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Parity nonconservation (PNC) was studied for 16p-wave resonances in U by measuring the helicity

dependence of the total cross section for epithermal neutrons scattered from U. A statistical analysis

yields a root-mean-square PNC matrix element M=0.56 o po meV, which corresponds to a spreading
width of I =0.9X10 eV. Under plausible assumptions this gives a value of 4X10 for ~a~~, the ra-

tio of strengths of the P-odd and P-even effective nucleon-nucleon interactions.

PACS number(s}: 25.40.Ny, 24.80.Dc, 11.30.Er, 27.90.+b

I. INTRODUCTION

There have been extensive experimental and theoretical
efforts on parity nonconservation (PNC) effects in light
nuclei. A recent review summarizes the status in light
nuclei [1]. Here we focus on PNC effects in neutron-
nucleus interactions in heavy nuclei.

Parity violation in the neutron-nucleus interaction was
first observed by Abov et al. [2] with a polarized neutron
beam and an unpolarized target. These experimental re-
sults were later confirmed a number of times [3—6]. A
comprehensive review of the early work with polarized
neutron beams is given by Krupchitsky [7].

Michel [8] suggested that the forward scattering ampli-
tude would have a PNC component due to the weak in-

teraction. There are two convenient PNC observables
which arise from polarized neutron transmission through
a target —spin rotation (of the neutron polarization vec-
tor about its momentum) and helicity dependence of the
total cross section —corresponding to the real and imagi-
nary parts of the scattering amplitude [9]. Forte et al.
[10] performed a neutron polarizer-analyzer experiment
similar to an optical polarizer-analyzer experiment. Us-
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ing cold neutrons from the Grenoble high flux reactor
and an identical polarizer and analyzer, they observed
parity violation in " Sn. Subsequently Heckel et al. [11]
observed neutron spin rotation in a number of nuclei.

In all of these measurements the parity violations were
large compared to the expected scale of 10, but were
still small on an absolute scale. Sushkov and Flambaum
[12,13] suggested that the tnechanism of compound nu-

clear mixing between close-lying states with the same to-
tal angular momentum Jbut opposite parity ~ could lead
to very large parity violations. Alfimenkov et al. [14] ob-
served an extremely large parity violation (7.3+0.5 %) at
the 0.73-eV resonance in ' La. This efFect has since been
confirmed at IAE [15] (7.6+0.6 %), KEK [16]
(9.7+0.5 % ), Los Alamos [17] (9.2+1.7%), and recently
again at Los Alamos [18] (10.15+0.45 % and
9.55+0.35%) by our group. The last measurement used
La as both polarizer and target. Since this "double lan-
thanum" measurement does not require a separate deter-
mination of the polarization of the neutron beam, we
consider the value of 9.55% obtained with this method to
be the most reliable of all of the measurements of the par-
ity violation for the 0.73 eV resonance in ' La. We now
use this value (9.55%) for calibration purposes to deter-
mine the neutron polarization [18].

Parity violation also was observed in 'Br, "'Cd, and" Sn by Alfimenkov et al. [14]. The limitation in these
experiments is the observation of only one parity viola-
tion per nuclide. We decided to utilize the intense neu-

tron beam at the Los Alamos Neutron Scattering Center
(LANSCE) to study parity violation. The experimental
goal was to study parity violation for many resonances in

a single nucleus. Preliminary reports on our erst PNC
experiments have been published for U [19] and Th
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[20). Here we present the final results for U. The fol-
lowing paper [21]presents our results for Th.

We define the parity-violating asymmetry P for an l= 1

(p-wave) resonance from
cr*=u~(1+f„P), (1)

where o.* is the resonance cross section for + and —hel-
icity neutrons, oz the resonance part of the p-wave cross
section, and f„ the neutron polarization. The simplest
explanation for the parity violation is that the p-wave res-
onance mixes with neighboring s-wave resonances with
the same angular momentum J. Here we consider only
mixing with one s-wave resonance —the two-level ap-
proximation. This simple approximation conveniently il-
lustrates most of the physics. In Sec. V we remove this
restriction and explicitly include the effects of many s-
wave resonances. The effect of distant states is now un-
der active consideration: this issue is discussed in the fol-
lowing paper.

For a target with spin I=O, the total angular momen-
tum is J=l+s, where I and s are the neutron orbital an-
gular momentum and spin. For an s-wave resonance
(l=0) J =—,', while for a p-wave resonance (l= 1}J=—,

' or
—,'. Only the J=

—,
' p-wave resonances can m.ix with the s-

wave resonances and show parity nonconservation.
The nuclear Hamiltonian can be written H =Ho+H,

where Ho is the parity-conserving Hamiltonian and H is
the small parity-violating part. The parity-violating term
mixes the s and p resonances. If 4, and 4 are the un-
perturbed wave functions, then in first-order perturbation
theory the wave functions of the mixed states are

q'I,'=qi, +[Vp/(E, Ep)]q—'p,
(2)

~p —I n +PNC '+r

Clearly P =crpic/o~. For a spin-zero target o pic is

(3)

[bE,rp+bE I, ]

[S] [P]
where bE, =E, Eand [S] =b—E, +I, /0, and similarly
for the p-wave resonance. E is the kinetic energy of the
neutron-nucleus pair in the center-of-mass system, I,"
and I " are the neutron partial widths, I, and I are the
total widths, and K is the de Broglie wavelength in the

4' = —[V, /(E, Ep)]4, +4—~,
where V, = ( 4, ~H ~

4 },and E, and E~ are the energies
of the s- and p-wave resonances. We assume time-
reversal invariance holds. The matrix element V, is then
pure real or pure imaginary depending on the phase
convention adopted for the wave function %. For scatter-
ing problems, the convention TV(J,M)
~( —1) %(J, —M) is usually adopted, and Vs~ is real.
[For bound state problems the Condon and Shortley
phase convention is usually adopted:
T%(J,J)~(—1) %(J,—M), and V, is pure imaginary
[22].] In the present work we follow the convention for
scattering and take V, real. The parity-violating asym-
metry has been obtained by many authors [12,23 —26].
The p-wave cross section can be written as

c.m. system. In this notation, o~ =n.K I ~I /[P) . At
the p-wave resonance E =E and hE =0. We also as-

Jp P
sume that the p-wave widths (typically -20 meV in U}
are much smaller than the level spacing ( —10 eV in

U}. Then P becomes approximately

P=[2V, /(E, E—)][I,"(E )/I "(E )] i

The energy dependence of the s-wave neutron width is
I,"(E)=I,"(E,)(E/~ E, ~ )

' . The parity-violating cross
section o.p~c at the peak of the s-wave resonance is about
the same as at the peak of the p-wave resonance, but the
s-wave cross section is orders of magnitude larger than
the p-wave cross section. Therefore the parity-violating
asymmetry, i.e., the ratio orphic/o. „is much smaller than
the corresponding ratio a p~c/o~.

The ratio Vz/(E, —E ) is usually called dynamic
enhancement. This has been discussed by many authors,
including Sushkov [13],Bunakov [27], Desplanques [28],
and Weidenmuller [29]. The key qualitative conclusion is
that the complicated compound nuclear (CN) system,
this ratio is enhanced by a factor of N' relative to the
value in the nucleon-nucleon system, where N is the num-
ber of components in the compound nuclear wave func-
tion. Since N is approximately bE/D, where b,E is the
scale of the strong interaction ( —1 MeV) and D is the
average level spacing ( —10 eV), N is of order 10, and the
dynamical enhancement is about 3 X 10 .

The ratio [I,"(E )/I "(E )]'~ is usually called kine-
matic enhancement. The neutron width I,"-kR and
I ~

—(kR), where k is the neutron wave number and 8 is
the radius of the U nucleus. For a 1 eV neutron
k -2.2 X 10 fm ', R —10 fm, and the kinematic
enhancement factor is about 5 X 10 . Therefore the com-
bination of dynamic and kinematic enhancement is of or-
der 10 . Since PNC effects are about 10 in the
nucleon-nucleon (NN) system, this 10 enhancement fac-
tor makes physically plausible PNC asymmetries in the
compound nuclear (CN) system of order l%%uo.

If the resonance parameters are known, then (in the
two-level approximation) the PNC matrix element V,
can be determined. The parity violation arises from the
mixing of two very complicated states. In fact, the com-
pound nucleus is considered a chaotic system [30].
Therefore each value of V, is a matrix element sampled
at random from the distribution of PNC matrix elements.
There is a clear analogy with ordinary nuclear transition
matrix elements. One nuclear reduced width has little in-
formation content. The information is contained in the
ensemble of reduced widths, the Porter-Thomas distribu-
tion. Here the information content is in the distribution
of PNC matrix elements. We assume that the PNC ma-
trix elements are random variables, with a distribution
with zero mean and variance M . The goal of the experi-
ment is to determine this variance and therefore the
root-mean-square PNC matrix element M.

The theoretical issue is to connect M with the proper-
ties of the NN interaction. It is convenient to introduce a
parity-violating spreading width I =2m.M /D. Since
M is expected to be proportional to the level spacing,
the spreading width should to be approximately indepen-
dent of mass number.
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Using the methods of statistical nuclear spectroscopy,
French et al. [31,32] established a connection between
syrnrnetry breaking in the CN system and symmetry
breaking in the effective NN system for time-reversal-
invariance (TRI& violation. They obtained

I ' =2m. X 10 (eV)a (6)

where I ' is the TRI violating spreading width, and
aT is the ratio of the TRI violating strength to the TRI
conserving strength in the effective NN interaction. We
assume that the parity-violating spreading width is relat-
ed to an a which is the ratio of the parity-violating
strength to the parity-conserving strength

I =2m X 10 (eV)a

Johnson et al. [33] have extended these ideas and estab-
lished a connection with the rnesonic coupling constants
used to parametrize the parity-violation problem in light
nuclei. Here we use this first approximation to provide a
qualitative interpretation of the value of M extracted
from our data.

The experimental method is described in Sec. II. The
procedure to determine the longitudinal asymmetry from
the data is discussed in Sec. III. The experimental data
and the data reduction are presented in Secs. IV and V.
These results are then analyzed in Sec. VI. A brief sum-

mary is given in Sec. VII.

II. EXPERIMENTAL METHOD

The details of the experimental procedure are given in
Roberson et cil. [34]. Here we provide only a brief
description.

The 800-MeV proton beam from the Los Alamos
Meson Physics Facility (LAMPF) linac is injected into a
proton storage ring (PSR) where the beam is compressed
from a pulse width of —800 ps to a width of -250 ns.
The extracted proton beam strikes a tungsten target and
neutrons (-20 per incident proton) are produced by the
spallation process. The neutrons are moderated by water
and collimated to produce a beam. Typical proton beam
currents for the U experiment were -50 pA. The beam
is polarized by selective attenuation through a cell of lon-
gitudinally polarized protons. The protons are polarized
with dynamic nuclear polarization at 1-K temperature
and 2-T magnetic field. The 2-T magnetic field is either
parallel or antiparallel to the beam direction. The abso-
lute polarization was determined by measuring the
transmission through the cell as a function of tempera-
ture. (Yuan et al. [18] discuss other methods of deter-
mining the absolute polarization of the neutron beam.
For the Th experiment [21] the "double lanthanum"
method was used to obtain the absolute polarization. )

The relative polarization of the beam is measured for
each run by determining the proton polarization in the
spin filter with NMR [34]. For the U experiment the
neutron polarization was about 45%.

Fast spin reversal was accomplished with a magnetic
spin fiipper [35]. In one configuration there is only a
fixed longitudinal field which reverses sign at the mid-
point of the spin flipper. A longitudinally polarized neu-

tron passes through the transverse field region and does
not reverse spin direction. To flip the neutron spin a
transverse field is added to the longitudinal field. The
spin then adiabatically follows the total magnetic field
direction and reverses direction. The spin can be re-
versed using either direction of the transverse field. The
spin-preserving efficiency and the spin-flipping efficiency
are discussed in Sec. V. We implement a transverse field
sequence [0,+, —,0, +,0,0, —

] which produces a spin-
state sequence [parallel, antiparallel, A, P, A, P, P, A ] (or
vice versa). This sequence eliminates in first order the
effect of transverse stray fields on the system and linear
and quadratic time drifts in the detectors. The spin
direction was reversed every ten seconds. The direction
of polarization of the protons in the spin filter also can be
reversed by changing the microwave pumping frequency
without changing the magnetic field.

The polarized neutrons passed through a target located
at the beam exit of the spin flipper. The U target was a
metallic sample of thickness 0.091 atom/b in the shape of
a cylinder of diameter 5.1 cm and length 1.91 cm. The
target was de leted to 0.2% of U. The neutrons were
detected by Li-loaded glass detectors located at 56 m
from the neutron source. The count rates were so high
that there was a high probability of neutron pulses over-
lapping. Instead of counting each neutron pulse individ-
ually, we employed a current mode technique. The de-
tails are given by Bowman et al. [36].

The neutron beam was monitored with a thin Li glass
paddle detector placed directly in front of the biological
shield. At the end of each eight-step sequence the aver-
age value of the neutron flux is determined; if the average
flux is outside a predetermined value that data is routed
to a separate "bad" data area. Each spin state was held
for 200 neutron bursts (10 s) and the eight-step spin-state
sequence was completed in about 90 s. This sequence was
repeated for 20 times and these data combined into a
"run. " The process was then repeated several times.

s=(N —N )/(N +N )= —tanh(no tf„P) . (10)

If the argument is small, then c.= no ~ tf„P. —
The transmission yield and the asymmetry are shown

in Fig. 1 for the 63.5-eV p-wave resonance. This reso-

III. DETERMINATION OF LONGITUDINAL
ASYMMETRIES

The total cross section for a p-wave resonance is

cr =o z«+ cr
—=o z«+ crz(1+f„P),

where o. „is the potential scattering cross section. The
neutron transmission yield at the detector is given by

N =F(E„)exp[—n—t[cr „+cr~(1+f„P)]]
=C(E„)exp[ ntcr (1+f„P—)],

where F(E„)is the neutron fiux, E„ the neutron energy,

C(E„)=F(E„)exp[ nto„], n is the—num. ber density of
the U target nuclei, and t is the thickness of the target.
The transmission asymmetry c is defined as
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F ( V) = (M /2n. ktt T) ~ exp( MV—/2k& T),
where k~ is Boltzmann's constant and T the temperature,
then the Doppler-broadened cross section is

o',s(E„)=f o~(v', V)F( V)d V . (12)

effects, and background corrections may be important.
Therefore, we devised an analysis method which fits the
transmission spectra of both helicities simultaneously.

Doppler broadening effects are important at these ener-
gies [37]. Since the p-wave partial neutron width I ~ is
proportional to E and P is proportional to E ', 0.
can be written o =13E'~ /[P], with P a constant and
e...=4P(EP)II2/rp2 Let v (V) be the neutron (target)
velocity and m (M) the neutron (target) mass. If the tar-
get nuclei obey the Boltzmann distribution

50

30
62 64 66 68 70

Neutron Energy (eV)

FIG. 1. The lower part shows the neutron transmission in the
vicinity of the 63.5-eV resonance. In the upper half the experi-
mental asymmetry c= —(N+ —N )/(N++ N ) is shown,
where N+ and N are the counts for the two helicity states.

nance is close to a large s-wave resonance, and the large
asymmetry clearly indicates parity violation for the 63.5-
eV resonance. One could simply take the measured value
of e, and extract P directly. However, Doppler broaden-
ing has been neglected, as have other finite resolution

I

=[Kc K, ]/[K K—,], — (13)

where vo is the neutron velocity at the resonance energy,
I. the length of the Bight path, D the TOF bin width, E
the TOF channel number, Eo the channel number of the
resonance peak, and E, the time-zero TOF channel num-
ber. In terms of these parameters the effective cross sec-
tion can be written

Two convenient dimensionless parameters are
B =(2E /I ) and C =(E A/k+T)'~, with A the
atomic number of the target nucleus. Since it is desirable
to fit the transmission spectra directly, we write the ve-
locity v in terms of constants related to the time-of-Bight
(TOF) spectrum

u /u o
= [L /(K —K, )d] I[L /(Ko —K, )D]

+„, [~K, K, I(K —K, —) —u/C[

1+8 [1—[(Ku —K, )/(K —K, ) —tt/C] ]
(14)

where g „=o „/m ~ ~. Since we have not explicitly considered the effects of finite beam resolution, etc. , some of the
parameters cannot be interpreted literally. However, this ansatz does provide a convenient phenomenological fitting

procedure.
We use the following form for the transmission yield at the detector:

N'(1+a)
K —K,

N*= C—exp[ no ',„p—(1+f„p ) ]

K —(Kb+K, )/2

1000
exp[ no ',„p—(1+ f„p )], (15)

where C+—is the flux, (o',„tp) the Doppler broadened p
wave resonance line shape, N' the normalization factor,
E the TOF channel number, E, the effective zero channel
determined from the energy calibration, a the beam
asymmetry in the two helicity states, and [Kb,K, ] the
range of channels under consideration. The polynomial
in the square brackets accounts extremely well for effects
which change slowly with energy, and provides an ade-
quate description of the background even when the cross
section is changing rapidly with energy. Thus this poly-
nomial background simulates the s-wave background well
for all of the resonances in U. The adjustable parame-

N =C[exp[ ntcr', „$(—1+f„P)]+B ], (16)

with the parameter 8 the ratio of the background to the

ters for the yield are a& 5, the flux parameters; N', the
normalization; Eo, the channel number for resonance
peak; B =(2E /I ~ ), the resonance parameter;
C=(E 3/k~T), the Doppler broadening parameter;
cr',„, the peak resonance cross section, a, the beam
asymmetry; and f„P, the neutron polarization times the
parity-violating asymmetry.

Consider the effect of a beam-related background. As-
sume that the yield is
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=C'exp [ n t—cr",„P(1+f„P)], (17)

with C'=C(1+B) and o",„=o',„/(1+B). To first or-
der the background affects only the overall normalization
and the peak cross section, and not the value of P. In
practice, as we describe in Sec. V, this analysis method
works extremely well.

IV. EXPERIMENTAL DATA

The U production data were taken with a TOF bin
width of 200 ns. In principle this covers the neutron en-
ergy range of 6—1000 eV. In practice the combination of
poorer energy resolution and low detector ef6ciency at
higher energies limited the analysis to data below 300 eV.
The neutron transmission yields were measured for both
helicities. As described above, the neutron yields are
sorted by helicity states and according to whether the
beam stability (as determined by the fluctuations in the
monitor counts) is acceptable or not, i.e., whether the
data are accepted ("good") or rejected ("bad").

The production runs were carefully inspected before
being accepted for final analysis. In the final analysis we
included 123 "good" runs with the proton polarization
antiparallel to the field and 58 "good" runs with the pro-
ton polarization parallel to the field.

The transmission asymmetry c, the line shape, and the
timing also were inspected. No significant false asym-
metry was observed in the c. plots, the resonance line
shapes appeared consistent throughout, and the timing
was very stable except for a few runs. There is back-
ground in the data, as is evident from the shape of the
strong s-wave resonances (see Fig. 1). These resonances
should be black, but have background arising from y rays
in the neutron beam and scintillator afterglow. However,
as noted in Sec. III, to first order such a background does
not affect the determination of the parity violating asym-
metry.

The relative neutron polarization for each run was
determined from the NMR signal measured at the begin-
ning of each run. As discussed in Ref. [34], the NMR
signal ANMR is proportional to the proton polarization
and the neutron polarization f„ is related to the NMR
signal by f„=tanh(constX ANMIt). After the combina-
tion f„P was determined for each run, the value of f„
was used to obtain the parity violation P.

The neutron time of Aight TOF =7.23
X 10 L/(E„)'~, where TOF is in seconds, L in meters,
and E„ in eV. The transmission spectrum for U in the
energy range of interest is shown in Fig. 2. The known
resonances in U up to 280 eV are listed in Table 1 [38].
The product gl „ is listed for each resonance, where g is
the statistical weight factor. In general the spins of the
p-wave resonances are not known. An energy calibration

true neutron signal. For the U target, the product
nt=0. 12/b, o,„=5 b, and /=0. 1 for a typical p-wave
resonance, which yields a value for the product
nto', „=0.04. Therefore one can expand the exponential
and keep only first order terms, obtaining

N =C (1+B)I 1 nto—',„P(1+f„P)/(1+B)]

TABLE I. U resonance parameters.

(eV)
gr„

(meV)
E„

(eV)
gr„

(meV)

6.671
10.237
11.309
19.529
20.872
36.680
45.17
49.62
57.9
63.52
66.02
80.73
83.68
89.24
93.14
98.20

102.54
111.25
116.87
121.61
124.97
133.30

0
1

1

1

0
0
1

1

1

1

0
0
1

1

1

1

0
1

0
1

1

(1)

1.49
0.001 65
0.000 39
0.001 3

10.2
33.8
0.000 90
0.000 9
0.000 50
0.005 8

24.4
1.9
0.006 9
0.085
0.006
0.004 8

70
0.008 5

25.2
0.006
0.019
0.013

145.62
152.42
158.98
160.85
165.26
173.18
189.67
194.80
200.69
203.11
208.49
214.88
218.36
224.60
237.30
242.73
253.90
257.16
263.94
273.62
275.19
282.46

0
1

1

1

0
1

0
(1)

1

1

0
1

1

1

0
1

1

1

1

0
1

1

0.90
0.039
0.011
0.005
3.4
0.033

174.0
0.04
0.064
0.037

49.9
0.050
0.032
0.02

28.0
0.18
0.110
0.02
0.25

25.0
0.16
0.10

238
U Transmission Spectrum

100 200 300

Veutr on Energy (ev)

FIG. 2. The U transmission spectrum up to E„=300eV.
The data are the sum of all runs used in the fina analysis.

was obtained by performing a least square fit to the ener-
gies and channel numbers of well-identified resonances.
(Note that for the thick target used in this experiment the
strong s-wave resonances should be black, but due to
background effects are not. In any case with a thick tar-
get it is diScult to determine precisely the channel num-
ber corresponding to the resonance energy for the large
s-wave resonances. We therefore used the strongest p-
wave resonances to determine the calibration. }

The expression for the TOF can be rewritten in terms
of channels: K(E)'~ =K, (E)'~ + A, with K the TOF
channel, E, the zero- TOF channel, and
A =(7.23X10 }L/(200X10 ), where 200X10 s is
the TOF bin width. From the least square fit (to the
strong p-wave resonances) the best values of K, and A
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were determined. The values of L and E, are L=56.51 m
and E,= —18.57. With this calibration the resonances in
the experimental spectrum can be identified. The average
difference between the calculated and tabulated reso-
nance energies is less than 0.3 eV. We observe all of the
s-wave resonances and 29 of the 31 p-wave resonances
listed [38] from 6 to 282 eV. More recent evaluations
[39,40] have substantially changed the level scheme; how-
ever, none of the 16 resonances which we studied in detail
had their angular momentum assignment changed. The
set of 16 represents the strongest and most well isolated
of the p-wave resonances. There are a number of contam-
inant peaks in the spectrum; all of these have been
identified.

V. DATA REDUCTION

Runs with the same proton polarization direction were
analyzed together. For each proton polarization direc-
tion all of the "good" spectra were combined to form a
summed spectrum. We first fit the summed spectrum to
determine the line-shape parameters which could be as-
sumed constant from run to run, and then fit the indivi-
dual runs to obtain a parity-violating asymmetry P for
each run. During the latter procedure only a few param-
eters were adjusted.

The summed spectra were fit as follows: the zero-TOF
channel was taken from the calibration, the parameters
a& 5, a, and f„Pwere initially set equal to zero, Ko was
estimated by inspection, C was calculated at T=300 K,
and N' and o.',„were set to a nonzero value. The param-
eter B =(2E /I"~) can be conveniently expressed in
terms of channel numbers. Energy and channel number
are related by bE/Eo= 26K/Ko, with —Eo the reso-
nance energy and Eo the corresponding channel number,
and bE and hE the width in energy and channel num-
bers. Assuming AE =I, this gives B = (Ko/AK ) .
Therefore 8 can be conveniently estimated directly from
the transmission spectrum.

The first step in the fitting procedure is to free only N'
in order to obtain an approximate normalization. Since

U Transmission Spectrum838

I I I I
J

I I I I I

E„=10.2

N

0 =(N —1) ' g (Pk —Ph;„)
k=1

(18)

where P„;„=(+„Pk)/N. A typical histogram is shown
in Fig. 4. In the absence of variations in beam polariza-

30
238

U
25 —

E =11.3egn

~ zo-

the dependence on N' is linear, an approximate value for
N' is obtained rapidly. Then the parameters a,. are freed
one or two at a time, as well as N'. Then Eo and 0.',„are
freed in order to obtain the correct peak position and
depth. Then the parameter 8 and C are freed —these
are dificult to fit because they may be strongly correlat-
ed. Then all remaining parameters are freed. A sample
fit is shown in Fig. 3.

The major problem in practice was that some solutions
led to unphysical behavior for the flux. We impose the
condition that the calculated flux must vary smoothly
through the resonance region. To aid in this process, cer-
tain regions of the spectrum (corresponding to neighbor-
ing resonances which strongly distort the flux shape) were
omitted from the analysis. We also studied in detail the
effects of changing the size of the region analyzed. To
test the reliability of the analysis procedure, two indepen-
dent analyses were performed for selected resonances.
The results are always consistent within the errors quot-
ed.

Once the line-shape parameters (a, z, B, C, and
cr',„)were obtained from the summed spectra, the indivi-
dual runs were fit with only N', Ko, a, and f„P allowed
to vary. The fit usually converged after several iterations.

For each individual run k a value of (f„P)k was ex-
tracted. Since the polarization f„ is known for each run,
a value of Pk can be calculated for each run k. The aver-
age parity-violating asymmetry P is the weighted average
of the individual Pk values. The weighting factors are the
errors assigned to each value of f„P by the fitting pro-
gram. These errors should be reliable measures of the
relative uncertainty in each Pk value, but may not be ap-
propriate for the overall error in P. An alternative
method is to determine the error in P from the Pk distri-
bution. The Pk values are histogrammed and the overall
error 5 determined from 5=o /N' ~, where N is the num-
ber of runs and u is the variance of the Pk data set:

9.5
I I I I ( I I I I I I I

10.0 10.5

Neutron Energy (eV)

11.0

FIG. 3. The summed transmission spectrum in the vicinity of
the 10.2-eV resonance. The solid curves represent Sts to the
background and to the resonance. As described in Sec. V, the
resonance parameters were obtained from the summed spec-
trum, and then with these resonance parameters held fixed, the
longitudinal asymmetries P were obtained for each run.

0
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LLJ

CD ]0—

Z

.-' ~ ~

4

. '.3

-&.6 -'1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0
P(/. j

FIG. 4. Histogram of the P values for 123 runs at the 11.3-eV
resonance. P =0.67+0.37%, where the error 6=o./N'
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tion and intensity, the observed error a should be deter-
mined by the statistics of a single run. Since 5 is deter-
mined directly from the distribution, it should include all
sources of error and be the most robust way to determine
the overall error. The fact that the histograms for all res-
onances are consistent with a Gaussian is encouraging.
The error in P also can be estimated from the counting
statistics, that is from o.k. In most cases the error es-

timated in this way is smaller than the value of 5. This
does not necessarily imply that there are nonstatistical er-
rors. For the multiscaler data taken in another experi-
ment [18] the two errors were approximately equal. The
discrepancy probably arises from an incorrect conversion
factor from transient digitizer voltage to neutron counts,
with the error in the transient digitizer data underes-
timated.

One possible flaw in this procedure for determining the
error in P is that the underlying distribution is assumed
Gaussian in order to obtain 5=oiN'~. We therefore
analyzed a number of the Pk histograms using a statisti-
cal approach which makes no assumptions about the un-

derlying distribution. In the Bootstrap method [41] one
takes the experimental set of N numbers [Pk] and sam-

ples with replacement to obtain a new set of N P& values.
Note that a given entry may occur more than once or not
at all. From this new distribution the value of P is deter-
mined. Then the whole procedure is repeated many

times. The result is a distribution of P values. A nuclear
physics application of this technique is described by
Shriner et al. [42]. For comparison purposes one can use
the central 68% of this distribution and interpret the
(half) width of this range as the equivalent of the variance
for a normal distribution. For the U data, the
bootstrap distributions were symmetric and the values of
5 were consistent with those obtained directly from the
histograms and dividing by X' . Therefore the distribu-
tion of the individual parity violations is consistent with
no nonstatistical errors.

One additional correction involves the spin fiipper [35].
In the above analysis the spin preserving and flipping
efficiencies were implicitly assumed to be 100%. The
spin-preserving efficiency s (same) is essentially 100%
over the energy range of interest, while the spin-flipping
efficiency r (reversed) is almost 100% at low energies, but
oscillates at higher energies. Assume that the neutrons
emerge from the spin filter with polarization f„. After
passing through the spin flipper the neutron polarization
is rf„ if the transverse field is on, and sf„ if the trans-
verse field is off. If the initial beam has negative helicity,
then

TABLE II. Spin-flipper eSciencies, longitudinal analyzing

powers, and relative signi6cance of parity-violating asymmetries
for p-wave neutron resonances in U.

E„(eV)

10.2
11.3
45.2
63.5
83.7
89.2
93.1

98.0
125.0
152.4
158.9
173.1
242.7
253.9
263.9
282.4

Fee

0.98
0.99
0.93
0.88
0.91
0.93
0.93
0.95
0.99
1.00
1.00
0.99
0.92
0.91
0.90
0.87

I'; (%)

—0.16+0.08
0.67+0.37

—1.31+2.10
2.63+0.40
1.96+0.86

—0.24+0.11
—0.03+2.30
—2.18+1.30

1.08+0.86
—0.14+0.56
—0.36+ 1.37

1.04+0.71
—0.61+0.63
—0.16+0.65
—0.01+0.42

0.41+1.40

2.0
1.8

6.6
2.3
2.1

1.7
1.2

1.5

Parity Violating Asymrnetries for U238

I I I I
i

I I I I
i

I I I I

P„d, /F, ~. This correction has been included in the final
values quoted for the parity violation P. The parity viola-
tions are listed in Table II and plotted in Fig. 5. (There
are a few changes from the preliminary results reported
in Bowman et al. [19]which arise from reanalysis of the
data. The resonance reported at 57.9 eV is obscured by
contaminant U s-wave resonances which prevent a reli-
able analysis. This resonance is no longer included in the
set of analyzed resonances. )

In addition to the evidence against nonstatistical errors
discused above —no false asymmetries in the c plots and
no anomalous shapes in the histograms of the parity
violations —we also analyzed some contaminant s-wave
resonances. The s-wave resonances are not expected to
show parity violation. We analyzed five s-wave reso-
nances which are due to the contaminants U, ' La,
and Cu. The results are listed in Table III. Since the
resonances are intrinsically strong, but the isotopes occur
only in trace amounts, these contaminant s-wave reso-
nances are comparable in size to the p-wave resonances
being analyzed in U. None of these five s-wave reso-
nances showed a statistically significant parity violation.

o+=o (1+rf„P) and tJ =o (1 sf„P), —

where o.+ and o. are the resonance cross sections for the
different helicities, and P is the true parity-violating
asymmetry. The parity-violating asymmetry obtained
from the fitting program is

f„P„d,=(tJ+ tr )l(rJ++o. —)=f„P[(r+s)I2] . (20)

O ~

D4

100 200

Resonance Energy (eV)

I I I I ( I I I I I I I

300

If the average spin-flipper eSciency is defined as
F,tt=(r +s)I2, then the true parity-violation P is

FIG. 5. The parity-violating longitudinal asymmetries for

sixteen resonances in U.
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TABLE III. Longitudinal analyzing powers for s-wave neu-

tron resonances in U, "La, and 'Cu.

E„(eV)

8 9 I {235U)

11.67 ("'U)
12.43 ("'U)
72 17 ( 139La)

230.0 ( Cu)

P; (%)

0.05+0.16
—0.18+0.33
—0.22+0.16
—0.02+0.04

0.01+0.33

VI. ANALYSIS

P, =+A; VJ,
J

where

(22)

The approach described in Sec. I has two major limita-
tions. The two-level approximation is not valid, and in
general the spins of the p-wave resonances are unknown.
We first consider these issues and then extract a PNC
matrix element.

In the two-level approximation the parity violation is

P =[2V/(E, E)][I—',"/I "]' (21)

where the neutron widths are evaluated at the resonance
energy E . The expression for P can be generalized to in-
clude the effects all of the s-wave resonances on a given
p-wave resonance. If the s-wave resonances are labeled
by j and the p-wave resonances by i, then

A,, =[2/(E„.—E„.)][r,",./r,",.]'" . (23)

Since the energies and neutron widths are known for all
of the s-wave resonances, and the energies and the prod-
uct (2J+1)I " are known for the P-wave resonances, the
A,J.'s can be calculated. In determining A;, s-wave reso-
nances up to 500 eV were included. In practice the con-
tributions from a few neighboring levels were much
larger than the contributions from the other resonances
explicitly included.

The PNC matrix elements V~ are assumed to be
Gaussian distributed random variables with mean zero
and variance M: ( V;. ) =0 and ( V,, ) =M . If I,", I'",
and the energy spacings are uncorrelated with the V;, the
observable P; is a Gaussian distributed random variable.
The sum of Gaussian random variables is also a Gaussian
random variable [43]. The ensemble averages of P, and
P; arethen

(P; ) = g A;1 ( VJ ) =0,
J

&P,'&=&(y A,, v,, )(y A,,'v„, )&

J J

=y A,', &V,', &=A,'M',
J

(24)

where A, =g.A,". Including the experimental uncer-
tainty 5, leads to a variance (P; ) = A, M +5, for the
distribution of P; values. The probability for measuring a
parity-violating asymmetry between P,. and P;+dP; is

P (P,. )dP,=.
, exp

1

(2m. P; )'

p2

2&P,')
P

1

[2m(M +52/A, 2)]' exp
(P;/A; )

dP;/A;
2(M +5 /A. )

1
exp d

[2 (M +5 )]'i 2(M +5g )
t I

(25)

whe~e Q;=P;/A; and 5~ =5;/A;. The new variable Qt

has the property that its mean is zero and its variance
M: ( Q; ) =0 and ( Q; ) =M . This crucial result im-

plies that if the A;~ are known, the value of the root-
mean-square matrix element M can be determined direct-
ly from the measured values P;. The values of P, A, and

Q are listed in Table IV. The statistical significance
P, /5, of the longitudinal analyzing powers are shown in

Fig. 6.
The other problem is that the spins of most of the p-

wave resonances are unknown. We therefore assume that
the angular momentum values of the p-wave resonances
are completely unknown, and adopt a statistical ap-
proach. The leve1 density in the compound nucleus can
be written as

O
C4

Parity Violating Asymmetries for U

I I I I
t

I 1 I I
(

I I

I I I I I I I I I I

300100 200

Resonance Energy (eV)

p = (2J + 1 )exp [ —(1+ 1/2 ) /2o. ], (26)
FIG. 6. Relative signi6cance of parity-violating asymmetries

in U.
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where o. is the spin cutofF parameter, which for U has a
value of approximately 4.8 [44]. For low spins in U it
is a good approximation to assume that the CN level den-
sity is proportional to (2J + 1). We assume a —, probabili-

ty for the p-wave resonances to have J=
—,
' and a —', proba-

bility to have J=—', . Therefore the probability for a reso-

nance to show a parity-violating asymmetry between P,
and P;+dP,. is

1 1
F(P;)dP; = exp

3 [2 (M2+ 82 ) ]1/2 2(M2+ g2 )
l l

2 1+
3 (2~$2 )1/2 2/2

exp
Q; Q;

(27)

The likelihood function is the joint probability of all 16p-wave resonances and can be written as

16
1L (M) =No exp

3 [2~(M2+ g2 )]1/2 2(M2+82 )
l l

2 1+—
3 (2~g2 )1/2 282

exp
Q; Q;

(28)

M=0. 56+ ' meV . (29)

From the value of M and the s-wave level spacing
D=21.0 eV [40], the value of the parity-violating spread-
ing width is

I' =2@M /D=0. 9+05X10 eV . (30)

In the simplest picture, the ratio of the symmetry-
breaking strength to the symmetry-conserving strength is
given by

~a ~
=[I /(2m. X 10 eV)]' =4+2X10 (31)

TABLE IV. Parity violations for p-wave resonances in "U.

E„(eV) A; (1/eV) Q, (meV)

where No normalizes the likelihood function as
max

Jo '"L(M)dM=1. We chose Mm, „=10 meV for the
normalization. The results were insensitive to the value
used for the relative number of J=—,

' and —,
' states.

The likelihood function is shown as a smooth curve in
Fig. 7. The most compact region of 68% confidence level
is indicated by vertical lines. The most likely value of M
1s

The value for ~a~~ is qualitatively reasonable, since one
expects that the order of magnitude for a should be

Gzm„/Gs —10, where Gz is the Fermi constant and

Gs the strong coupling constant. Jonhson et al. [33] dis-
cuss the procedure for obtaining a from the experimen-
tal value of the PNC matrix element M.

VII. SUMMARY

We have obtained values of the CN parity-violating
matrix elements free of detailed assumptions about nu-
clear spectroscopy. Results for 16 resonances provide the
first determination of the variance of the parity-violation
matrix element. The value M=0. 56+@'po meV corre-
sponds to a spreading width I =0.9+0'5X 10 eV. An
estimate for the symmetry breaking in the effective NN
interaction, ~a~~-4X10, is obtained from the mea-
sured variance M .

There remain a number of outstanding issues. We
want to measure many parity violations in order to im-
prove the precision of the experimental determination of
M (or equivalently of I ), to understand the mechanism
of the parity-violation process, and to test whether I
depends on mass or energy. Accomplishing these goals
would be much easier with an improved experimental
system. A new system with a much improved spin filter

10.2
11.3
45.2
63.5
83.7
89.2
93.1
98.0

125.0
152.4
158.9
173.1
242.7
253.9
263.9
282.4

—0.16%0.08
0.67%0.37

—1.31+2.10
2.63+0.40
1.96+0.86

—0.24+0.11
—0.03+2.30
—2.18+1.30

1.08+0.86
—0.14+0.56
—0.36%1.37

1.04+0.71
—0.61+0.63
—0.16+0.65
—0.01+0.42

0.41+1.40

24.61
47.13
34.82
34.42
13.58
4.70

24.59
54.21
10.56
4.38
8.57
7.80
4.87
3.25
2.46
4.95

—0.07+0.03
0.14+0.08

—0.38+0.60
0.76+0.12
1.44+0.63

—0.5220.24
—0.01+0.94
—0.40+0.24

1.02+0.82
—0.32+ 1.29
—0.41+1.59

1.33+0.91
—1.26+ 1.28
—0.49+2.00
—0.05+ 1.72

0.82+2.82

C)
0

M (znev)

FIG. 7. Likelihood function for the 16 p-wave resonances in

'U. The arrow indicates the value of M=0.56 meV, while the

vertical lines indicate the range of the 68% confidence level.
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and detection system will be available in the near future.
The accompanying paper describes an experiment with
essentially the same experimental system; these data shed
light on the mechanism question. The data for Th
show a number of resonances with large and statistically
signi6cant parity violations, and provide evidence that
our purely statistical approach is too simple: the parity
violations display sign correlations. Therefore the data
must be analyzed with both a constant and a fiuctuating
term. In practice this only slightly changes the value of
the PNC matrix element. This new analysis is discussed
in the following paper.

The qualitative goal of these efforts is to map out the
weak nuclear potential and to complement and to im-

prove on the experiments and analyses of parity violation

in light nuclei. The utilization of the chaotic compound
nucleus bypasses many of the complications found in
light nuclei, but faces a different set of uncertainties and
complications.
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