF
MT
Mp
M~

C (yr ')
C „(yr ')
C~(yr ')
C„„(yr ')
C~~ (yr ')
C„~ (yr ')

Paris G

8.113
—1.457
6.969

—1.291
7.759

—1.287
0.029

—1.897
4.535

5.86x10 "
6.54x10-"

—2. 19x 10-"
7.58X10
6.33 X 10

—6.63x10 "

Paris G

7.347
—1.140
6.403

—1.055
6.822

—0.894
0.029

—2.024
4.439

4.61x 10-"
5 ~ 71x10-"

—1.67 x10-"
7.33x10 '
5.03 x 10-"

—5.88x 10-"

Paris fold

10.822
—1.796
9.295

—1.587
10.526
—1.623
0.121

—2.571
5.493

1.02 x10-"
1.05 x10-"

—3.80x 10-"
1.13x 10-'
1.10x10-"

—1.21 X 10
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with different effective interactions derived from e pthe Bonn otential. For the Ge cal-

=0.9 onl for second-order G matrix of the Bonn potentIa gpp equa sculation we have chosen gpp on y 0
QRPA equation.

76Ge

MGT
MF

M~T
MF„

MGTq

MFq

MT
Mp
M~

Bonn G

7.570
—1.327
6.516

—1.189
7.144

—1.135
0.087

—1.940
4.492

Bonn G

7.363
—1.008
6.404

—0.953
6.831

—0.739
0.023

—2.061
4.520

Bonn fold

10.191
—1.585
8.766

—1.420
9.856

—1.381
0.147

—2.511
5.308

Refs. [28,35]

3.014
—1.173
2.912

—1.025
1.945

—1.058
—0.612
—0.530
3.594

C (yr ')
C „(yr ')
C x (yr
C„„(yr ')

5.07 X 10
6.03 X10-"

—1.94X 10
7.46 X 10
5.56X 10

—5.98 X10-"

4.49 X 10
5.73 X10-"

—1.55X10 "
7.60 X 10-'
4.79X10 "

—5.98 X 10-"

8.88 X 10
9.49 X 10

—3.28 X10-"
1.05 X 10
9.56X 10-"

—1.10X10-"

1.12X 10
2. 19X10-"

—4. 11X10-"
4.44 X 10
1.36X10-"

—4.99X10 "

1.0:

0.5

X
I—

hl Q
X p

&Lee —Suzuk ~

bare G

different effective interactions. Here e denotes the
single-particle energies used for the calculation. They are
obtained from a Woods-Saxon potential with its parame-
«rs given in [34j. v is the familiar BCS occupation
coefficient. As seen, the pairing gaps b, given by 6 (case

1.0

-0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5
I

X

cv Q 0X

&Lee —Suzuk i bare G

1.0
bare 6

-0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

X
& I—

CV ~
X p

-0.5

G2

128 Te

Bonn-A potential

Lee-Suzuki

(b)

0.0
I i I i I i I i I i I

0.2 0.4 0.6 0.8 1.0 1.2 1.4
gl v

MFIG. 4. (a) 2v Gamow-Teller transition matrix elements
of ' 'Te calculated with different choices for the effective in-
teraction derived from the Paris nucleon-nucleon potential.
The curve labeled "Yukawa" corresponds to the results of
[28,35] which were obtained with a simplified G matrix of the
Paris potential simulated by a sum of Yukawa terms ,'3 ~

~
r 38'. (b)

Same as (4a) but with different effective interactions derived
from Bonn-A potential.

1.0

bare G

Q.5
I)
X

N Q QX

-0.5

0.0

G2

13O Te

Bonn-A potential

I i I

0.2 0.4 0.6

Lee- Suzuk~

0.8 1.0 1.2

(b)

1.4

gpss

FIG. 5. (a) Same as Fig. 4(a) for ' Te. (b) Same as Fig. 4(b)
for" Te.
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TABLE XII. Oval matrix elements for ' "Te with different effective interactions derived from the
Paris potential. All Te matrix elements are evaluated at gpp 1 0.

128T

MGT
MF

M~T„
MF,„

MGTq

MFq

MT
Mp
Mq

Paris G

8.372
—1 ~ 569
7.135

—1.401
8.032

—1.378
0.281

—1.554
5.683

Paris G

7.902
—1.344
6.769

—1.227
7.491

—1.112
0.390

—1.766
5.564

Paris fold

7.892
—1.488
6.750

—1 ~ 338
7.450

—1.282
0.314

—1.813
5.719

C (yr ')
C „(yr ')

C)), (yr ')

1.81 X 10
2.94x10-"

—3.32 x10-"
2.70x 10-'
3.71 X 10

—3.40x10-'"

1.56x10-"
2.70x10-"

—2.98 X 10
2.64 x 10-'
3.30x10-"

—3.36x10-"

1.61x 10-"
2. 82X 10

—3.09 x10-"
2.78 x 10-'
3.39x10-"

—3. 13x 10-"

p2) are generally much larger than G (case pl). This is
primarily due to the large contribution from G3plh to
the pairing matrix elements as indicated in Tables I and
II. It is of interest to note that when folded diagrams are
included (case pf ), the results tend to return to the bare-
G (case pl) values. This is clearly indicated in Tables III
and IV. For example, the tables show for f7&2 the values
for 6(pl), 6(p2), and b,(pf ) are, respectively, 1.3856,
2.0268, and 1.1278 MeV.

We have found that the Bonn potential generally gives
more pairing attraction. Consequently, it gives larger
pairing gaps, as indicated in Tables III and IV. The
Bonn Lesu results are denoted by bf. From Tables I and
II we can see also the T=1, J=O matrix elements given
by the Bonn potential are about 10% more attractive
than the Paris ones.

In Tables V and VI we present some BCS gap equation
results for Ge protons. Here the pairing gaps 5 are
generally larger, as compared with the neutron ones. The
differences between the various cases with different
effective interactions are also larger. From Eqs. (1) and
(2) it is clearly seen that the coefficients u and v enter the
QRPA equation in an important way. It is of interest to
observe from Tables III—VI that these coefticients do not
seem to depend strongly on the choice of the effective in-
teractions. In Tables VII and VIII we present some sam-
ple gap equation results for ' Te protons. The trend of
effective interaction dependence is about the same as
shown by Tables III-VI. Here we display also the quasi-
particle energies e. The differences in e between different
interactions here appear to be really small, and so are the
v's. This suggests that our PP calculations for the telluri-

TABLE XIII. OvPP matrix elements for '"Te with different effective interactions derived from the Bonn potential. All Te matrix
elements are evaluated at gpp 1 0.

128T

MGT
MF

M~T, „,

MF„,
M~T
MF
MT
Mp
M~

Bonn G

7.717
—1.396
6.585

—1.262
7.331

—1.180
0.406

—1.494
5.477

Bonn G'

7.187
—1.165
6.170

—1.089
6.703

—0.900
0.494

—1.806
5.427

Bonn fold

7.593
—1.308
6.519

—1.201
7.119

—1.068
0.428

—1.876
5.591

Refs. [28,35]

3.103
—1.184
3.011

—1.047
1.999

—1.054
—0.583
—0.483
4.371

C (yr ')
C „(yr ')
C; (yr ')
C„„(yr ')
C~,- (yr ')

C„A (yr ')

1.52 x10-'-'
2.60x10-"

—3.02 x10-"
2.51x 10-'
3.25 x10-"

—3. 14x 10- '"

1.28X10
2. 39x10-"

—2.62x 10
2. 52 x 10-'
2. 81 X 10

—3.30X 10

1.45 x 10-"
2.62x10 "

—2.89x10-"
2.68 x10-'
3. 14x10 "

—3. 19x10-"

3.36x10-"
9.46x 10-"

—4.86x10-"
1.50x10-'

7.39x10 "
—1.87x10-".
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TABLE XIV. Ovpp matrix elements for "Te with different effective interactions derived from the

Paris potential. All Te matrix elements are evaluated at gpp 1 0.

M~T
MF

MGT„
Fco

M~Tq
MFq

MT
Mp
MR

Paris G

7.403
—1.338
6.330

—1.195
7.052

—1.166
0.208

—1.664
5 ~ 159

Paris G

7.050
—1.085
6.056

—0.994
6.657

—0.875
0.396

—1.733
5.031

Paris fold

7.009
—1.231
6.009

—1.109
6.619

—1.046
0.279

—1.793
5.028

C (yr ')
C „(yr ')
C~(yr ')
C„„(yr ')
Cu (yr )

C„& (yr ')

3.39 X 10
3.31x10-"

—1.58 x10-"
4.70x10-'
6. 14x10-"

—6.61x10-"

2.94x 10-"
3.02X 10

—1.43 X 10
4.51x 10-'
5.50x10-"

—6.65x 10-"

3.01 X 10

3.07 X 10
—1.45 X 10

4.52 x10-'
5.58 x10-"

—6. 18x10-"

um isotopes may not be sensitive to which version of the
effective interaction is chosen for the calculation.

Our results for the 2v Gamow-Teller matrix elements

MGT are presented in Fig. 4 for ' Te and in Fig. 5 for
Te. The corresponding results on Ge are already

given in [11]. As in [11] single-particle energies are ob-
tained from a Coulomb corrected Woods-Saxon potential
[34], where the depth of the central part is modified by
adding the l-dependent term —0.05l(l+ I) MeV. In the
subsequent BCS calculation the self-energy term p is set
to zero because this shift in the single-particle energies is
presumably already taken into account by the use of the
appropriate N- and Z-dependent Woods-Saxon potential.
The strengths of the pairing interaction of the BCS calcu-
lation are adjusted to reproduce experimental even-odd
mass differences for proton and neutron systems separate-
ly, by multiplying the respective pp and nn pairing forces

in the gap equation with renormalization factors gp"' and
gg"' as described, for example, in [28].

Figures 4 and 5 illustrate the dependence of MGT on
g pp

for different effective interactions derived from Paris
and Bonn NN potentials, respectively. The strength of
the particle-hole interaction gph was fixed to 1.15 for ger-
maniurn and 1.26 for the tellurium isotopes. The matrix
elements stay more or less constant over a wide range of
g~~ values. Compared to the calculation of [26—28,35]
MGT is rather stable against a variation of the strength of
the pp interaction even beyond gpp 1.0. Only just be-
fore the collapse of the QRPA, that is, the occurrence of
complex energy eigenvalues, one realizes a sudden de-
crease of the matrix element. This decrease is however
much more pronounced in the case of germanium [11],
where it is observed in the vicinity of g =1.0.

PP
It appears that the 2v matrix elements of Ge and par-

TABLE XV. Ovpp matrix elements for ' Te with different effective interactions derived from the Bonn potential. All Te matrix
elements are evaluated at gpp 1 0.

130T

MGT
MF

MGT
MF

MGTq

MFq
MT
Mp
M~

Bonn 6
6.888

—1.197
5.893

—1.082
6.532

—1.008
0.326

—1.594
4.897

Bonn 6
6.483

—0.918
5.581

—0.864
6.048

—0.681
0.497

—1.752
4.847

Bonn fold

6.778
—1.058
5.834

—0.974
6.345

—0.842
0.339

—1.848
4.988

Refs. [28,35]

2.493
—0.977
2.442

—0.867
1.526

—0.860
—0.574
—0.387
3.736

C.. (yr-')
Cmg (yr ')
C~(yr ')
C„„(yr-')
Cxx (yr

C„~ (yr ')

2.90x10-"
291x10 "

—1.41x 10-"
4.24x 10
5.40 X 10

—6.04x 10-"

2.43 x10-"
2.66x 10-"

—1.23 X 10
4.21x10-'
4.70x10-"

—5.99 X 10

2.72x 10
2.90x10-"

—1.31 X 10
4.48 x 10-'
5.09 X 10

—6.10x10-"

5.34x10 "
9.10x 10-"

—2. 17x10 "
2.25 x 10-'
1.05x 10-"

—4. 13x10-"
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ticularly of ' ' Te are not very sensitive to the choice of
the effective interaction to be applied in the calculation.
In addition, the differences caused by the use of different
bare XX potentials are negligibly small in the case of the
Te isotopes. In the Ge calculation the Bonn potential
yielded a somewhat smaller matrix element than the
Paris potential near gpp 1.0. Compared to previous
QRPA calculations based on different bare-6-matrix in-
teractions [27,28,35] our MoT is much less suppressed
with increasing strength of the pp force. Thus we are not
able to account for the full amount of quenching ob-
served in the experiments. For tellurium the theoretical
2vP/3 half-lives are about two orders of magnitude longer
than the experimental data of [12,16].

However, the ratio of the calculated half-lives of ' Te

(17)
Tf yp ( 1 30)

T, q~(128)

is in very good agreement with the ratio deduced from
the total /3/3 half-lives which were obtained in recent geo-
chemical measurements [12,13,36]. The predicted values
of g are given in Table IX. They are nearly independent
of the version of the effective interaction and they have
also proven to be insensitive to a variation of gp . Our
theoretical value g=3.5X10 is to be compared with
recent experimental results. Lee, Manuel, and Thorpe
obtained g= (4.2+0. 8) X 10 and g =(4.4+0.8)
X 10 from the amounts of radiogenic ' Xe and ' Xe
in two different samples [13]. Similar values were ex-
tracted by Ref. [12], giving g=(3.9+1.1) X 10 and
g=(3.9+2 0) X10, and by [36] which give an average
value of q=(3.2+1.3)X10 ". These measurements are
however not compatible with the results of Kirsten et al.
[15]. In view of the excellent agreement between our pre-
dicted ratio of 2v half-lives and the ratios obtained in re-
cent geochemical experiments, one may conclude that
there is only little —if any —contribution from neutrino-
less decays to the observed double-beta decay of telluri-
um.

The Ov transition amplitudes are known to be less sen-
sitive to details of the nuclear structure [25,28,29,35,37].
In particular, the Ov transition matrix elements exhibit a
rather little variation with respect to the choice of the
effective interaction. In Tables X—XV we present the
complete set of matrix elements for Ge at gpp 0.9 and
for ' ' Te at gpp 1.0. For a definition of the various
M we refer to [14,28]. For comparison we also give the
results of [28,35], which were obtained with the G matrix
of the Paris potential simulated by a sum of Yukawa po-
tentials [38]. Note that the latter matrix elements are cal-
culated with g =0.875 ( Ge), g =0.839 (' Te), and
g~~=0. 817 (' Te). These strength parameters were
"e'.i;zrined .;"-tn ~ --myles n f: -JeeZg~g- shay'ez~-—
decay properties with experimental data. For Ge we
obtain relatively small values of the tensor matrix ele-
ment MT. A similar behavior was found by Tomoda
et al. [39] in a Hartree-Fock-Bogoliubov calculation with

angular momentum and nucleon number projections.
If we neglect the contribution from right-handed

charged weak currents for simplicity [(q) =(A, ) =0 in
Eq. (6)], the coefficient C directly yields the product
T, z~ (m, ) . The latter quantity allows to straightfor-
wardly deduce an upper limit on the effective neutrino
mass from the measured lower limit on the OvPP decay
half-lives. The present calculation yields values of
T, &2 (I ) smaller by a factor of 4 to about 10 than the
QRPA results of [28,35]. They are however close to (but
somewhat larger than) the earlier predictions by [25] us-
ing a projected BCS approach including spin-isospin and
quadrupole-quadrupole forces. Accordingly, the result-
ing limits on the effective Majorana mass are slightly
more stringent than in previous QRPA calculations.
Typical lower limits on (m„) are (m„) (0.8 eV for

Ge (T,&2) 8X10 yr [40]), (m, ) (0.6 eV for ' Te
(T&&2 )5X10 yr [15]), and (m, ) (8 eV for ' Te
(T, &2

) 1.5X10 '
yr [15]).

V. SUMMARY AND CONCLUSION

We have used effective interactions derived from the
Paris, Bonn, and Reid realistic nucleon-nucleon poten-
tials in double-beta calculations of ' Te, ' Te, and Ge.
The bare-G-matrix elements were calculated using a
momentum-space matrix inversion method which has the
advantage that the Pauli exclusion operator was treated
in an essentially exact way. This aspect appears to be im-
portant for the 2vPP calculations. Our calculated Mo'T
matrix elements are less sensitive to the particle-particle
interaction strength parameter gpp A similar conclusion
was obtained recently by the application of the operator
expansion method to two-neutrino double-beta decay
[41]. In earlier calculations where empirical delta in-
teractions or sirnplified G-matrix interactions were em-
ployed, the calculated values of Mzz often exhibit strong
dependence near or below gpp 1 0 We have considered
effective interactions with and without second-order and
folded-diagram corrections. As indicated in Figs. 4 and 5
our calculated Mz'T remains to be stable up to about

gpp 1 2 for all the various effective interactions con-
sidered. Our values for M&& are, however, considerably
larger than the experimental values. This aspect requires
further investigation. Most important from the experi-
mental point of view is that the Ov/3/3 matrix elements cal-
culated with the various effective interactions employed
by us show rather little variation.
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