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Simple relation for alpha decay half-lives
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The experimental values of log&pT, yp(sec) plotted vs Zz /QQ are shown to fall on a nearly universal

straight line with log, oT, ~z(sec)=(9. 54Z~. /1/Q )
—51.37, where Zz is the charge number of the

daughter nucleus and Q is expressed in units of MeV. This behavior also numerically comes out of the
semiclassical WKB calculation of the barrier penetration factor. The fine structure in the ratio of exper-
iment over theory is briefly discussed.

PACS number(s): 23.60.+e

The earliest law for the systematics of cz decay lifetimes
was formulated by Geiger and Nuttall [1]. This was the
observation that logtoT&&2(sec) plotted vs I/QQ,
where Q is the a decay Q value, etnpirically formed
straight lines for a series of nuclei with the same charge
number. In Fig. 1(a), I show a modern version of this
plot for the J; =Jf =0+ a decay data tabulated in Ref.
[2]. There are 119 data points for a range of Z„ from 74
to 106, where Z& is the charge number of the daughter
nucleus. Even though the data for a given Z& value fall
on roughly a straight line, there is a large scatter between
the lines for different Z& values.

It is well known that this trend can be understood in
terms of the semiclassical approximation for the decay
rate

W=PR', T,
where P is the preformation probability, 8; is the col-
lision rate of the a particle with the nuclear surface, and
T is the barrier penetration factor given for l =0 decays

in the WKB approximation by

R
T=exp —2 2LM V r — A dr (2)

In this expression R, is the "touching" radius,
R, =R +R&, where R and R& are the hard-sphere radii
for the a and daughter nuclei, respectively. The potential
is given by V(r) =ZaZ&e /r, where Z =2, and R, is the
classical turning point, R, =Z Zze /Q . The reduced
mass is @=M Mz/(M +M4). Equation (2) can be in-

tegrated exactly to give

T=exp[ 2Z Zze —(r/2p/Q fi

X [cos '(x) —x I/1 —x2]], (3)

cos '(x) —x+I —x =(m/2) —2x+x /3— (4)

where x =QR, /R, . The last part of Eq. (3) can be ex-
panded in a power series in x:
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Flax. 1. (a) On the left-hand side, the experimental values for log, oT, y2(sec) are plotted vs I /QQ, where the data for T, &2 and Q
are taken from Ref. [2]. (b) On the right-hand side, the experimental values for log, oT, ~z(sec) are plotted vs Z~/QQ . The points
for a given value of Zz are connected by lines.
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FIG. 2. (a) On the left-hand side, the experimental values for log, oT, ~z(sec) are plotted vs Zq' /QQ . The straight line represents
a best fit to the data. (b) On the right-hand side, the theoretical values for log, pT&y2(sec) from Eq. (1) are plotted vs Zz~ 6/~Q and

compared to the best fit line from (a).

The x term is often dropped in the discussion of this ex-
pansion, but it is important at the level of about 1 order
of magnitude in the half-life. The next-order term in x
is not important at the present level of experimental and
theoretical uncertainty. The barrier penetration factor in
terms of the power series expansion is

7TZ Zy e
T=exp —2/2p/R —2+Z Zze R,

2+Q.

Q R3/2
g

3+Z.z, e'
(5)

The original Geiger-Nuttall rule emerges from the first
term in this expansion together with the fact that the
second term does not depend on Q . Further, as previ-
ously noted [3], this result suggests that log, oT, &z(sec) vs

Zz/QQ may be a better way to plot the data. The re-
sult is shown in Fig. 1(b), where the data again form lines
for a fixed Z& value, and where the scatter as a function
of Zz is somewhat less than in Fig. 1(a). The scatter in
Figs. 1(a) and 1(b) is due mainly to the second term on
the left-hand side of Eq. (5).

Here I point out that there is an interesting interpola-
tion between Figs. 1(a) and 1(b). Namely, if one plots
log, pT, ~z vs Z„ /QQ as shown in Fig. 2(a), the points
fall on a nearly universal straight line. Also shown in this
figure is a straight line which represents a best fit to the
data. It is given by

log&oT&&z(sec)=(9. 54Z& /QQ )
—51.37,

where Q is expressed in units of MeV. The rms devia-
tion of the experimental values of log, oT, &2(sec) from
this straight line is 0.33. The rms deviation of the
straight-line fit as a function of the power of Z& is shown
in Fig. 3 and is seen to have a sharp minimum at a value
of about 0.6.
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FIG. 3. rms deviation of the straight-line fit to log&OT~/2(sec)
vs Z~/QQ as a function of the power x. The solid line is the
fit to the experimental data and the dashed line is the fit to the
semiclassical WKB calculation.

It is not obvious that this should follow from Eq. (1);
however, numerically it does. In Fig. 2(b) I show
log~pT~/2(sec)=log&c(ln2/W) vs Zz /QQ, where W is
calculated from Eq. (1) and the experimental Q are used.
The theoretical results are compared to the best-fit line
from Fig. 2(a). I have used P = 1, R =2. 15 fm,
R& =ro A&, with ra=1.2 fm, and the classical value for
W givenby

W, =(1/2R, )+2Q /p, ,

which follows from the classical motion of an a particle
in the nucleus in a potential V(r) =0 for r (R, . [The re-
sults are, however, relatively insensitive to the value as-
sumed for V(r) inside the nucleus. ] The radii R and Rz
used above are the uniform sphere radii which are related
to the rms charge radii r,„by R =&5/3r, „(r,h = l. 67 fm
for the a particle). The theoretical points from the semi-
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FIG. 4. (a) On the top, the ratio of the experimental and theoretical decay rate for a decay (circles) is shown with the theoretical
decay rate taken from Ref. [2]. On the left-hand side the points are plotted vs neutron number N=Nz+2, and those for a given pro-
ton number Z =Zz+2 are connected by a line. On the right-hand side the points are plotted vs Z, and those for a given N value are
connected by a line. (b) On the bottom, the ratio of the experimental and theoretical decay rate for a decay is shown with the
theoretical decay rate obtained from the present calculations with ro = 1.2 fm (circles) and ro = 1.1 fm (squares).

classical WKB approximation follow the straight-line
dependence even a little better than the data (rms=0. 20,
see Fig. 3).

The deviation between experiment and theory can be
seen in more detail in the usual way [4] by plotting the
preformation factor P, as deduced from the ratio of the
experimental and theoretical decay rates versus neutron
and proton number as in Fig. 4(b). The well-known fine
structure in P vs neutron number N can easily be seen
with the dominant effect being a dip to P=0.01 at
N= 126. The top set of points in Fig. 4(b) obtained with
a value of rp

= 1.1 fm illustrates the strong correlation be-
tween rp and P. The decrease in P at N = 126 is correlat-
ed with a decrease in the measured rms charge radii at
N=126 [5]. However, the radius variation is only about
2%, whereas a dip of 1 order of magnitude in P would re-
quire about a 10% radius change if this were the only
thing responsible. Buck, Merchant, and Perez [2] have
postulated that the radius to be used for R, should be
determined not from the charge radius but by the Bohr-
Sommerfeld condition for an a-particle wave function in-
side the nucleus with a fixed well depth and a fixed num-
ber of nodes. In addition, they postulate that there is a
10% increase in the number of nodes at N=126 due to
the change of valence shell structure. This increases the
radius by 10% and thus accounts for the discontinuity at
N =126. The P values obtained from their assumption
about R, as shown in Fig. 4(a) show about a factor of 2—3
improvement in the scatter, and the discontinuity at

N =126 is mostly accounted for.
Another way to interpret the results of Buck et al. is

to relate R, for the a cluster to the radius of the valence
orbits. There is about a 10% increase in the rms radius
of the valence neutrons when they change from the
(0&9/2 1f7/2 1fs/2 2p3/22pl/2 Oi13/2) major shell below
N=126 to the (Oi»/z, lg9/z, lg7/z, 2ds/z, 2d3/z3sI/z,
Ojts/z) major shell above N =126. There should be a
similar effect when the valence protons cross Z =82. The
empirical Z dependence is shown on the right-hand side
of Fig. 4. The lines which cross Z =82 are for neutron
numbers around ' "Pb (N =112) and surprisingly do not
show a discontinuity at Z =82, perhaps because Z =82 is
not a good magic number for these very light Pb isotopes.
Other lines on the right-hand side of Fig. 4 start at Z =84
(the Po isotopes) and show about the same trend from
Z =84 to 90 as for the neutron points between N =128
and 140 on the left-hand side of Fig. 4. Thus, in sum-
mary, the comparison in Fig. 4(b) indicates a discontinui-
ty in both N and Z centered only on the doubly magic nu-
cleus Pb. The orbit occupations of the valence protons
and neutrons also inAuence the amount of proton-
neutron correlation and hence the preformation probabi1-
ity. Quantitative calculations based on microscopic mod-
els have been difficult and controversial [6] and have thus
far been limited mainly to the one case ' Po a decay.

In summary, I have shown that the experimental

values of log IpTI/p(sec) plotted vs Z /QQ fall
on a nearly universal straight line. These systematics
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should be useful for extrapolations to more exotic nuclei
and to superheavy nuclei. I also have shown that this be-
havior comes out numerically from the semiclassical
WKB approximation. It may be useful to consider
whether or not there is any simpler underlying physical
interpretation of this simple functional dependence of the
decay rate on Z&.

Note added in proof. Other simple relations have been

proposed, which are similar in spirit to mine but not the
same in form. These are summarized in Ref. [7]. In par-
ticular, the form of Wapstra et al. [8] can be fitted to the

data set considered here with the result,
log, oT,&2(sec)=[(1.001Z&+51.89)/QQ ]—51.37, and
with an rms deviation of 0.31. The form of Taagepera
and Nurmia [9] and Keller and Munzel [10] can be fitted
to the data set considered here with the result,
log, oT, r2 (sec) = l. 598[(Z& /QQ —Zz ]—19.94, and
with an rms deviation of 0.33.
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