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BB decay of '2%Te, 3°Te, and "°Ge with renormalized effective interactions
derived from Paris and Bonn potentials

A. Staudt, T. T. S. Kuo,* and H. V. Klapdor-Kleingrothaus
Max-Planck-Institut fiir Kernphysik, D-6900 Heidelberg, Germany
(Received 5 December 1991)

We perform ZVéB and Ov3B calculations for "*Ge, '**Te, and !*°Te using effective interactions derived
from the Paris and Bonn-A potentials. Extended model spaces are employed in setting up the quasiparti-
cle random phase approximation (QRPA) equations, on which our present calculations are based. For
7Ge the model space consists of nine orbits, the two major shells from Of, ,, to 2s, ,,, and for the telluri-
um case we include eleven orbits spanning three major shells from 1p;,, to 1f5,,. The bare-G-matrix ele-
ments are first calculated, with the Pauli exclusion operator carefully treated with a matrix inversion
method, so that double counting between the calculated effective interaction and the above model spaces
is strictly avoided. We then calculate the renormalized effective interaction, including corrections from
core polarizations and folded diagrams. The effect of core polarization is found to be highly significant,
especially for *Ge. There appears to be a compensating effect from the folded diagrams; the net results
with core polarizations and folded diagrams both included become rather close to the bare-G results.
Unlike earlier QRPA calculations, our calculated Mgt matrix elements for 2v38 do not seem to exhibit
strong dependence on g,,, the particle-particle interaction strength parameter, in the vicinity of
gpp = 1.0. For 0vBB decays, our calculated values for T9",{m,)? are typically 5X 10%* yreV? for *Ge,
2X10* yr eV? for '**Te, and 9X 1022 yreV? for '*°Te. Although the Bonn-A potential gives generally
more pairing force, the final results for S8 decays given by the Paris and Bonn-A potentials are rather
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close to each other.

PACS number(s): 23.40.Hc, 21.30.+y, 27.60.+j, 27.50.+¢

I. INTRODUCTION

A new generation of nuclear double-beta- (BB-) decay
experiments, using direct-counter methods, are rapidly
progressing [1-3], and it may be of interest to carry out
further theoretical studies of nuclear BB decays. Tradi-
tionally nuclear 38 experiments were mostly performed
using geochemical methods. This is an inclusive mea-
surement, including both the neutrinoless (0v33) modes
and the 2v ones. An advantage of direct-counting experi-
ments is their ability in differentiating the above two
modes. Thus the moment of directly observing the fun-
damentally important Ovff decays of nuclei in the labo-
ratory seems to have finally “arrived.” In fact a number
of this type of experiments are in progress, such as the
Heidelberg-Moscow experiment using enriched ’6Ge
[2,3]. As of now, the OvBB mode of "°Ge seems to have
not been observed, remaining to be elusive. However, a
number of experiments have reported direct observations
of the 2vf33 modes. For instance, Moe and collaborators
[4] have observed the 2vBB decay of 32Se. Ejiri and colla-
borators [5] have observed the 2vf383 decay of '®Mo. And
two groups, a Russian and an American group, have ob-
served the 2vBB decay of "°Ge [6,7].

The above suggests that it may be worthwhile to carry
out further calculations for the 2vBB decays, as they can
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be compared with the latest experimental results. The
main purpose of the present work is to perform 2v8 and
0vBB calculations for nuclei '2*Te, 1*°Te and 7°Ge, using
renormalized effective interactions derived from realistic
nucleon-nucleon (NN) potentials—the Paris [8] and
Bonn-A [9,10] potentials. A brief account of our "°Ge
work, where the Reid NN potential was also used, has
been reported [11].

The study of tellurium is of particular interest since
there are two neighboring isotopes, '**Te and !*°Te,
which are expected to disintegrate by BB decay. One may
argue that these two isotopes, which only differ by two
neutrons, are likely to exhibit similar nuclear structure
effects in the calculation of the relevant transition ampli-
tudes. The ratio of the BB half-lives of both isotopes have
recently been determined in geochemical measurements
[12,13]. This ratio provides a test of theoretical matrix
elements and together with the latter can also help to de-
cide whether the decays are dominated by the 2v or the
Ov mode [14]. However, there exists a disagreement be-
tween the measurements by Kirsten et al. [15] and those
of [12,13,16]. The reason for this discrepancy seems not
yet to be fully understood.

Nuclei where BB decays take place are usually rather
far from the closed shells. And calculations for these nu-
clei using full-fledged shell-model approaches become
generally prohibitive. One has to adopt some approxima-
tion scheme. A commonly adopted one is the pn QRPA
(proton neutron quasiparticle random phase approxima-
tion) (see, e.g., [14,17,18,28], and references quoted
therein). Although it is the 0v88 mode which provides
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the crucial test about the nature of neutrino; whether it is
a Dirac neutrino or a Majorana one and whether it is
massive or not, theoretical studies have so far, however,
concentrated more on the 2vB3B3 decays. This is mainly
because of the availability of experimental data; one can
check the calculated results with the experimental 2vf33
half-lives T%%,, and thus has a check of the underlying
theory. In this case the primary quantity to be calculated
is the Gamow-Teller (GT) matrix element M%;. Howev-
er, the calculated values of this matrix element were,
within the framework of pn QRPA, often too large, indi-
cating the need of certain quenching mechanism to
suppress the theoretical M3y values. The inclusion of
the particle-particle (pp) correlations in pn QRPA has
been found to be important in providing the needed
quenching [14,17,18]. Such calculations depend, howev-
er, rather sensitively on the strength of the pp interaction
Epp> which we shall discuss in some detail later on. Our
earlier calculation [11] has indicated a significant reduc-
tion of this sensitivity by the use of the renormalized
effective interactions. We shall further investigate this
point in the present work.

In the following section we shall first briefly describe
the pn QRPA formalism, discussing the model spaces em-
ployed for the calculation and the respective model-space
effective interactions which enter. In Sec. III we shall
present some details about the derivation of the above
effective interactions. We shall use a G-matrix interac-
tion derived from realistic NN potentials (Paris and
Bonn-A). A difference of the present calculation with
earlier ones is the treatment of the Pauli exclusion opera-
tor Q,,; we have employed a method [19,20] which treats
this operator essentially exactly. As indicated earlier
[11], the inclusion of core polarizations and folded dia-
grams seemed to have some significant effect on the nu-
clear matrix elements for B8 decays of %Ge. We shall
study if this trend also hold for '?*Te and '*°Te. Some de-
tails about the calculation of core polarizations and fold-
ed diagrams, which were not reported in [11], will be also
included in this section. Our results will be presented
and discussed in Sec. IV. A summary and conclusion will
be presented in Sec. V.

II. MODEL-SPACE pn QRPA

We employ a model-space pn QRPA framework for
our calculation, and it may be necessary to first briefly de-
J
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where we have replaced the intermediate-state lepton en-
ergy by Qgg/2+m,, Qpg being the BB-decay Q value.
The Gamow-Teller reduced matrix elements in the pn
QRPA are given by
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scribe some of its essential features, to see, for instance,
how does the model-space effective interaction enter in
our calculation. The pn QRPA secular equation can be
written as [14]
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where the elements of the submatrices 4 and B are
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In the above €, and €, are single quasiparticle energies,
obtained, respectively, from the proton and the neu-
tron BCS gap equations. The u’s and v’s are the well-
known BCS transformation coefficients. The particle-
particle (pp) and particle-hole (ph) interactions are
given by V;r?,p'n' = <jpjn | Veffijp’jn’ )J and V;:,p’n'
= <jpjn71i Veﬁ‘|jp'jn7' : >J‘

As to be described in the next section, the effective in-
teraction V. is obtained from realistic NN potentials.
We solve the secular equation (1) within a chosen model
space P. The idea is that NN correlations within P are to
be generated by the solution of this equation. The corre-
lations outside P are intended to be included within Vg
itself, and it is important to avoid double counting in the
sense that these two sets of correlations should not over-
lap. There are formal theories (see, for example, [21-23])
for deriving such an effective interaction starting from
free NN potentials Vyy. One type of theory gives an
energy-dependent effective interaction in the sense that
V. is dependent on the eigenvalue w. This is not so con-
venient for treating Eq. (1). There exists another type of
theory which gives an energy independent V.;. We shall
adopt the latter, and in so doing we need to include the
so-called folded diagrams [21-24].

The nuclear matrix element of 2v decay is defined as
[25-28]

! + ! , (3)
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The overlap integral in Eq. (3) is given as
(g f)y=3 (Xpxem—ypye . (5)
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The quantities without (with) an overbar are defined with
respect to the parent 0} (daughter 0}') state. It is a com-
mon practice to include the above overlap integral in pn
QRPA calculations and has been discussed in the litera-
ture [25-28].

For the Ov33 mode we express the inverse half-life as

<mv) : 2 2
+C77.”<7]> +C;‘)\<)\')

(m,)
me
(m,)

e
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+C,x (M) +Culn)(A) . (6)
For a definition of the effective values of the neutrino
mass (m,) and the coupling strengths of the right-
handed currents (7n),(1) and the coefficients C,, we
refer to [28]. The coefficients C,, consist of products of
electron phase-space integrals G, and the nuclear matrix
elements M,

M,= 3 (0f|lt_,t_,0%,]07) , 7
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with the overlap defined in Eq. (5). The QRPA equation
is solved for each multiplicity J7 of intermediate states
possible in the model space for both parent and daughter
states.

III. MODEL-SPACE EFFECTIVE INTERACTIONS

We describe here some details about the derivation of
the effective NN interactions used in our double-beta-
decay calculations. Nuclei where double-beta decays
take place are nearly all far from the closed shells. Con-
sequently, one usually needs to include a large number of
active orbits in the respective nuclear structure calcula-
tions. We include in the present work eleven active orbits
(from 1p; , to 1f,,,) for '*Te and *°Te, and nine active
orbits (from 0f,,, to 2s,,,) for °Ge. These orbits are
schematically displayed in Fig. 1. We employ a number-
ing system to label the single-particle orbits which is also
indicated in the figure. For example, the orbit h;,, is
denoted as orbit 16.

It is important to avoid double counting in deriving the
effective interactions. The correlations generated by solv-
ing the secular equation within a chosen model space P
should not be included once more in the G-matrix inter-
mediate states. To make sure about this point we have
used a matrix inversion method [15,16] in treating the G
matrix, which is defined by the integral equation

where @), are the relevant two-body transition opera-
tors. Neglecting contributions of right-handed currents,
only the matrix elements MY and M2

0=0,0,H,(r), (8a)
2
oh=H,(r) |2~ (8b)
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contribute, where H,,(r) is the “neutrino potential” [28]
which represents the exchange of a virtual neutrino be-
tween two nucleons. The internucleon short-range corre-
lations and the nucleon finite size effects are taken into
account in a standard way [28,29].

Because of the two-body character of the operators O,
the nuclear matrix elements can be reduced to a sum of
products of two-particle transition densities and two-
particle matrix elements

M,= 3 Z(p'p,n'n;JyJ7)

p'pn'nJ,Jmw
X{p'p;Jylt _1t_,0%ln'n;J,) . 9)

The transition densities are expressed as
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where Vyy denotes the NN potential such as the Paris
potential. T(2p) refers to the kinetic energy of the two in-
termediate particles. Note that we use orthogonalized
plane-wave intermediate states. The Pauli exclusion
operator Q,, is to ensure that the intermediate states are

G(0)=Vyy+Vyy (11)

Glw),
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FIG. 1. Numbering system to label the single-particle orbits
in the present work.

0g9/2 = 2s1/2

0f7/2 =—1p1/2

0 AT AT O
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orthogonal to the active orbits included in the model
space. As shown in Fig. 2, Q,, equals to O within a
domain defined by (n,,n,,n;) and equals to 1 elsewhere.
That is, the intermediate states in G must lie outside the

shaded region in Fig. 2. We have used
(ny,ny,n;)=(6,15,28) for Ge and (8,19,28) for '**Te
and '’°Te. The single-particle orbits defining n,n,,n;

have been explained in Fig. 1. Strictly speaking, nj
should be infinite. For practical reasons, we must use a
finite and not-too-large n; in carrying out the calculation.
(The amount of calculations increases rapidly with the in-
crease of n;.) There have been indications that when 7,
is reasonably large, the results are fairly stable with
respect to small changes of n; [19,20]. It should be
remembered, however, that the use of a finite n; is an ap-
proximation and should be further investigated when
computer resources permit.

An advantage of our present G-matrix method is that
the solution for the G matrix is given rigorously as the
sum of the following two terms:

Grlw)=Grplo)+AG(w) , (12)

where G is the free G matrix defined as

1
o—T(2p)

AG(w) is a correction term defined entirely within the
model space P, given as

GTF: VN/V + VNN GTF(C()) . (13)

1 1
AG(0)=—Grp(w)—P
(w) TF((’)) e 2p Pzp[(l/e)+(1/e)GTF(1/e )Pzp
1
X Py Grrle), {14

where e =w—T(2p). In this way the basic quantities to
be calculated are just the free-G matrix elements G
within the model space. Since Gy does not contain the
troublesome projection operator Q,,, its matrix elements
can be easily calculated. When using a large P space such
as the (8,19,28) space mentioned above, the number of G
matrix elements is, however, quite large and their calcula-

n3
sz =1
n21—
ng £ /
} | -
M n2 n3

FIG. 2. The Pauli exclusion operator Q,, used in the calcula-
tion of the G matrix. It is specified by (n,n,,n;) with the orbit
numbering as explained in Fig. 1.

tion requires considerable amount of computer time.
Once they are calculated, the calculation of the Pauli
correction terms AG of Eq. (4) is then straightforward,
involving simple matrix operations within the model
space P.

We note that the above G matrix contains an energy
variable w, and it is not yet suitable for use in nuclear
structure calculations. We need a prescription for deter-
mining the value of w. In nuclear matter calculations, a
common practice is to use the on-shell G matrix in the
sense that o is set to be equal to the sum of the single-
particle energies of the two nucleons incoming to the G
vertex. This is made permissible by a specific choice of
the diagrams to be included in the nuclear matter calcula-
tion (see, e.g., [30]). In this way the G matrix is made
effectively independent of w. A corresponding approach
for finite nuclei is the so-called folded-diagram theory
which has been formulated in several different ways and
has been applied in nuclear physics as well as in atomic
and molecular physics (see, e.g., [23], and references
quoted therein). For convenience we adopt here a time-
dependent folded-diagram formulation [24] in obtaining
an energy (o) independent effective interaction. In this
way the effective interaction Vg is expressed as a folded-
diagram series, grouped according to the number of folds.
Namely,

Vg=Fy+F +F,+F+ -, (15)

where F, denotes a (n+1 )0-box term connected with n
sets of folded lines. For example, the three-time-folded
term has the form

F,=—0f0f0f0, (16)

where f stands for a generalized folding operation.

The next step of the calculation is the irreducible ver-
tex Q box. As indicated in Fig. 3 we consider in the Q
box seven irreducible diagrams; these are the same set of
seven diagrams included in the sd shell calculations of
Shurpin, Kuo, and Strottman [31]. These diagrams are
first and second order in G. The equations for computing
them are well known and can be found, for example, in

the above reference.

d1 d2 d3

Mo A

FIG. 3. The one-body (d1, d2, d3) and two- body (d4, ds, dé,
d7) diagrams included in the calculation of the 0 box. The Q
box is approximated by all linked and irreducible diagrams up
to second order in the G matrix.
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There are both two-body and one-body diagrams in the
above Q box. Only two-body connected terms should be
retained for V. Hence we have used a subtraction
method [31] to remove the one-body-only diagrams from
the folded-diagram series so that the resulting effective
interaction has only two-body terms. For convenience it
is common that one first leaves out the folded diagrams,
in evaluating the effective interaction. In this case one
just calculates the two-body diagrams of the 0-box and
taking o, the energy variable, equal to some average
value based on the single-particle energies of the initial
states of the diagrams [31].

Our model space spans more than one major shell. For
example, in our Te calculation the active orbits included
in our QRPA calculations are the Of 1p shell, Og1d2s
shell and the two & orbits Ok, , and Oh,,, and the two f
orbits 1f,,, and 1f5,,. There are a few subtle points
concerning the Q-box diagrams shown in Fig. 3. We use
a Q,, operator defined by (n,n,,n;)=(8,19,28). Thus
we actually do not have diagram d5 in our present calcu-
lation. (Its inclusion would introduce double counting).
The Of 1p shell is essentially full and is treated as hole
states in calculating the core polarization diagrams. Our
QRPA calculation includes, however, this shell as active
orbits, and hence core polarizations due to the hole exci-
tations of this shell are already included, to a large ex-
tent. Thus we have suppressed the 0f 1p shell in calculat-
ing the core-polarization diagrams d2, d3, d6, and d7.
For example, the hole states 4 of diagram d7 are restrict-
ed to be within the 0d 1s shell, for our '%®Te and *°Te cal-
culations.

For "®Ge we use a different prescription. Here the
0f-1p shell is not as full as in the tellurium case, and we
treat this shell as particles in core polarization calcula-
tion.

There is uncertainty concerning the energy denomina-
tors coming into the evaluation of the core-polarization
diagrams. There are various choices. If the experimental
single-particle energies are available, one may want to use
them in determining the respective energy denominators.
But this appears to be not the case. The single-particle
wave functions used by us are those of a harmonic oscil-
lator. It seems then a ‘“‘simplest” prescription is to use a
harmonic-oscillator spectrum for the single-particle or-
bits, as far as the evaluation of the core-polarization dia-
grams is concerned.

For some cross shell matrix elements, the use of pure
harmonic single-particle spectrum will, however, give
vanishing energy denominators for core-polarization dia-
grams. An example is diagram d7 of Fig. 3 with
a=b=17,c=d=11, p=7, and h =4 (see Fig. 1 for orbit-
al notations). For cases like this the above choice of
single-particle spectrum is clearly not reasonable. When
situations like this arise, we have set the energy denomi-
nator equal to 1#iw, fio being the harmonic-oscillator
spacing. In view of the extended model space we use in
our calculation, the above is perhaps a best-one-can-do
approach and has been adopted in our present work. In
short, the energy denominators are set to be either #w or
2%iw. (We use #iwo=8.1 MeV for 2*Te and '*°Te, and 9.2
MeV for °Ge.) Only particle-hole excitations with exci-

tation energy less than or equal to 27iw are included in the
core-polarization diagrams.

There are difficulties in calculating the core-
polarization diagrams when the model space encompasses
more than one major shells, and this problem is
worthwhile for further study. In the present work, our
intention is to make a preliminary calculation of these di-
agrams, to see what may be their main effect to the
double-beta-decay matrix elements. In fact our calcula-
tions indicate that core polarizations seem to have an im-
portant effect for the pairing gap, as we shall now discuss
in the next section.

IV. RESULTS

A first step in our calculation is to calculate the needed
effective interaction matrix elements, as discussed in the
preceding section. Let us present some sample matrix
elements calculated by us in Table I. Here we list the
various (f1)? diagonal matrix elements for "°Ge. The
core-polarization diagram d7 of Fig. 3, denoted by G3plh
in the table, is clearly quite important for the T=1, J=0
case. In fact for this case G3plh and G, diagram d4, are
essentially equal to each other, both being about —1
MeV. The formula for computing G3plh can be found,
for example, in [31].

We have found that diagram G3plh is generally impor-
tant for the T=1, J=0 pairing-force matrix elements.
This is, of course, not new; it has been discussed in a
number of earlier works [31,32]. For heavier nuclei, the
contribution from G3p1h to the pairing force seems to be
particularly important, being generally comparable to
that from the bare G-matrix diagram. We display some
matrix elements for 2®Te and *°Te in Table II, which
also exhibit this trend. The table contains the various
(g%)2 diagonal matrix elements. In this and other tables
we do not have diagram d5 of Fig. 3; it is identically
equal to zero because of our choice of the model space as
discussed in the previous section.

Because of its important contribution to the pairing
force, one expects G3plh to play an important role in the
solution of the BCS gap equations. To facilitate our dis-
cussion, we have chosen three schemes to construct the
effective interactions and present our results: (1) Bare:
Here the effective interaction Vg is taken as the bare-G
matrix only, namely, diagram d4 of Fig. 3. (2) G?: Here
we include in V 4 two-body G-matrix diagrams first and
second order in G, but without any folded diagrams. In
other words, we just include diagrams d4, d6, and d7 of
Fig. 3; they are denoted as G, G4p2h, and G3plh in
Tables I and II. This scheme is basically the choice made
sometime ago by Kuo and Brown [32]. We note that
here and in the above scheme we use a fixed starting ener-
gy of ®=—10 MeV in evaluating the various diagrams.
(3) Lesu: This is the “full” calculation where the folded-
diagram series of Eq. (16) is summed up to all orders us-
ing the Lee-Suzuki iteration method [33]. In the O box
we have included the seven diagrams of Fig. 3. In this
case the effective interaction is energy independent.

In Tables III and IV we show some results from the
neutron BCS gap equation for "°Ge calculated with
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TABLE 1. Comparison of the {jjJT|Vg|jjJT), j=0f,,,, matrix elements used in our "°Ge calcula-
tion. Contributions from diagrams d4, d7, and dé6 of Fig. 3 are listed in the first three columns, with
their sum given in the fourth column. The last column contains the folded results of Eq. (15) calculated
with the Lee-Suzuki iteration method. Two NN potentials are used: Paris (top row of each pair) and
Bonn-A (bottom row of each pair). All entries are in MeV.

T J G G}p]h G4p2h Sum With folds
0 1 —0.308 —0.384 —0.207 —0.898 —0.800
—0.420 —0.433 —0.278 —1.130 —0.967
0 3 —0.244 +0.044 —0.054 —0.254 —0.123
—0.291 +0.055 —0.070 —0.307 —0.165
0 5 —0.612 +0.156 —0.039 —0.496 —0.251
—0.669 +0.179 —0.049 —0.539 —0.300
0 7 —2.103 —0.044 +0.000 —2.147 —1.480
—2.217 —0.049 +0.000 —2.266 —1.620
1 0 —1.004 —0.904 —0.316 —2.224 —1.736
—1.138 —1.064 —0.370 —2.573 —1.968
1 2 —0.660 —0.120 —0.054 —0.833 —0.464
—0.683 —0.144 —0.061 —0.888 —0.521
1 4 —0.323 +0.210 —0.017 —0.130 +0.107
—0.335 +0.243 —0.019 —0.111 +0.100
1 6 —0.160 +0.367 +0.000 +0.207 +0.407
—0.164 +0.429 +0.000 +0.265 +0.430

TABLE II. Comparison of the {jjiJT|V|jjiJT), j=0g,,,, matrix elements used in our '**!*Te cal-
culation. Top row of each pair: Paris potential, bottom row of each pair: Bonn-A potential. All en-
tries are in MeV.

T J G Gipin Gipon Sum With folds
0 1 —0.104 —0.204 —0.030 —0.338 —0.343
—0.189 —0.233 —0.048 —0.469 —0.487
0 3 —0.048 —0.026 —0.007 —0.080 —0.071
—0.079 —0.030 +0.010 —0.119 —0.111
0 5 —0.218 +0.047 —0.003 —0.174 —0.147
—0.253 +0.053 +0.004 —0.204 —0.181
0 7 —0.558 +0.062 +0.000 —0.496 —0.418
—0.607 +0.070 +0.000 —0.537 —0.461
0 9 +0.002 +0.001 +0.000 +0.003 +0.003
+0.006 +0.000 +0.000 +0.006 +0.005
1 0 —0.569 —0.426 —0.082 —1.077 —0.965
—0.660 —0.504 —0.099 —1.263 —1.145
1 2 —0.508 —0.106 —0.013 —0.627 —0.538
—0.523 —0.125 —0.016 —0.664 —0.574
1 4 —0.263 +0.027 —0.003 —0.240 —0.205
—0.272 +0.033 —0.004 —0.243 —0.209
1 6 —0.162 +0.075 +0.000 —0.087 —0.073
—0.170 +0.087 +0.000 —0.083 —0.071
1 8 —0.004 +0.132 +0.000 +0.128 +0.112

—0.002 +0.155 +0.000 +0.153 +0.135
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TABLE III. Solutions of the BCS gap equation, for "®Ge neutrons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
text. The last rows (bf') list the Bonn-A-with-folds results.

J 772 572 3/2 172

e (MeV) —16.00 —11.15 —11.59 —9.86
v(pl) 0.9974 0.9762 0.9881 0.9625
v(p2) 0.9872 0.9512 0.9658 0.9242
vipf) 0.9929 0.9876 0.9870 0.9719
v(bf) 0.9901 0.9796 0.9803 0.9570
A(pl) (MeV) —1.1677 —1.5397 —1.1903 —1.2223
A(p2) (MeV) —2.7448 —2.4813 —2.2348 —2.1173
A(pf) (MeV) —1.9826 —1.0750 —1.2539 —1.0335
A(bf) (MeV) —2.3567 —1.4218 —1.5776 —1.3479

TABLE IV. Solutions of the BCS gap equation, for Ge neutrons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
test. The last rows (bf) list the Bonn-A-with-folds results.

J 9/2 7/2 572 372 1/2

e (MeV) —17.76 —0.75 —3.39 —0.73 —1.90
v(pl) 0.6665 0.0969 0.0749 0.0528 0.0413
v(p2) 0.7105 0.1400 0.1233 0.0840 0.0682
v(pf) 0.6624 0.0798 0.0644 0.0464 0.0389
v(bf) 0.6769 0.0959 0.0877 0.0609 0.0525
A(pl) (MeV) 0.9575 1.3856 0.6798 0.7616 0.4968
A(p2) (MeV) 1.7053 2.0268 1.1045 1.1981 0.8073
A(pf) (MeV) 0.7711 1.1278 0.5816 0.6668 0.4673
A(bf) (MeV) 1.0361 1.3842 0.7942 0.8756 0.6296

TABLE V. Solutions of the BCS gap equation, for "®Ge protons, with different effective interactions.
pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the text.
The last rows (bf) list the Bonn-A-with-folds results.

J /2 5/2 3/2 1/2

e (MeV) —6.13 —1.12 —1.65 0.03
v(pl) 0.9871 0.5330 0.6914 0.3516
v(p2) 0.9520 0.5791 0.6482 0.4222
v(pf) 0.9794 0.5588 0.6914 0.3431
v(bf) 0.9709 0.5677 0.6748 0.3740
A(pD) (MeV) —1.4581 —1.2476 —1.4487 —1.5298
A(p2) (MeV) —2.9378 —2.659% —2.4136 —2.4712
Alpf) (MeV) —1.8825 —1.4659 —1.4324 —1.4730
A(bf) (MeV) —2.2706 —1.8197 —1.7542 —1.7771

TABLE VI. Solutions of the BCS gap equation, for "®Ge protons, with different effective interac-
tions. pl, p2, and pf denote, respectively, Paris-G, Paris-G2, and Paris with folds as explained in the
text. The last rows (bf) list the Bonn-A-with-folds results.

J 9/2 7/2 572 372 172
e (MeV) 1.61 8.61 5.58 7.89 6.64
v(pl) 0.1707 0.0510 0.0531 0.0402 0.0250
v(p2) 0.2406 0.0909 0.0765 0.0612 0.0423
v(pf) 0.1568 0.0600 0.0507 0.0402 0.0269
v(bf) 0.1856 0.0712 0.0627 0.0498 0.0354
A(pl) (MeV) 1.1892 1.0596 0.7824 0.7782 0.4210
A(p2) (MeV) 1.9349 1.9708 1.1817 1.2294 0.7415
Alpf) (MeV) 1.0794 1.2483 0.7464 0.7800 0.4528

AbS) MeV) 1.3428 1.5026 0.9384 0.9756 0.6043
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TABLE VII. Solution of the BCS gap equation for '**Te protons using different effective interactions
derived from the Paris potential.

J 372 1/2 9/2 7/2 5/2 3/2

e (MeV) —3.73 —2.53 —2.14 2.73 2.92 5.02
v(pl) 0.998 0.997 0.998 0.373 0.346 0.134
v(p2) 0.997 0.994 0.997 0.379 0.333 0.156
v(pf) 0.998 0.996 0.998 0.381 0.338 0.135
e(pl) (MeV) 6.144 4.965 4.550 0.500 0.719 2.743
€(p2) (MeV) 6.068 4.922 4.455 0.659 0.844 2.895
e(pf) MeV) 6.133 4.967 4.531 0.533 0.733 2.763
A(pl) (MeV) 0.675 0.764 0.552 0.346 0.467 —0.730
A(p2) (MeV) 0.923 1.102 0.654 0.462 0.531 —0.894
Alpf) (MeV) 0.729 0.880 0.547 0.375 0.468 —0.740

TABLE VIII. Solution of the BCS gap equation for '**Te protons using different effective interac-
tions derived from the Paris potential.

J 1/2 11/2 9/2 7/2 5/2
e (MeV) 4.78 4.40 11.04 9.03 11.39
v(pl) 0.168 0.091 0.016 0.000 0.000
v(p2) 0.191 0.098 0.019 0.000 0.000
v(pf) 0.166 0.087 0.016 0.000 0.000
e(pl) (MeV) 2.552 2.061 8.669 6.655 9.020
€(p2) (MeV) 2.717 2.178 8.780 6.764 9.129
elpf) (MeV) 2.568 2.076 8.687 6.673 9.038
A(pl) (MeV) —0.843 —0.374 —0.268 0.000 0.000
A(p2) (MeV) —1.020 —0.425 —0.331 0.000 0.000
Alpf) (MeV) —0.839 —0.360 —0.271 0.000 0.000

TABLE IX. Ratios 7 of the predicted 2v33 decay half-lives of '*°Te and '**Te for different choices of
the effective interaction. The matrix elements are evaluated at g, =1.0.

Paris G Paris G*? Paris fold Bonn G Bonn G? Bonn fold

107y 3.5 3.6 3.4 3.4 3.6 3.4

TABLE X. 0vfB matrix elements for "®Ge with different effective interactions derived from the Paris
potential. For the Ge calculation we have chosen g,,=0.9, only for the second-order G matrix g,
equals 0.87 because of the collapse of the QRPA equation.

76Ge Paris G Paris G? Paris fold
Mgt 8.113 7.347 10.822
My —1.457 —1.140 —1.796
Mgra 6.969 6.403 9.295
Mg, —1.291 —1.055 —1.587
Mg, 7.759 6.822 10.526
Mg, —1.287 —0.894 —1.623
M, 0.029 0.029 0.121
M, —1.897 —2.024 —2.571
My 4.535 4.439 5.493
Cpm(yr™ 1) 5.86X 10713 4.61x107 13 1.02Xx 10712
Cpp (yr™h) 6.54% 107! 5.71x 107! 1.05x10°1°
C,i (yr™h —2.19x107 13 —1.67x107 "3 —3.80x10° 1
C,y (yr™h) 7.58%x107° 7.33%x107° 1.13x10°8
Cu (yr™h 6.33x10713 5.03x10° 1 1.10x10° 12
Cp (yr™h) —6.63%x1071 —5.88X107" —1.21X10° "2
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TABLE XI. OvBB matrix elements for °Ge with different effective interactions derived from the Bonn potential. For the Ge cal-
culation we have chosen g,, =0.9, only for second-order G matrix of the Bonn potential g, equals 0.82 because of the collapse of the

QRPA equation.
$Ge Bonn G Bonn G*? Bonn fold Refs. [28,35]
Mgt 7.570 7.363 10.191 3.014
Mg —1.327 —1.008 —1.585 —1.173
Mgr, 6.516 6.404 8.766 2912
Mg, —1.189 —0.953 —1.420 —1.025
Mgy, 7.144 6.831 9.856 1.945
Mg, —1.135 —0.739 —1.381 —1.058
My 0.087 0.023 0.147 —0.612
M, —1.940 —2.061 —2.511 —0.530
My 4.492 4.520 5.308 3.594
Com(yr™h) 5.07x107" 4.49x107" 8.88%x107" 1.12x107%
Cpy (yr™1) 6.03x 107" 5.73x107 ! 9.49x 107! 2.19%x107 M
C (yr™") —1.94%x1071 —1.55x107 13 —3.28%x107" —4.11Xx1071
Coy (yr™" 7.46x107° 7.60x107° 1.05x107°¢ 4.44x107°
Cu (yr™h 5.56x107" 479X 1071 9.56Xx107 13 1.36x10~ "
Cp (yr™h) —5.98x1071® —5.98x 10713 —1.10X 10712 —4.99%x 107
: T , , T different effective interactions. Here e denotes the
r single-particle energies used for the calculation. They are
. obtained from a Woods-Saxon potential with its parame-
— ters given in [34]. v is the familiar BCS occupation
- ‘\\e?‘ — coefficient. As seen, the pairing gaps A given by G* (case
7; 05 = .
s i r 1 T T 1 T
25 | 10| ]
= o 28 - i
I k Te - Lee - Suzuk) bare G
i Paris potential 05 F— e T I e
B = 0o I Yo =~
B a , 3 6
-05 | (a) S f
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- -05 —
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ngG 4. (a) 2v Gamf)w-T.eller transition matrix elements M é‘ir - Bonn-A potential
of '“*Te calculated with different choices for the effective in- _05 _
teraction derived from the Paris nucleon-nucleon potential. s (b)
The curve labeled “Yukawa” corresponds to the results of T T R S N KN TN N SR SN T N
[28,35] which were obtained with a simplified G matrix of the 0.0 0.2 04 06 08 1.0 1.2 14

Paris potential simulated by a sum of Yukawa terms [38]. (b)
Same as (4a) but with different effective interactions derived
from Bonn-A potential.

9ep
FIG. 5. (a) Same as Fig. 4(a) for '**Te. (b) Same as Fig. 4(b)
for 1*°Te.
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TABLE XII. OvBf matrix elements for '®Te with different effective interactions derived from the
Paris potential. All Te matrix elements are evaluated at g, =1.0.

128Te Paris G Paris G? Paris fold
Mgt 8.372 7.902 7.892
M, —1.569 —1.344 —1.488
Mgr, 7.135 6.769 6.750
Mg, —1.401 —1.227 —1.338
Mg, 8.032 7.491 7.450
Mg, —1.378 —1.112 —1.282
M, 0.281 0.390 0.314
M, —1.554 —1.766 —1.813
My 5.683 5.564 5.719
Com (yr™ 1) 1.81x10° "1 1.56x 107 "3 1.61X 10713
Cpp (yr™ 2.94%x10 ! 2.70Xx 107" 2.82x107 "
Cpn (yr™ 1) —3.32x10° " —2.98Xx 10" —3.09x 10" "
C,y (yr™h) 2.70X107° 2.64X107° 2.78X107°
Cy (yr™h 3.71X107 14 3.30x 10714 3.39x 1071
Cp (yr™H —3.40Xx10™ " —3.36x107" —3.13x107"

p2) are generally much larger than G (case pl). This is
primarily due to the large contribution from G3plh to
the pairing matrix elements as indicated in Tables I and
II. It is of interest to note that when folded diagrams are
included (case pf), the results tend to return to the bare-
G (case pl) values. This is clearly indicated in Tables III
and IV. For example, the tables show for f,,, the values
for A(pl), A(p2), and A(pf) are, respectively, 1.3856,
2.0268, and 1.1278 MeV.

We have found that the Bonn potential generally gives
more pairing attraction. Consequently, it gives larger
pairing gaps, as indicated in Tables III and IV. The
Bonn Lesu results are denoted by bf. From Tables I and
IT we can see also the T=1, J =0 matrix elements given
by the Bonn potential are about 10% more attractive
than the Paris ones.

In Tables V and VI we present some BCS gap equation
results for °Ge protons. Here the pairing gaps A are
generally larger, as compared with the neutron ones. The
differences between the various cases with different
effective interactions are also larger. From Egs. (1) and
(2) it is clearly seen that the coefficients u and v enter the
QRPA equation in an important way. It is of interest to
observe from Tables III-VI that these coefficients do not
seem to depend strongly on the choice of the effective in-
teractions. In Tables VII and VIII we present some sam-
ple gap equation results for 28Te protons. The trend of
effective interaction dependence is about the same as
shown by Tables III-VI. Here we display also the quasi-
particle energies €. The differences in € between different
interactions here appear to be really small, and so are the
v’s. This suggests that our B8 calculations for the telluri-

TABLE XIII. 0vf38 matrix elements for '**Te with different effective interactions derived from the Bonn potential. All Te matrix

elements are evaluated at g,, =1.0.

1287¢ Bonn G Bonn G* Bonn fold Refs. [28,35]
Mgy 7.717 7.187 7.593 3.103
M —1.396 —1.165 —1.308 —1.184
Mgr., 6.585 6.170 6.519 3.011
My, —1.262 —1.089 —1.201 —1.047
Mgy, 7.331 6.703 7.119 1.999
My, —1.180 —0.900 —1.068 —1.054
M, 0.406 0.494 0.428 —0.583
M, —1.494 —1.806 —1.876 —0.483
My 5.477 5.427 5.591 4.371
Cpim (yr 1) 1.52x107 1 1.28x10° 13 1.45x107 1 3.36Xx 1071
Cpy yr' 1) 2.60x 107" 2.39x10° 1 2.62x10° 1! 9.46X 1072
C,y (yr 1) —3.02X10 4 —2.62X10° ¢ —2.89%x 101 —4.86X107"
C,y yr™ 2.51x107° 2.52x107° 2.68x107° 1.50x107°
Co (yr'™h) 3.25X10 4 2.81X107 "4 3.14x107 14 7.39Xx10° 13
Cp yr ™ —3.14x10° " —3.30x 10 % —3.19x 1071 —1.87X107 %,
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TABLE XIV. 0vB3f matrix elements for **Te with different effective interactions derived from the
Paris potential. All Te matrix elements are evaluated at g,, =1.0.

130Te Paris G Paris G2 Paris fold
Mg 7.403 7.050 7.009
My —1.338 —1.085 —1.231
Mgr, 6.330 6.056 6.009
Fp, —1.195 —0.994 —1.109
Mgr, 7.052 6.657 6.619
My, —1.166 —0.875 —1.046
My 0.208 0.396 0.279
M, —1.664 —1.733 —1.793
My 5.159 5.031 5.028
Com (yr™1) 3.39X10712 2.94%X10712 3.01x 10712
Cpy tyr™) 3.31x1071° 3.02X1071° 3.07x1071°
Cr (yr™ 1) —1.58X 10712 —1.43x10712 —1.45x 10712
Cop yr™H 4.70x107* 4.51x107" 4.52x107*
Ci (yr™?) 6.14x107 " 5.50x 107! 5.58x 101
Cp yr™") —6.61x10" ! —6.65Xx10°!! —6.18Xx10°!!

um isotopes may not be sensitive to which version of the
effective interaction is chosen for the calculation.

Our results for the 2v Gamow-Teller matrix elements
M%), are presented in Fig. 4 for 2®Te and in Fig. 5 for
130Te. The corresponding results on '°Ge are already
given in [11]. As in [11] single-particle energies are ob-
tained from a Coulomb corrected Woods-Saxon potential
[34], where the depth of the central part is modified by
adding the /-dependent term —0.05/(/+1) MeV. In the
subsequent BCS calculation the self-energy term p is set
to zero because this shift in the single-particle energies is
presumably already taken into account by the use of the
appropriate N- and Z-dependent Woods-Saxon potential.
The strengths of the pairing interaction of the BCS calcu-
lation are adjusted to reproduce experimental even-odd
mass differences for proton and neutron systems separate-
ly, by multiplying the respective pp and nn pairing forces

in the gap equation with renormalization factors gy and
gP*" as described, for example, in [28)].

Figures 4 and 5 illustrate the dependence of M%; on
8pp for different effective interactions derived from Paris
and Bonn NN potentials, respectively. The strength of
the particle-hole interaction g, was fixed to 1.15 for ger-
manium and 1.26 for the tellurium isotopes. The matrix
elements stay more or less constant over a wide range of
8pp values. Compared to the calculation of [26-28,35]
M, is rather stable against a variation of the strength of
the pp interaction even beyond 8pp =1.0. Only just be-
fore the collapse of the QRPA, that is, the occurrence of
complex energy eigenvalues, one realizes a sudden de-
crease of the matrix element. This decrease is however
much more pronounced in the case of germanium [11],
where it is observed in the vicinity of 8pp=1.0.

It appears that the 2v matrix elements of "°Ge and par-

TABLE XV. 0vS3 matrix elements for '*°Te with different effective interactions derived from the Bonn potential. All Te matrix

elements are evaluated at g, = 1.0.

130Te Bonn G Bonn G? Bonn fold Refs. [28,35]
Mgy 6.888 6.483 6.778 2.493
Mg —1.197 —0.918 —1.058 —0.977
Mg, 5.893 5.581 5.834 2.442
Mg, —1.082 —0.864 —0.974 —0.867
Mgy, 6.532 6.048 6.345 1.526
My, —1.008 —0.681 —0.842 —0.860
My 0.326 0.497 0.339 —0.574
M, —1.594 —1.752 —1.848 —0.387
My 4.897 4.847 4.988 3.736
Cpm (yr 1) 2.90%x 10712 2.43X 10712 2.72X 10712 5.34x1071
Cpy yr™") 2.91x1071° 2.66X1071° 2.90Xx1071° 9.10x 107!
Cpp (yr™1) —1.41X 10712 —1.23%x10712 —1.31X10712 —2.17x107 "
Cop yr™) 4.24X107% 4.21x10°¢ 4.48X1078 2.25x1078
Cur (yr™h 5.40x 107" 470X 10! 5.09x107!" 1.05x 10712
Cp yr™h —6.04x 107! —5.99% 107! —6.10x 1071 —4.13%x107"
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ticularly of '2%13%Te are not very sensitive to the choice of
the effective interaction to be applied in the calculation.
In addition, the differences caused by the use of different
bare NN potentials are negligibly small in the case of the
Te isotopes. In the Ge calculation the Bonn potential
yielded a somewhat smaller matrix element than the
Paris potential near g,,=1.0. Compared to previous
QRPA calculations based on different bare-G-matrix in-
teractions [27,28,35] our M%; is much less suppressed
with increasing strength of the pp force. Thus we are not
able to account for the full amount of quenching ob-
served in the experiments. For tellurium the theoretical
2vf3[3 half-lives are about two orders of magnitude longer
than the experimental data of [12,16].
However, the ratio of the calculated half-lives of '3°Te
and '*8Te
- T1),(130)
T1,,(128)
is in very good agreement with the ratio deduced from
the total 33 half-lives which were obtained in recent geo-
chemical measurements [12,13,36]. The predicted values
of 7 are given in Table IX. They are nearly independent
of the version of the effective interaction and they have
also proven to be insensitive to a variation of 8pp- Our
theoretical value 7=~3.5X107* is to be compared with
recent experimental results. Lee, Manuel, and Thorpe
obtained 7=(4.24+0.8)X10"* and 7=(4.4+0.8)
X10™* from the amounts of radiogenic *°Xe and '*%Xe
in two different samples [13]. Similar values were ex-
tracted by Ref. [12], giving #=(3.9%1.1)X 10" * and
7=(3.9+2.0)X 10" % and by [36] which give an average
value of 7=(3.2+1.3)X 10 %, These measurements are
however not compatible with the results of Kirsten et al.
[15]. In view of the excellent agreement between our pre-
dicted ratio of 2v half-lives and the ratios obtained in re-
cent geochemical experiments, one may conclude that
there is only little—if any —contribution from neutrino-

less decays to the observed double-beta decay of telluri-
um.

The Ov transition amplitudes are known to be less sen-
sitive to details of the nuclear structure [25,28,29,35,37].
In particular, the Ov transition matrix elements exhibit a
rather little variation with respect to the choice of the
effective interaction. In Tables X-XV we present the
complete set of matrix elements for "°Ge at gpp=0.9 and
for 128130Te at 8pp=1.0. For a definition of the various
M, we refer to [14,28]. For comparison we also give the
results of [28,35], which were obtained with the G matrix
of the Paris potential simulated by a sum of Yukawa po-
tentials [38]. Note that the latter matrix elements are cal-
culated with g,,=0.875 ("°Ge), g,,=0.839 ('**Te), and
8pp =0.817 (1%)Te). These strength parameters were
determined: from o comparisen of calculated shngle -
decay properties with experimental data. For "°Ge we
obtain relatively small values of the tensor matrix ele-
ment M. A similar behavior was found by Tomoda
et al. [39] in a Hartree-Fock-Bogoliubov calculation with

(17)

angular momentum and nucleon number projections.

If we neglect the contribution from right-handed
charged weak currents for simplicity [{7)=(A)=0 in
Eq. (6)], the coefficient C,,,, directly yields the product
T%,{m,)% The latter quantity allows to straightfor-
wardly deduce an upper limit on the effective neutrino
mass from the measured lower limit on the 0v383 decay
half-lives. The present calculation yields values of
T9,{m,)? smaller by a factor of 4 to about 10 than the
QRPA results of [28,35]. They are however close to (but
somewhat larger than) the earlier predictions by [25] us-
ing a projected BCS approach including spin-isospin and
quadrupole-quadrupole forces. Accordingly, the result-
ing limits on the effective Majorana mass are slightly
more stringent than in previous QRPA calculations.
Typical lower limits on (m,) are (m,) <0.8 eV for
®Ge (T9%,>8X 107 yr [40)), (m,) <0.6 eV for '3Te
(T, >5X10** yr [15), and (m,) <8 eV for '*Te
(T, > 1.5X10%" yr [15)).

V. SUMMARY AND CONCLUSION

We have used effective interactions derived from the
Paris, Bonn, and Reid realistic nucleon-nucleon poten-
tials in double-beta calculations of '%2Te, 1*°Te, and "°Ge.
The bare-G-matrix elements were calculated using a
momentum-space matrix inversion method which has the
advantage that the Pauli exclusion operator was treated
in an essentially exact way. This aspect appears to be im-
portant for the 2vBB calculations. Our calculated M%),
matrix elements are less sensitive to the particle-particle
interaction strength parameter g__. A similar conclusion
was obtained recently by the application of the operator
expansion method to two-neutrino double-beta decay
[41]. In earlier calculations where empirical delta in-
teractions or simplified G-matrix interactions were em-
ployed, the calculated values of M &} often exhibit strong
dependence near or below g, =1.0. We have considered
effective interactions with and without second-order and
folded-diagram corrections. As indicated in Figs. 4 and 5
our calculated M3 remains to be stable up to about
&pp=1.2, for all the various effective interactions con-
sidered. Our values for M%) are, however, considerably
larger than the experimental values. This aspect requires
further investigation. Most important from the experi-
mental point of view is that the 0v3/3 matrix elements cal-
culated with the various effective interactions employed
by us show rather little variation.
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