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Quark distributions in nuclei
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By making use of a mapping procedure recently proposed, we construct the nucleon image of the one-
body quark density operator in the framework of the nonrelativistic quark model of the nucleons. We
evaluate the expectation value of this operator in the ground state of the doubly magic nuclei He, ' 0,
and Ca described within the nuclear shell model. We analyze the role of quark exchanges between nu-

cleons. We also investigate the effect on the quark density of short-range correlations in the nuclear
wave functions as well as of variations in the nucleon size.

PACS number(s): 21.60.Cs, 21.90.+f

I. INTRODUCTION

A simple and yet effective way of describing baryons in
terms of quarks is, at present, offered by the nonrelativis-
tic quark model [l]. This model assumes that baryons
are antisymmetrized clusters of three constituents quarks,
each of them carrying color, spin, and isospin degrees of
freedom. Quarks interact via a potential whose main
terms are a confining and a hyperfine term. The former is
responsible for the confinement of the quarks within the
baryons, while the latter simulates the exchange of one
gluon between quarks and is analogous to the electromag-
netic potential describing the exchange of one photon in
QED.

The nonrelativistic quark model has been taken as a
starting point for a series of investigations searching for
evidence of quark effects in nuclei. Examples of these in-
vestigations are those concerning the short-range part of
the N Ninteracti-on [2], the EMC effect [3,4], and the nu-
clear magnetic moments [5,6].

In spite of the simplicity of the model, the evaluation
of quark observables even in very small nuclear systems,
like A=3 systems, remains a quite difficult task due to
the large number of particles involved. However, going
to larger nuclear systems is important for a better under-
standing of the interplay between nucleonic and subnu-
cleonic degrees of freedom.

Recently, we have pointed out a method to construct
nucleon images of quark operators [7]. The method,
which draws inspiration from similar techniques used in
nuclear structure physics [8], is based on the concept of
mapping and establishes a correspondence between
spaces of three quark clusters and spaces of elementary
nucleons. By nucleon image is meant an operator whose
eigenspectrum in a space of A elementary nucleons is the
same as that of the corresponding quark operator in a
space of A clusters of quarks.

In order to be able to reproduce the very complicated
quark-exchange dynamics, the nucleon image is expected
to be much more complicated than the quark operator.
Indeed, as we will see later, even when the latter is one
body, its nucleon image can be A body if A is the number

of nucleons of the system under study. One-, two-, . . . ,
A-body terms in the nucleon image take into account
quark exchanges within one, two, . . . , A clusters, respec-
tively.

Clearly, if one wished to use the full nucleon image,
performing a calculation in the nucleon space would be-
come as difficult as performing the equivalent calculation
in the quark space. One would have only shifted from a
quark picture of simple operators and complicated states
to a nucleon picture of complicated operators and simple
states. In both cases, calculations get difficult for A &2,
so some approximations are required.

An interesting feature of our method is that it offers a
natural way of selecting different levels of approximations
in the operators, in correspondence to the different
quark-exchange processes that one wishes to include in
the calculations. Moreover, and more important,
translating quark operators in the language of elementary
nucleon operators allows one to evaluate quark observ-
ables directly in nuclear states constructed in the frame-
work of conventional nuclear models.

In this paper, we will show an application of the map-
ping procedure starting from the one-body density quark
operator. We will construct the one-body and two-body
terms of its nucleon image. In terms of these, we will
study the space distributions of quarks in doubly magic
nuclei like He, ' 0, and Ca as they are predicted joint-
ly by the shell model of the nucleus and the nonrelativis-
tic quark model of the nucleon. The comparison between
the calculations with the one-body and two-body nucleon
terms will give us information on the role of quark ex-
changes in different nuclear systems. We will also exam-
ine the effects on the quark distributions of short-range
correlations in the nuclear wave functions as well as of
variations in the nucleon size.

The paper is organized as follows. In Sec. II we wi11 re-
view the main lines of the mapping procedure to con-
struct nucleon images of quark operators. In Sec. III we
will show an application of the procedure to the one-body
quark density operator. In Sec. IV we wi11 calculate
quark distributions in nuclei and look into the effects of
short-range correlations and nucleon size. Finally, in
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Sec. V we will summarize the results and draw some con-
clusions.

II. THE PROCEDURE

I q„(r),q„(r'}]=5„„.5(r —r'),

Iq„(r),q„(r')]= Iqt(r), qt. (r')] =0,

(la)

(lb)

The mapping procedure which will be used to con-
struct the nucleon image of a quark operator is described
in detail in Ref. [7]. Here, we will only discuss the main

points.
We treat ~uarks by means of creation and annihilation

operators q„(r),q„(r),where )q= Ic,s, t] stands for the

color c, the spin projection s, and the isospin projection t,
respectively. They obey the usual fermion commutation
relations

where I A, B ] = AB +BA.
Restricting ourselves to protons and neutrons, we only

introduce up and down quarks, which are characterized
by isospin —,

' and projections t =
—,
' and t = —

—,', respective-

ly. By means of these operators, we construct operators
Nf, (R) that create clusters of three quarks in a color
singlet state with total spin —,', isospin —,', and projections
0. and ~, respectively, and with center of mass in R. It is

N, (R)= — g e. .. g g ( —,'s& —,'sz ~Ss&+sz )(Ss&+sz —,'s&
~

—,'o )
1

3! 2 1 2 3
c)czc3 s/s$$3 s

X g g(-,'t, —,'tz~Tt, +tz)(Tt, +tz —,'t, ~-,'q-)

t1t2t3 T

X Jdridrzdr35(ri+rz+r3 —3R)Q(r1 rz 13 R)qg (rl}qg (12)qv (r3} ' (2)

Here, e. .. is the totally antisymmetric tensor of rank 3, and Q(r, , rz, r3;R) describes the spatial distribution of the
1 2 3

quarks in the cluster and is fully symmetric under permutations of r„rz,r3.
We take Q(r, , rz, r3;R) to be the product of three Gaussians in the coordinates of the quarks relative to the center of

mass of the cluster

39/4 3

Q{r„rz,r3;R)=
3&& expI —

—,'y [{r,—R) +{rz—R) +(r3 —R} ]J .

The normalization is chosen such that

{Oq~N (R)N (R )~Oq ) 5 5 ~5(R R ) (4)

where ~0q ) represents the vacuum of the quark space.
We notice that although they describe nucleons, the

cluster operators (2) do not obey fermion commutation
relations of the type (1) because of their composite na-
ture.

We call 1V" the space of nucleon clusters that is
spanned by states of the form

Nt, (R))Nt, (Rz) ' N, (Rg)~Oq),

Similarly, we introduce creation and annihilation opera-
tors n, (R),n, (R) for elementary nucleons. They do
obey commutation relations of the type (1}. We call n"
the space spanned by the states

n, (R,)n, (Rz) . .n, (R„}~0„), (6}

where ~0„)is the vacuum of the nucleon space. States (6}
are formally obtained from states (5) by replacing cluster
creation operators N, (R) with nucleon creation opera-
tors n, (R) and the quark vacuum with the nucleon vac-
uum. This correspondence is such that the orthogonality
relations between corresponding states are not preserved.

The procedure for constructing a nucleon image of a
quark operator )(I has two main steps. In the first, one
defines a new quark operator @'"'exactly equivalent to

4 within a given quark space N' "' and such that it does
not lead out of this space. IrtPe second step, one con-

structs a nucleon operator W„whose action on a state
of n'"' is formally identical to that of the operator @'q

on the corresponding state of N'"'. This guarantees that
if ~%q ) is an eigenstate of k'"' in N'"' with a given ei-

genvalue, the corresponding state ~%„)in n'"' is also an~ (A)
eigenstate of W„with the same eigenvalue.

As a consequence of the nonunitarity of the correspon-
dence between states (5) and (6), the nucleon operator so
constructed is, in general, non-Hermitian. However, it
was shown in Ref. [7] that, by means of an appropriate
transformation, this undesired feature can be removed.

As a general result, the nucleon operator which is con-
structed is a sum of one-, two-, . . . , A-body terms if A is
the number of clusters in the system under study, i.e.,

w„=k„'"+0"'+.. . +k'"' (7)

Such a complicated structure is determined by the need
for simulating in a space of A elementary nucleons the
complicated quark-exchange dynamics within the A clus-
ters. Each of the A terms contributing to the formation
of the nucleon image is linked to a different physical pro-
cess, the one-body term refiecting only the quark dynam-
ics within one cluster, the two-body term the quark ex-
changes between two clusters, etc.

Of course, evaluating the exact nucleon image when A
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is large becomes quite diScult, and therefore some ap-
proximations are required. By limiting ourselves to pro-
cesses which involve at most exchanges of quarks be-
tween two nucleons, only the one-body and two-body
terms of (7) are needed. These operators are character-
ized by the following matrix elements in the n ' and n

spaces [7]:

(O„ln .+(R')}II„"'n,{R}l0„)
=&0qlN. p(R'}+qN'..(R)10q & (8)

and

(12l'k 1 2) f (12ll 2 ) (1 2 l@ l12)g(12ll 2) (12l@ ll 2)1,2, 1,2
(9)

where i =
I R;,o, , r; ],

N, (R()N, {R~}l0 )—:l1,2)

nt, (R))n, (R2)l0„)—:l1,2)„,
(10)

and where the symbol f . means integration (summa-

tion) over continuous (discrete) variables i, . . . .
In the following we will show practical realizations of

these nucleon operators.

335/2
p+ (r)= g dR e ' nt (R)n (R) .n A 3/2 3/2 CrT aT

CTT 2

(15)

Equation (14) gives the quark distribution in a free nu-

cleon.
We notice that in the limit y —+00, corresponding to

pointlike clusters,

p„"(r)~3g n, (r)n, (r),

III. THE NUCLEON IMAGE OF THE ONE-BODY
QUARK DENSITY OPERATOR

p (r)= gqt(r)q„(r) . (12)

According to Eq. (8), the one-body nucleon image is

p„"(r)=g fdRdR'(0 lN, (R)pg(r)N ~(R')l0g)

and since

X n t,(R)n, (R'), (13)

&0 lN. ,(R)P (r)N, {R'}l0 )

335/2
Q(R R') 7 e

—(3/2)Y (R—r)
o, cr' (14)

it is also

The starting point for the application of the mapping
procedure discussed in the previous section will be the
one-body quark density operator

(R )=Nt —( i (r)t (g)f' (b)t
T l I I )I pI 3 I ) I 2 p (18)

where ((t, =Is, t, r] and r, g, b stand for the colors red,
green, and blue of the quarks;

which is three times the usual one-body nucleon density
operator. For any finite value of y, the quark distribu-
tion calculated with the operator (15) is given by the nu-
cleon distribution folded with the quark distribution in a
free nucleon.

The operator (15} does not take into account any
quark-exchange process between nucleons. The simplest
of these processes, the exchange of quarks between two
nucleons, can be described in terms of the two-body term

p„'(r)=,' f —(1,2lp„'(r)l1',2')„n)n2n2.n, . (17)
7

The calculation of the two-body matrix elements appear-
ing in this operator, using Eq. (9), is rather involved. We
illustrate in the following how it has been carried out.

It is useful to introduce a more compact notation, simi-
lar to that of Ref. [4], and rewrite the cluster creation
operator as

1C„'„„=D(s, t) s2t2 s3t3;o, r )5(r)+rz+r3 —3R;)Q(r) r2 r3;R;),P)PzP3 Q 18

with

D( ts»)zts, 23ts3p re) =
—,
' g ( —,'s) —,'s2lSs) +sz)(Ss) +sz —,'s3 l-, rr )

S

X g ( —,'t, —,'t~ l Tt, +t2)(Tt, +t2 —,'t3 l 2r)+ perm(1, 2, 3)
T

(20)

and it is understood that repeated indices imply summations (integrations} over discrete (continuous) variables. Howev-
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er, when writing the one-body quark density operator (12) in the new notation, i.e.,
~ (r) (r)t (r) + (g)t (g) + (b)t (b)
pq r —

gp

the coordinate r of the quark does not have to be integrated.
By limiting ourselves to one of the three terms of (21), for instance the red one, we have

(0 ~N2N)q'"' q'"'N)Nz. ~o ) =(Oq~Nz[N„q„'"' I Iq„",N, JNz. ~(0 ) —(I'~2') —(1~2)+(1'~2', 1~2) .
q

Moreover,

(21)

(22)

(23)

This formula is well illustrated in terms of the diagrams of Fig. 1 which are self-explaining. The evaluation of the single
diagrams gives the results which are listed below.

Diagram (la):
' 3/2

1 2 1' 2'
)&vrv E)rzr3 )&vzv r)rzr3 1, 1 2, 2 e

—(3/2)y (R—r) (24)

Diagrams (lb)+(lc):
1 2 1' 2' 1' 2'

C)&v v C r r (eCyv rC 4 vr+ C)&r v Cr v E

1
2

D (st&s„t„,s„t tvr) r) &)D (s, t, ,s, t, ,s, t, ; crz&rz)

X[D(st&s, t„,s, t, ;cr, r).)D(s, t, ,s, t, ,s„tv;oz&yz. )+D(st&s, t, ,s, tv;o'(&r). )D(s, t, ,s„t„,s, t, ;oz rz. &)]

g6 6 —(3/4)y (R—R') —(3/16)y (R+R') —(12/7)y [(3/8)(R+R') —St+r]2 &2 2 r2 2 2

3/2 3
e e

7 7r

Diagram (ld):

(25)

1 2 1' 2'
I'2" i 23 F23

1
zD(st, s„t„,s, t„;o),r))D(s, t, ,s, t, ,s, t, ;o ,2r)z

XD(st&s, t, ,s, t, ;o)&r, }D(s, 't, ,s„tv, s„t vo . 2&y)z' '2 '2' 3 '3'

Y
&

—(3/4)yz(R+R') e
—(3/16)yz(R —R')

&
—3y [(3/4)(R+R')+St —r) 5(~

2
(26)

(a) (c)

FIG. 1. Diagrams illustrating Eq. (23).

In the previous formulas, R=R1—Rz, R' =R1 —Rz, &
=R1+Rz, and %'=R)+Rz.

Concerning the two-cluster overlaps, we simply notice
that

(Oq ~(NzN)N1 Nz ~Oq )
' fdr(o—q~NzN(P (r)N(Nz ~0 ) . (27)

By including only processes where quarks are exchanged
at most between two nucleons simultaneously, the nu-
cleon image of the one-body quark density operator is
therefore the one-body plus two-body operator

(28)p„(r)=p„"(r)+p„'(r).

IV. QUARK DISTRIBUTIONS IN 4He, ' 0, and ~Ca

We have evaluated the expectation values of the opera-
tors (15) and (17) in the ground state of three doubly mag-
ic nuclei: He, ' 0, and Ca. This ground state has been
described first within a pure nuclear shell model with
harmonic-oscillator wave functions. Results are illustrat-
ed in Figs. 2 —4, where the solid line refers to the operator
(28), while the dashed line refers only to the one-body
term (15). In these calculations, the harmonic-oscillator
parameter y of the quark wave function (3}has been tak-
en equal to 1.25 fm ', corresponding to a nucleon
r.m.s.r. (root mean square radius) of 0.8 fm. The
equivalent harmonic-oscillator parameter for the nuclear
wave functions has been chosen as 0.77 fm ' for He,
0.63 fm ' for ' 0, and 0.50 fm ' for Ca. This choice
guarantees the correct r.m.s.r. of these nuclei.

Figures 2 —4 clearly show the non-negligible effect of
quark-exchange processes in determining the quark dis-
tributions. This effect gets larger for the heavier nuclei
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FIG. 2. Quark distribution in He as predicted by the nonre-
lativistic quark model in conjunction with a pure nuclear shell
model with harmonic-oscillator wave functions. The solid line

is the expectation value of the operator (28) in the nuclear
ground state. The dashed line shows the contribution of the
one-body part (15) only. The normalization is chosen such that

I r'dr p, (r) = 1.

—a~R —R ~~f(R„R~)=1—e

and replacing states (10) with states

f(Rf, R~)N, (Rt)N, (R~)~0 ) .

(29)

(30)

Obviously, the results concerning the one-body nu-
cleon operator are not affected by these changes. With
reference to the two-body term, one observes the
modifications that are quantified in Figs. 5 and 6 for He
and ' 0, respectively. Here, the solid line refers to the
quark distributions calculated without hard-core correla-
tions, while the long-dashed and short-dashed lines are
the results obtained by using two-cluster states with a =4

and increases for decreasing values r of the distance from
the origin of the system.

The calculations shown so far describe nuclei as sys-
tems of independent particles. However, quark exchange
being intrinsically a short-range process, one can expect
that hard-core correlations between interacting nucleons
can significantly alter the results. We have investigated
to what degree this happens by introducing a correlation
function of the type

FIG. 4. The same as Fig. 2 but for Ca.

and a =2, respectively.
The short-range repulsion is found to cause a decrease

of the quark density at small r and a consequent increase
at large r. This effect is the more evident for smaller
values of the parameter a of the correlation function (29),
i.e., the more intense the short-range repulsion is. Even
for a rather intense repulsion, however, the effect is not
sufficient to alter drastically the quark distribution.

As a final point, we have calculated the variations of
the quark density caused by changes in nucleon size. In
Fig. 7 one sees the expectation values of the operators
(15) (positive sector) and (17) (negative sector) for y =1.11
fm ' (long-dashed line), y=1.25 fm ' (solid line), and
y=1.43 fm ' (short-dashed line) in the case of ' O.
These cases correspond to nucleon r.m. s.r. of 0.9, 0.8, and
0.7 fm, respectively. For increasing nucleon radii (and
constant nuclear radius) one observes a growing of the
exchange effects at small values of r, while the expecta-
tion of the one-body term stays rather constant. Thus,
the global effect is a reduction of quark density similar to
that observed in the introduction of the correlation factor
(29) simulating a short-range repulsion (Fig. 6). In this
case, however, the effect is only due to the antisymmetri-
zation of the nuclear wave functions with respect to
quarks.
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FIG. 3. The same as Fig. 2 but for ' O.

FIG. 5. Effects of short-range nuclear correlations on the

quark distribution of He. Solid line: no correlations. Long-

dashed line: a=4 fm ' in the function (29). Short-dashed line:
a=2 fm in (29). The normalization is chosen such that

Jr drp (r)=l.
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FIG. 6. The same as in Fig. 5 but for ' O.

V. SUMMARY AND CONCLUSIONS

In this paper we have discussed a method for construc-
tions nucleon images of quark operators. As an applica-
tion, we have studied the one-body quark density opera-
tor. We have derived the one-body and two-body terms
of its nucleon image and we have calculated the space
distributions of quarks in He, ' 0, and Ca as predicted
jointly by the shell model of the nucleus and the quark-
cluster model of the nucleon. The quark distribution that
one calculates corresponding to the one-body term turns
out to be equal to the distribution of elementary nucleons
predicted by the nuclear shell model folded with the dis-
tribution of quarks inside a free nucleon. The contribu-
tion of the two-body term takes into account exchanges
of quarks between two different nucleons.

We have performed two series of calculations, the first
assuming an independent particle approach, and the
second introducing short-range correlations between nu-
cleons. We have found that quark exchange produces
sizable effects on the quark distributions, larger for the
heavier elements and increasing for decreasing values of
the distance ~ from the origin of the reference system.
We have also seen that short-range correlations can ap-
preciably modify the quark distributions in the sense of
shifting them towards large values of r, without, however,
causing drastic alterations. Finally, we have analyzed the
variations of the quark distributions caused by changes in
the nucleon size and found that an increase in this size
gives rise to effects similar to those produced by the
short-range correlations.

Previous investigations of spatial distributions of
quarks in nuclei within the nonrelativistic quark-cluster
model have been performed by Hoodbhoy [9], but only
for A =3 systems. It is interesting to observe that his re-

FIG. 7. Expectation values of the one-body term (15) (posi-
tive sector) and of the two-body term (17) (negative sector) in
the ground state of '60. Solid line: y= 1.25 fm ' ((r )'i~=0.8
fm). Long-dashed line: y=1.11 fm ' ((r~)'i~=0.9 fm).
Short-dashed line: y = 1.43 fm '

( ( r ) ' i2 =0.7 fm).

suit for He is quite similar to that shown in Fig. 2 for
He. In his analysis, as in ours, processes involving the

simultaneous exchange of quarks between three nucleons
have been neglected.

To our knowledge, one can find in the literature only
one other calculation of quark observables in nuclear sys-
tems of comparable "size" to those studied in this paper.
This is contained in the recent work of Yamauchi, Buch-
mann, Faessler, and Arima [6] on quark-exchange
currents in nuclei. Their inspiring philosophy has been
the same as ours [7], namely, that of constructing an
effective nucleon operator starting from a quark operator,
and their procedure has been based on the resonating
group method.

So far, we have looked into space distributions of
quarks in nuclei. With only a few changes in the formal-
ism we are in a position to examine also quark momen-
tum distributions. The importance of quark exchanges in
modifying these distributions and the consequences that
these can have on the nucleon structure function have al-
ready been pointed out in connection with the EMC
effect [3,4]. However, these calculations have concerned
either very small systems, namely, 2 =3 systetns [3], or
nuclear matter [4]. Our formalism allows the extension
of this analysis to more interesting intermediate situa-
tions. We expect that the non-negligible role of quark ex-
changes found in the coordinate representation will be
confirmed in the momentum representation, and we
therefore hope that these calculations can provide a
significant contribution to the understanding of this in-
teresting nuclear phenomenon.
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