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Probe dependence of the quasielastic peak
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Using sum rules and Fermi-liquid theory an explanation for the observed probe dependence of the
quasielastic peak is offered.
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crk(q) —f draco cr(q, to) . (2)

Strictly speaking Eq. (1) defines the average energy
transfer to the nucleus. If the energy spread is sufficiently
small, however, as is the case in the quasielastic region,
identification with the peak should be meaningful.
Furthermore, I shall assume that the (q, co) dependence of
cr is well represented by a plane-wave impulse approxima-
tion (PWIA). For (e,e') scattering off a low Z target this
is certainly justified. In hadronic reactions, on the other
hand, distortions mainly attenuate the PWIA cross sec-
tion without affecting the energy dependence consider-
ably. Then distortion effects will cancel in the ratio (co).
In PWIA the cross section for a given probe is given by

A strong probe dependence of the position of the quasi-
elastic peak is found by comparing (e, e'), (p,p'), (p, n),
and ( He, t) reactions [1] (Fig. 1). This observation may
have a very simple explanation.

Let me define the peak position via sum rules as

(co(q)) =cr&(q )/cro(q),

where o k(q ) are energy-weighted moments of the cross
section

interaction [3]. The latter are velocity dependent and are
thus closely related to exchange currents [4,5]. The nu-
cleon effective mass at the Fermi surface is obtained as
m'/m = I+FI"(0)/3. With the two sum rules (4) and
the energy independence of the vertices t; one derives a
compact expression for the peak position of a given probe

2

(to) =a(q)
2m

where

g,. ~t, (q)i (1+FI'l3)l(1+F&"l3)
a(q) =

g,. it;(q) ~2S;(q)

Some limit cases are obvious. Suppose one has a pure-
ly isoscalar probe, i.e., only t, is nonvanishing. Using the
fact that for q )q, the liquid-structure functions are uni-

ty (q, =2kF in a Fermi gas) one then obtains

(co) =q'/2m

which is the famous f-sum rule in condensed matter

tr(q co) = + It;(q, co) I'R;(q, co), (3) 200.0—

where R; denotes the various spin-isospin components of
the nuclear response function (i = l, r, o,o r) and t; are
the corresponding coupling vertices for the probe. I will
further assume that the energy dependence of the vertices
t, is weak over the quasielastic bump which is justified for
the kinematic range of the experiments in Fig. 1. Then
one can make use of the well-known sum rule expressions
[2]. For an N =Z nucleus of mass number A
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where S;(q) are the "liquid structure functions" and
F", (q) the "back-fiow" components of the particle-hole
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FIG. 1. Location of the quasielastic peak in ' C as a function
of three-momentum transfer for several probes [1]. The dashed
line indicates the ' naive" expectation (to) =q /2m The full.
lines give realistic estimates based on Eqs. (5) and (6).
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physics [2]. In fact, in (p,p') scattering at 800 MeV the
projectile-target interaction is largely isoscalar and it is
then expected that (co) =q /2m, which is indeed found.
For a purely isovector probe and q & q„on the other
hand,

I+F(12)(q}/3 q2

1+F',"(q) /3 2m

There is no reason for F'," and I"z ' to be same. In fact,
6-matrix calculations predict opposite sign. Since
F',"(q)&0 I expect isovector probes to lie above the

q /2m line in Fig. 1. This is found for (p, n). Similar ar-
guments apply for the charge response in (e, e'), as was al-
ready discussed in Ref. [4].

To quantify the arguments given above I have used
realistic vertices t, for the different probes, G-matrix pre-
dictions for the back-Qow coeScients F„and liquid
structure functions S, , from the literature [6]. The result-
ing curves given in Fig. 1 agree quite well with observa-
tion.

In summary, based on sum rules and Fermi-liquid
theory, I have offered a simple explanation for the probe
dependence of the quasielastic peak position. The ( He, t)
data remain unexplained, however.
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