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Relativity and the enhancement of the weak
axial-charge matrix elements in the lead region
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We present a calculation of first-forbiden P-decay transitions in the lead region using relativistic

mean-field and relativistic Hartree approximations to the quantum hadrodynamic-II model of Serot
and Walecka. A formalism for the response of the core to a valence particle or hole in the case of
weak transitions is developed and studied for the vr- and p-meson fields present in the model. Two
applications are shown for which the mean-Beld results show a sizable enhancement of the matrix
element. This enhancement is partly quenched by the inclusion of the vacuum corrections. The
core response for these cases turns out to be negligible in the long wavelength limit. Altogether, it
is concluded that the relativistic e8'ects discriminate against nonrelativistic calculations but, how-
ever, are not enough to account for the recently reported discrepancy between shell model analysis
of beta-decay rates and the (nonrelativistic) impulse approximation and meson-exchange-current
calculations.

PACS number(s): 23.40.Hc, 27.80.+w

I. INTRODUCTION

It has been known for quite some time that the ex-
tracted value of the effective axial-vector coupling con-
stant in nuclei differs appreciably from what is obtained
in free space. Particularly, studies of axial-charge tran-
sitions in light nuclei [1] have shown an enhancement of
the axial coupling constant of roughly 50% with respect
to the experimental value. In other words, the matrix
elements calculated in the nuclear medium using the im-
pulse approximation (IA) (nonrelativistic) and the axial
coupling constant determined from free neutron decay
(gA = 1.26) have turned out to be, typically, 50% smaller
in nuclei than what is observed experimentally. Simul-
taneously, theoretical studies of meson-exchange-current
(MEC) effects during the past decade or so [2—6] have
predicted a strong renormalization of the axial-charge
transition matrix elements in nuclei by roughly 40% to
60%. This enhancement was sufficient to account for the
missing strength in the matrix elements. In particular,
a calculation conducted on the lead region —the one of
interest in this paper —by Kirchbach and Reinhardt [7]
anticipated a 40% enhancement of the corresponding ma-
trix element due to the MEC contribution.

Recently, however, careful shell-model analyses of first-
forbidden P-decay (FFBD) rates in nuclei in the region
A = 208 —212 [8] suggested the existence of an anoma-
lous enhancement of the effective axial-vector coupling
constant of about 100%%uo with respect to the free-space
value. This enhancement which cannot be accounted for
by the existing MEC calculations shows that an under-
prediction of the data of the order of 40% to 50% still
remains. Kubodera and Rho have recently [9] ascribed
this excess enhancement to an in-medium renormaliza-
tion of the pion decay constant and nucleon mass that
appear as parameters in the pion exchange part of the
axial-charge operator. This idea has been discussed by

Kirchbach, Riska, and Tsushima [10] who claim that this
enhancement is not an effect that depends strongly on the
medium but a natural consequence of the large attrac-
tive central force component of the nucleon-nucleon in-
teraction, which can be represented as an effective scalar-
meson-exchange component. Since this is one of the key
elements in relativistic mean-field theories it becomes of
interest to examine whether the use of strong relativis-
tic dynamics might help to explain the missing strength
on the determination of the IA matrix elements. As a
matter of fact, for the case of transitions that proceed
via the axial charge, relativity is expected to produce
a strong enhancement since the operator driving these
transitions (pops) is off diagonal in Dirac space thus
connecting upper-to-lower components of the medium-
modified Dirac spinors [11]. The enhanced lower com-
ponents would, a priori, enhance the current matrix el-
ements (a true statement if initial and final states coin-
cide). This occurs much the same way in which isoscalar
magnetic moments, deriving from the Dirac (nonanoma-
lous) coupling (p), are enhanced over the Schmidt val-

ues [12]. However, it is also known that this enhancement
is compensated by a medium-induced current driven by
new meson fields whose source is the extra valence par-
ticle or hole [13—15].

Relativistic effects in weak transitions have been ex-
plored before in the literature [14, 16, 17]. To our knowl-

edge, all calculations were conducted, exclusively, for
the 0+ ~ 0 transitions in the A = 16 system. Af-
ter some initial controversy on the importance of the
relativistic effects for axial-charge transitions (see, for
example, Refs. [14] and [18]), the current understand-
ing is that P-decay matrix elements do get enhanced in

the nuclear medium with respect to their nonrelativis-
tic counterparts [the amount of this enhancement de-

pending on the (2sigqlp»2) —(ldsyqlp~&~) mixing in

the 0, T = 1 first-excited state in isN]. For the in-
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verse process O(0+) ~ N(0 ) through muon capture,
however, the capture rate turns out to be almost insen-
sitive to the relativistic dynamics with the proviso that
pseudo-vector (PV) coupling be used at the mN vertex
[which satisfies partial conservation of the axial current
(PCAC) at the operator level] in order to obtain the in-
duced pseudoscalar contribution to the axial-vector cur-
rent. This term becomes more important as the energy
transfer increases and tends to cancel the enhancement of
the axial charge. Despite that the relativistic description
improves on the standard nonrelativistic method these
calculations have not provided a categorical answer as
to the necessity of using relativistic dynamics to under-
stand nuclei. The fact is that the unexplained territory
between IA and experiment in the A = 16 system can
be covered simultaneously by relativity, MEC, and con-
figuration mixing or any combination of the three. The
FFBD rates in the A 208 system appear to be some-
what different from those in A = 16. The gap between
IA and experiment is broader in the former, which may
indicate a medium-dependent effect of the sort found in
relativistic mean-field theories.

So far, all relativistic calculations in the weak sec-
tor have been carried out at a phenomenological level.
In this paper we conduct a model-consistent relativistic
calculation in which vacuum corrections and the infiu-
ence of isovector core-polarization effects are included.
We present results for the mean-field and the relativistic
Hartree approximations to the quantum hadrodynamic
(QHD-II) relativistic model of Serot and Walecka [19]
which includes, besides the baryons and the mesons o.

and a, the charged meson fields x and p, and the pho-
ton, as the dynamical degrees of freedom. The idea is
to give an account of the full one-body contribution to
the weak current and to give a quantitative idea of the
effects introduced by the relativistic treatment. It should
be borne in mind that for a heavy system the initial and
final wave functions may differ not only in isospin but
in their spatial content, thus requiring numerical results
before drawing any conclusion. The two-body contribu-
tion to the weak current is not considered here and will
be examined in a future paper [20].

The paper is divided into three sections. In Sect. II we
describe the general formalism we use to calculate rela-
tivistic matrix elements. We present first some general
considerations on the structure of the axial current and
give an expression for the P-decay rate in terms of mul-
tipole operators for the long-wavelength approximation.
The restrictions imposed by parity selection rules be-
tween nuclear states for the different multipole operators
are summarized in the same section. In Sect. III we study
the changes that the addition of one nucleon to a filled
Fermi sphere introduces in the single-particle core wave
functions —and consequently their matrix elements. The
extra particle (hole) gives rise to additional meson fields
which modify the core. It is known that isoscalar electro
magnetic transitions for the odd-A nucleus are strongly
renormalized by this core response to the added va-
lence particle (hole). For isovector etectrornagnetic tran-
sitions the medium response driven by the isovector p-
meson field is weak [15] (and known, from nonrelativistic

calculations, to be affected by nuclear structure effects
and meson-exchange currents). Thus, for isovector weak
currents —those of interest in this paper —one may also
anticipate a weak response of the core. However, this is
not straightforward. Weak currents have a vector and an
axial piece and since the pion, which is also an isovector
meson present in QHD —II, carries axial charge it might
act as a meson source for an extra axial-vector response
from the core. As it turns out, however, we show in this
section that the pion contribution to the axial current is
vanishingly small in the q ~ 0 limit. Since in our applica-
ticns we work in this limit, there is no pion core response
to the valence particle. To calculate the core response
we resort to perturbation theory in nuclear matter and
derive a general expression for the matrix element of a
current operator between initial and final states sharing
the same core but which differ by the valence particle.
The perturbative series is summed to all orders in the
random-phase approximation (RPA), and the polariza-
tion insertions to the static 7r and p-me-son fields are
calculated.

In Sect. IV we apply the developments of the preceding
sections and present results for two transitions in the lead
region: the 9/2+ ~ 9/2 P transition of Pb ~ Bi
and the 1/2+ ~ 1/2 transition of "Tl ~ Pb where
we have one nucleon (hole) outside the double closed shell
of zosPb. These transitions offer a priori the best possi-
bilities to investigate the implications that the relativistic
model might bring about. They involve only one nucleon
(particle or hole) outside the double closed shell of OsPb
and have been extensively studied in the nonrelativistic
form (see, for example, Chap. 14, Sect. 3 in Ref. [21]).
Finally in the same section we discuss the results and
give some conclusions.

II. RELATIVISTIC CURRENT
AND MULTIPOLE OPERATORS

A. General considerations

Throughout the paper we use the formalism of
Walecka [22] to calculate semileptonic weak processes.
It is an alternative approach to the more traditional one
of Behrens and Biihring [21] but has the advantage of be-
ing more amenable to the use of the relativistic dynamics
than the traditional approach. A one-to-one relationship
between the two formalisms has been established and can
be found in Ref. [21]. We begin with the basic V —A
current-current form of the charge-changing weak inter-
action with an effective hadronic current density operator
of the form

Jmk JO,wk + J5,wk
P P P (2.1)

In the following we drop all isospin dependence for con-
venience. With the assumptions of the impulse approxi-
mation, the conserved-vector-current hypothesis (CVC),
and the absence of second-class currents (G invariance),
the one-body weak vector current operator is given by

(2.2)
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Here, q„ is the four-momentum transfer and F~ and F2
are form factors which, via CVC, coincide with the elec-
tromagnetic Dirac and Pauli form factors [Fq(0)—:gv].
Likewise, with the same assumptions as above the gen-
eral form of the one-body axial-vector weak current is
expressed as

where

+JL ) C1vpM+L (r)eP'

The e„are the spherical unit vectors

(2 6)

= gA FA(qp) Y57p + FP(qp) 75qp (2.3) e~q ——p(e hie„)/~2, e0 = e, (2.7)

where gg ———1.261 +0.004, F~ is a form factor such that
FA(q ~ 0) = 1, and Fp is the induced pseudoscalar
(pseudovector) form factor,

and q denotes the magnitude of the three-momentum
transfer to the nucleus. The multipole operators of the
vector and axial-vector current densities are

Fp(q,') = g~(q„')" m2 —q2
(pseudoscalar), C&~ (q) = d rM& (qr) J0 ' (r), (2.8a)

Fp (q„) = —g~ (q„) 2 z, (pseudovector)" m2 —q2'

with gp(rn ) —1. There is, clearly, an ambiguity as
to the choice of pseudoscalar or pseudovector coupling
for the pion —giving rise to this contribution —which can
be lifted, however, by invoking partial conservation of
the axial current at the operator level [14],[17]. As we
mentioned in the introduction, this will be important for

p capture but not for the FFBD processes that we study
in this paper.

Since we are interested in transitions between nuclear
states with good angular momentum and definite parity,
we perform a multipole expansion of the Fourier trans-
form of the timelike and spacelike pieces of the weak
hadronic current. We follow closely the prescriptions of
Ref. [23] with only minor modifications due to different
phase conventions. Thus, we first define the following
scalar and vector functions in terms of spherical Bessel
functions and scalar and vector spherical harmonics:

LJM (q) = d r -7'Mz (qr) J( ) (r),
q

(2.8b)

T&M' (q) = d r —V x MJ (qr) J ' (r),
q

(2.8c)

T s ( )(q) dsrMM( ) J(0,5)( ) (2.8d)

JM (q) JM (q)
q

(2.9)

which correspond to the Coulomb, longitudinal, trans-
verse electric, and transverse magnetic multipoles, re-
spectively. The superscript "(0,5)" indicates that the
above expressions apply to both vector and axial-vector
multipoles. Note that for a conserved vector current, the
longitudinal and Coulomb multipole are related by

MM(qr) = &,(q.)V,~(r-),

MJ (qr) =jL (qr)&Jg (r),

(2.4)

(2.5)

The P-decay rate in the threshold lP, l
~ 0 form,

i.e. , in the limit of low electron momentum, is given by
(Ref. [22])

2G2 WP ——QP+me 1
p, 52(W0+ —5) F (Z, e) de

3~2 2J+1

x ( ) l(jzllcz(0) —I'~(0)IIJI)l + ).1&~FIIT~ (0) w z "( )IIJI)l' ~

J=O

(2.10)

ere the electron energy e goes from the electron mass m, to the maximum energy W0+ and the factor F+(Z, e) is

the Fermi function which accounts for Coulomb effects and is the ratio of the electron density at the nucleus to that
at infinity. Also p, —:[1 —(m, /e)2]~~~ and Z is the charge of the final nucleus. The overall weak coupling constant is

taken to be GM„= 1.023 x 10,where M& is the proton mass.

B. Parity selection rules

In the long-wavelength approximation that we employ in Eq. (2.10), i.e. , the q —+ 0 limit, only the multipoles J = 0
and J = 1 will be different from zero. Below, we list the multipole operators with their parity selection rules. Thus,

t o and Lo are the two operators allowed by parity for AJ = 0 transitions in FFBD s, and t
y L] T] ', and(5) (5) (o) (o) ~i, {o)

T~
' are those allowed by parity for LJ = 1 transitions.
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AJ=O
Parity

bJ=1
Parity

g(0) L(o) T'& (0) T +s (0) C( L( T '( T0 0 J&1 J&1 0 0 J&1 J&1
+ + no no no no

C L T'' T ' C L T'' T1 1 1 1 1 1 1 1
+ + + +

In the strict q = 0 limit the contribution from the matrix elements of the Lo, C&, I&, and T&
~'~ become

vanishingly small and we are left essentially with the Co and T&
' operators.(5) ei, (o)

C. Nuclear madel

The relativistic wave functions for the nucleons in the nucleus are calculated in the standard Hartree approximation
for a doubly-closed shell nucleus (sssPb in our case). In calculating the P-decay rates we considered the QHD —II
relativistic model of Serot and Walecl(a [19]. It includes, besides the o and (k) mesons, the p meson, the pion and the
photon. The Lagrangian is given by

&=0 ~&l iB"-g ~" +-gp~ p" —-e(1+~s)A"
l

—(~~-g-~) &

ig @psr—mg —A„[(p„xB"")s+ (m x [8"n + g~(m x p")])s]

+ (8„~8"-a' —m cr )+ -(B„m 8"n —m m n') —-(8„~„—8„~,)(8"~ —8"cu")+ m~„c-u"2

—-B» B» + m~p„p—"—-(B„A„—B„A„)(8"A"—8"A") + 8«, (2.11)

where

B" —= 8"p" 8"p" —g(p" x p—") (2.12)

one particle (hole) to a doubly-closed shell core will be
addressed in the next section.

is the p-meson field strength. Equation (2.11) omits
terms containing Higgs mesons and nonlinear terms
which vanish in the mean —field approximation. Though
this applies also to the pion, it is kept in the Lagrangian
since it will be considered later for the core-response cal-
culation [24].

The equations of motion are solved in the Hartree ap-
proximation (MFT) with the parameters of the model
fixed to nuclear matter saturation properties and the
rms radius of 40Ca [25]. The Hartree solutions were
also calculated including the vacuum contributions to the
energy and the source densities (RHA). This vacuum-
corrected solutions were calculated using what Furnstahl
and Price [26] call RHA/EP (RHA/effective potential);
i.e. , the effects of mean fields on the states in the Dirac
sea were taken into account in local density approxima-
tion (LDA) [15]. The corrections due to the addition of

III. LINEAR RESPONSE CALCULATION

In this section we study the changes that the addi-
tion of one nucleon to a filled Fermi sphere introduces
in the single-particle core wave functions —and conse-
quently their matrix elements. We are interested in
obtaining a general expression, in linear response the-
ory, for the matrix element of a current operator of the
form Jr„(x) = g(z)I'~g(x), between given initial and
final states. I'g is an arbitrary matrix in spin-isospin
space. The initial and final states must have in common
the same core (the filled Fermi sphere) and may difFer
only by the addition of a particle to an unoccupied state
with the quantum numbers (k;, s, , r;) for the initial and
(kf sf Tf } for the final state. The derivation of this
result is left for the appendix. Here we quote the final
expression

1
jr„(&)= (Afl Jr~(&)leak} = —exp( —i(k; —kf)x)

ky, y, yI' k.. ., , + 2 6 kf —k, b. .,.b, ,B"

—ts(kt, ss, ss)t' u(k;, s;, s~)tV (k, —kt)tt " (k; —ks)), (3.1)
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where 6 (q) is the meson propagator, IIr""s (q) is the
dressed polarization insertion, which can be calculated
(see Fig. 1) from the "bare" polarization IIo"

11,""
(q) =i dk4

exp(ik q)

x T. [I ~a(t + q)rBc(k)], (3 2)

and B&~ is given by

dt48""= —i exp(ik rf) Tr [I'gG(k)].
(2ir) 4 (3 3)

H (0) = 0( )I' 11 ( )4(*) (3.4)

with II(z) a generic meson field operator.
The three terms in Eq. (3.1) can be schematically de-

In the above formulas F~ is a matrix in Dirac space in
terms of which the interaction Hamiltonian is expressed
P..S

picted as shown in Fig. 2. The first term corresponds to
the valence-particle current interaction with the exter-
nal field; the second to the "core" interaction with the
field (which vanishes in the case that I'~ corresponds to
the axial-vector isovector current), and the third to the
"backflow" or relativistic random-phase-approximation
current. We shall use this expression to calculate the
core-polarization correction to the single-particle matrix
element.

We now calculate the bare polarization insertion
II&" (q) of Eq. (3.2) for the case where I'~ is any of
the matrix operators of the isovector axial-vector current.
Hence, we only need to consider for I'~ those operators
stemming from the isovector baryon-meson interaction
terms in the Lagrangian, namely the p- and vr-meson

fields. Using the analytic form of the Hartree propa-
gator in nuclear matter (see appendix), the polarization
insertion can be written, after integrating over the zeroth
component, in the form,

II+A r B (q)

(3.5)

(2vr)
+

q —E'(k+ q) + E*(k) +ib' q —E'(k+ q) + E'(k) —ib

+Tr [I'gA+ (k + q) I'g A (—k)]

—Tr [I'~A (—k —q)1'~A+(k)]

where the first term corresponds to particle-hole excita-
tions and the second and third to particle-antiparticle
excitations. For the case of FFBD transitions the four-
momentum transfer q~ is small compared to KF„
which in first approximation serves as a justification for
calculating the polarization insertion in the limit of q~

going to zero. Different results are obtained by making

g and qo go to zero in different order [15, 27]. In our
case, q is strictly different from zero, which unlike the
strict q = 0 uniform case, allows for the excitation of
particle-hole pairs besides the particle-antiparticle exci-
tations which are the ones allowed at zero momentum
transfer. If we take first the q ~ 0 limit with finite q,
the term corresponding to particle-hole excitations van-
ishes. Conversely, taking qc ~ 0 followed by g ~ 0,
this term gives rise, in general, to a nonzero contribu-

tion. This last limit is appropriate for our case. Keeping
only the density-dependent terms, the results we obtain
are shown in Tables I and II (all isospin dependence has
been dropped for convenience).

Notice that, as advertised, the pion contribution to the
axial response of the core vanishes in the q —+ 0 limit (left
column in Table I), and is strictly null when considered
for the polar-vector response of the core (left column in
Table II). Regarding the p contribution to the core re-
sponse it is worth noticing that IIoo is notably enhanced
with respect to that obtained taking first the q ~ 0 limit
with finite q . This contribution is however irrelevant for
our calculation since, as shown in Sect. IIB, the zeroth
component of the vector part of the weak single-particle
current vanishes in the long-wavelength limit. The other

IA IA
k) ki

Is
+

Is
kt kl

core

(b)
kl

(c)

Is Is

FIG. 1. Diagrammatic representation of the Bethe-
Salpeter equation that gives the dressed" polarization in-

sertion II" ~ in terms of the "bare" polarization II "

FIG. 2. Schematic representation of the three terms of
Eq. (3.1) in the text: (a) valence-particle current interac-
tion with the external field, (b) "core" interaction with the
field, and (c) the "backflow" or relativistic random-phase-
approximation current.
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TABLE I. The polarization insertion of Eq. (3.5) for I'~
corresponding to the first term in Eq. (2.3) for the axial-vector
curr nt.

re = ig p (m NN vertex) I'e = 2g~p" (pNN vertex )

limq p II"""P
(q) = 0 11"" (q) =0

components of the polarization vanish regardless of the
order chosen for the limits. As expected, current conser-
vation requires that the longitudinal part of the vector
polarization vanish in q —+ 0 limit. In this limit these
results agree with those of Chin [28].

In view of the results obtained for nuclear matter, we

do not expect strong "backflow" effects from the core
when dealing with finite nuclei. Thus, for the applica-
tions considered in the next section this contribution will

be neglected.

IV. RESULTS AND DISCUSSION

In Table III we show the results for the sos Pb ~ses Bi
transition and in Table IV the results corresponding to
the zP~T1 ~2P~ Pb P-decay. In the tables the first col-
umn corresponds to the nonrelativistic result, the second
to the fully relativistic calculation using the MFT wave
functions, and the third is also a fully relativistic cal-
culation using the RHA/EP wave functions. Between
brackets we quote the percentile increase with respect
to the nonrelativistic result. The latter ones were ob-
tained as follows. In order to use the computed rela-
tivistic matrix elements we substituted the Hartree wave
functions for the solutions of the Dirac equation obtained
using only one potential V (of timelike vector character)
with a strength given by the sum of the scalar and vec-
tor Hartree potentials (V —90 MeV). We tested this
solution against standard nonrelativistic results (energy
levels and magnetic moments) using Woods-Saxon poten-
tials, with satisfactory agreement (one misses, of course,
the spin-orbit splittings).

As expected the 6J = 0 matrix elements are strongly
enhanced in both cases. In the decay of 2osPb the
matrix element of the Cp( ) multipole operator is 60%

larger than its nonrelativistic counterpart, whereas for
the Isiyz ~ lpigz transition in Tl the enhancement
amounts to 40%. In the case of the b J = 1 transi-
tions the matrix elements of the Tz operator are sup-"e&(o)

pressed with respect to the axial-charge AJ = 0 con-
tribution, in both nuclei. For Pb they are negligi-

ble ((Ti ) = (Cp )/20) and for zp~T1 they amount to
roughly 50'%%up of the contribution of the axial charge. For
this transition the relativistic calculation shows an en-
hancement of 51'%%up with respect to the nonrelativistic re-
sult, whereas the former is quenched 22%. This is due
to the different structure of the Coulomb and transverse
electric operators, the latter one being very sensitive to
the spatial difFerence between initial and final states.

The third column in the tables shows the results of the
same calculation as above where the vacuum contribu-
tions to the mean fields have been considered. The pres-
ence of the vacuum quenches noticeably the enhancement
obtained in the MFT case. Thus, for the 6J = 0 matrix

elements of the CJ operator, the increment with respect
.(5)

to the nonrelativistic result is now 28% in the decay of
zesPb and only 17% for the zo7T1 -+2P Pb transition. As
for the b,J = 1 transitions, the only relevant on" that
in 2P"Tl—gets its contribution also reduced with respect
to the MFT calculation. The matrix element of the T,' ( )

operator is now 23% larger than the nonrelativistic result.

V. CONCLUSIONS

We have conducted relativistic mean-field calculations
of first —forbidden P decays in the lead region using the
relativistic Hartree approximation to QHD —II. We took
into account the corrections due to the presence of the
vacuum of the theory and the response of the core orig-
inating in the additional meson fields generated by an
extra particle. The main conclusion is that in MFT the
axial-charge matrix elements get notably enhanced. The
response of the core in the long-wavelength limit (and
in LDA) does not alter this result. However, the pres-
ence of the vacuum serves to quench this enhancement
and to bring it to about 25% of the nonrelativistic result.
This suggests that the use of relativity is not enough to
account for the difFerence between the experimental and
the IA values of the matrix elements. However, one has

TABLE II. The polarization insertion of Eq. (3.5) for I'z corresponding to the first term in
Eq. (2.2) for the weak vector current.

I's = ig p (qrNN vertex)

liras ra (q)
—P

~~ = gvP"

I e —
2 gpss (pNN vertex )

if p = v =0, limq~pll (q) =
& egpgv~Fermi@ (&Fermi) ~

;f p =, y v = j, 11"~'P(q) = P.

if p = 3 or 0 and v = 0 or 3, longitudinal term, limq p II"~ ir (q) = 0.

if p = v = 3, limq p Iir"FP
(q) = 0.

if p, = v = I, 2, transverse term, limq pII "rp(q) = p.
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TABLE III. Contribution of the multipole operators t & 0 and T& ~ to the Pb ~ Bi
transition (v: 2ggfg ~ rr: 1hgfg) in the nonrelativistic, mean-field (MFT) and RHA/EP cases

(see text). Shown between parentheses is the percentile increase with respect to the corresponding
nonrelativistic entry.

Nonrelativistic

-1.233x 10
-8.821x10 3

MFT

-1.978 X 10 (+59.8%%uo)

-7.780x10 (—22.3%)

RHA/EP

-1.579x 10 (+27.7%)
-7.752 x 10 (—22.4%)

TABLE IV. Contribution of the multipole operators |J 0 and Tq, to the Tl ~ "Pb
transition [rr: (3sifg) ~ v: (3pifg)] in the nonrelativistic, mean-field (MFT) and RHA/EP cases

(see text). Shown between parentheses is the percentile increase with respect to the corresponding
nonrelativistic entry.

(T'='"(J = 1))

Nonrelativistic

8.303x 1P

3.089x10 '

MFT

1.156X 10 (+39.2%%uo)

4.662x 10 (+50.9%%uo)

RHA/EP

9.125 X 10 (+17.0%%uo)

3.796x 10 (+22.8'%%uo)

to keep in mind the following observations. For the two
examples that we showed above the experimental log(f t)
values are in both cases slightly larger than those ob-
tained in IA showing no need for an enhancement and,
if anything, the need for a small quenching of the non-
relativistic result. This may be interpreted as the in-

ability of our approach to describe correctly the nuclear
structure. If this problem is temporarily ignored, there
remains the fact that we have used typical nonrelativis-
tic meson-exchange results which, of course, were not
intended to be consistent with the model we employed
above. Though we do not anticipate large discrepancies
in this regard, a calculation of this sort is necessary be-
fore concluding whether relativity is relevant to under-
stand axial charge transitions. Work in this direction is
currently in progress.

APPENDIX

In this appendix we derive a general expression for
the matrix element of a current operator of the form

J(x) = 1b(z)I'~g(x), as described in Sect. III. The ini-

tial and final states have in common the same core (the
filled Fermi sphere) and may difFer only by the addition
of a particle to an unoccupied state with the quantum
numbers (k;, s;, 7;) for the initial and (kf, sf, rf) for the
final state. Thus, in the single-particle approximation we
can write

Q(x) = ) ak...,u(k, s, 7) exp( —i[a+(k)t —kx]}
k, s,r-

+bk, v(k, s, 7.) exp{i[a (k)t + kx]},
(A3a)

Q(x) = ) ak, G(k, s, 7.) exp(i[a+(k)t —kz]}
k,s,r-

+bk... v(k, s, 7.)

x exp( —i[a (k)t+ kx]},
(A3b)

we get

d2:f3

agf » ~f —— 6 kf Sf 7f p exp ikfX X,

(A4a)

If we now write the operators corresponding to the
creation or the annihilation of the added particle in terms
of the field operators,

14') = nk„.„., 14.o-) (4'il = (4'corelaky, sy, rf &

(A1)

dx3' -:-k."-.-P-k.-
ir (*)=(Sf]Jr (~)14')

—
(&It& o 1+kg, y, r Q(&)I Qg(*)okt, ]&It& „). (A2) and after substituting in Eq. (A2) we end up with

(A4b)

jr„(x) = — d2f dx; exp(ikfz} exp( —ik, x}6ri(kf, sf 7f)p& I'~~s1 3 3 0

x (4core l@o(~f)0p(~) @s(~N p(~i) 14'core) &p e~e(ki& si &
~i). (A5)
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In the above we used a normal-mode expansion for
the field operators with periodic boundary conditions in
a large box of volume A. The u and v are spinors of
positive- and negative-energy, respectively, solutions to
the Euler-Lagrange equations for the fermionic fields of
the Lagrangian of Eq. (2.11) in nuclear matter. The nor-
malizations are such that

ut(k, s, r)u(k, s', r') = v~(k, s, 7.)v(k, s', r') = tI, ,, 6

We have also used that

and

(k) =g u(i+ k +rn~ ——g uo +Ek~2- 1/2

m~ = m~ —g~p.

(A7)

(A8)

Finally, in Eqs. (A4a) —(A4b) and (A5) we have used the
definitions kf ——~+(ky) and k, = e+(k;).

Since the calculation of the matrix element of Eq. (A5)
cannot depend on the choice of the initial and final times
and in order to introduce a time ordering in the matrix
element we take

(Qee~e~@~ (zf )'tt)p(z)@s(x)gii(2', ) ~P,»e) = »m lim (0'core ~T @a(+f )0'y (+ )A(+)@0(+') 14» )

gy -++oo

(A9)

&r(4) = 0(*)1'alI (2')@(&) (A10)

where I ~ is a matrix in Dirac space and II(z) is a me-
son field operator. With "a" we denote the set of indices
that run in spin and isospin. Next, we sum the perturba
tive series to all orders in the RPA approximation and,

I

The latter matrix element can be calculated using stan-
dard perturbation theory in terms of the unperturbed (by
the extra particle) field operators. In general the interac-
tion Hamiltonian may be written in the following fashion:

I

upon using the analytic form of the Hartree propagator
in nuclear matter [19],

G (k) = (1 —nk)
A+(k)

ka —Ei', + ib'

A+(k) A (-k)
"ko —E„—iS k'+E„' —i&

' (

where A+(k) and A (k) are the standard projection op-

erators for the core system, we obtain

dka
jr (2:) =

&
exp( —i(k, —kf) z) F&","(k') + (2&)'p (kf

F (k~)rV~(k —k ko. )II (k; —ky, ko) j, (A12)

r r'where b, ' (q) is the meson propagator, II " & (q) is the dressed polarization insertion, and Bz and F"~ are given by

dk4
B A= —i exp ikg WI'~ k (A13a)

Ff", = 2exp(i(k, —kf —
q )2:0)u(kf, sf, rf)1 u(k, , s, , r, )

exp ji(qa —ks + kf)tf) —exp(i(qs —ko + k~)t, )
2i[q —k, +k ]

(A13b)

Given the freedom of choice for the limits t; f ~ oo we take these limits symmetrically by putting tf ———t, = —t'
and taking t' ~ +oo. Purther use of the result

sin[(qa —ka + kfo)t']

+ qo —ko+ kfo
(A14)

gives

Ff (q ) = 2irb'(q —k, + k~) u(kf, sf, rf )I' u(k;, s;, 7;).

Finally substituting this in the expression for jr „(x) of Eq. (A5) we obtain Eq. (3.1) in the text,

(A15)
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1
Jr~(&) = (pf]Jr„(z)~p, ) =

&
exp( —1(k, —kf)x)

x u(kf, sf, ~f)t' u(k, , s, , 7;) + (2vr) b (kf —k')b, , 5 B."

—6(ky, sy, ry)t' u(k;, s;, r~)E (k; —ky)II"" (k; —t'f)). (A16)
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