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The nuclear-matter equation of state is studied with a momentum-dependent effective interaction.
The incompressibility and the zero-temperature optical potential are calculated analytically. The
momentum distribution of nucleons is examined and the effect of the momentum dependence on
pion-production rates is illustrated. The phase transition to a quark-gluon plasma, described by a
bag-model equation of state, is studied in an approximation suitable for infinite nuclear matter.
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I. INTRODUCTION

The equation of state (EOS) of strongly interacting
matter has become a major focus of nuclear theory re-
search in the past decade. The interest is partly due
to implications and connections beyond standard nu-
clear physics, such as astrophysical consequences (early
Universe, neutron stars, supernovae) and the interface
with the physics of the underlying quark-gluon degrees
of freedom. In the present work we examine the ef-
fect of the momentum dependence of the nucleon mean
field on the assumed phase transition to a quark-gluon
plasma (QGP). We work with a simple effective inter-
action, the momentum-dependent Yukawa interaction,
which is widely used in the literature and will be in-
troduced in Sec. II. We emphasize that the goal of this
work is not to provide a theory of nuclear matter starting
from a realistic interaction; rather, we study the equilib-
rium properties of a simple momentum-dependent effec-
tive interaction, which is frequently used in dynamical
situations.

The EOS efficiently summarizes information on glob-
ally static, infinite nuclear matter in a wide density and
temperature interval. The incompressibility of nuclear
matter and phase transition properties are frequently
used as the most simple indicators of the EOS. While
the idealized situation referred to by the EOS can only
be approximated in actual nuclear collisions and the out-
come of collision experiments will depend on many other
factors (e.g. time scales and the transport properties of
the medium), the availability and planning of facilities to
probe the nuclear EOS gives continuing stimulus to the
EOS research.

Traditionally, the incompressibility of nuclear matter,
K (see Sec. IIIC for a definition), has been extracted
from the giant monopole resonance (breathing mode) [1,
2]. As nuclear collision data became available (3], several
groups started to use transport theoretical models based
on the Boltzmann equation to obtain related information
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[4,5]. The nuclear mean field is an input to these calcu-
lations. Applying a momentum-independent mean field,
it was first reported that a stiff EOS (K ~ 380 MeV)
provided a better fit to certain data (e.g., pion yields
and collective sidewards flow), than a soft (K =~ 200
MeV) one [5]. This appeared to contradict supernova
calculations requiring a rather soft EOS [6, 7] and subse-
quent Fermi-liquid calculations giving a low incompress-
ibility of nuclear matter (8], and led to the introduction of
momentum-dependent mean fields (which generally lower
K) in transport model calculations [9-11].

It needs to be emphasized that the study of the EOS
has grown into a flourishing field of research, where a
large number of investigators use different approaches
from statistical models to microscopic calculations [12].
Here we can only mention a few developments, most rel-
evant from our perspective.

Since their inception, momentum-dependent mean
fields play an increasing role in the EOS calculations
(see, e.g., Ref. [13]). The momentum dependence has
important implications on the static and dynamic prop-
erties of nuclear matter. An example of this, the effect
on the incompressibility [14, 15], was mentioned above.
In addition, the momentum distribution of the nucleons
at finite temperature will be more complicated than a
Maxwell-Boltzmann distribution (in the classical limit)
in the presence of a momentum-dependent mean field.
This may change production cross sections of recent in-
terest [16, 17].

In the present work, we focus on the momentum dis-
tribution in a momentum-dependent mean field and on
the QGP phase transition. We use a parametrization
of the mean field which gives a satisfactory fit to (zero-
temperature) optical potentials to rather high bombard-
ing energies. We introduce an equivalent mass, which
can be used in an approximate Maxwell-Boltzmann dis-
tribution to simplify numerical calculations at sufficiently
high temperature and low density. We demonstrate that
the change in the momentum distribution of nucleons
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induced by the momentum dependence leads to a re-
duction of equilibrium pion-production rates. The in-
compressibility is calculated analytically for a family of
momentum-dependent mean fields. The EOS of hadronic
matter is calculated with the help of thermodynamic per-
turbation theory, and the phase transition to a QGP, de-
scribed by a bag-model EOS, is investigated.

In Sec. II we discuss momentum-dependent interac-
tions in general, while in Sec. III we use the momentum-
dependent Yukawa interaction (MDYI) to derive the
mean-field approximation for single-particle properties,
to calculate the optical potential at zero temperature,
and to obtain an analytical formula for the nuclear mat-
ter incompressibility. In Sec. IV we introduce certain
simplifying approximations and present the momentum
distribution in a momentum-dependent mean field. We
introduce an “equivalent mass” for calculational purposes
and calculate pion-production rates in the equivalent-
mass approximation. The connection between the equiv-
alent mass and the usual effective mass is also discussed.
Section V contains the derivation of the EOS using ther-
modynamical perturbation theory. Calculational details
are relegated to the appendix. Section VI discusses the
QGP phase transition. We end with a few concluding
remarks in Sec. VII.

|

II. MOMENTUM-DEPENDENT INTERACTIONS

Theoretical models presently used in the description
of nuclear collisions can be derived from the Boltzmann
equation [18]. The single-particle distribution function
f(r, p), normalized to the local nucleon density as n(r) =
[ d3p f(r,p), is a basic quantity in these investigations.
It is therefore desirable to express the Hamiltonian for an
A-nucleon system with two-body interaction v;;, three-
body interaction vk, etc.,

(1)

where m is the nucleon mass, in terms of f(r,p). In
the present work we use a semiclassical approximation,
allowing the simultaneous specification of the position r
and the momentum p of the nucleons. A corresponding
quantal treatment can be based on the Wigner function
[19-21].

We write the energy of the system in the semiclassical
Hartree approximation as

2
B = [@rdp Epwp)+ 5 [ lorp)sep s p) s )+

- / Prd®p Lo f(x,p) + V1]
2m b b

where v;;(r, 1/, p, p’) is the most general two-body inter-
action, which depends, in addition to the positions of the
two nucleons r and r’, on their momenta p and p’, and
d3[rpr'p’] represents integration over all variables in the
square brackets.

It is well known that nuclear matter saturation
can be achieved with density-dependent or momentum-
dependent interactions, or with a combination of both.
In lack of a full G-matrix calculation (which would start
from a realistic free nucleon-nucleon interaction), simpler
density- and momentum-dependent effective interactions
have been used in the description of ground-state nuclear
properties. The zero-range (in coordinate space) Skyrme
interaction [22], offers further calculational advantages
[23, 24]. Note that three-body and higher contributions
are frequently represented by density-dependent terms
with fractional powers of the density.

The one-body term of the energy (2) contains one dis-
tribution function, while the two-body term is obtained
by convoluting the two-body interaction with two distri-
bution functions, etc. For zero-range forces the potential
energy density u contains delta-functions for the coor-
dinates, so that one nontrivial integral over one single
position coordinate r is left in the potential energy V|[f]:

Vil = [ & i p) £ ), 1. (3)

(2)

f

For example, if we assume a momentum-independent

. . 0
nucleon-nucleon interaction, vy (r,r’,p,p’) = 'vfj)(r~r’ ),

then
V= % f &rd®p &r'd®p f(r,p)f(r',p) v (r —1')
= % / d®rd*r’ n(r)n(r’) v (r — ') . (4)

Furthermore, for a zero-range momentum-independent
two-body interaction,

o e —r) = =81, (5)

where ng is the standard nuclear matter density and a
is a constant of energy dimension, the potential energy
takes the form

V= % / d®r d®p d*'d®p’ f(r,p)f(r',p’)
a W
xnoé(r r')
_ [ 3 2"_29‘_)
- / a3, (6)

Note that the parameters of the nucleon distribution
function f(r, p) may also be position-dependent, e.g., the
local temperature T = T'(r).

Zero-range interactions cannot be expected to ac-
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curately describe, e.g., nuclear surface properties. A
successful program of Thomas-Fermi calculations for
ground-state properties [25-27] from the finite-range
Seyler-Blanchard interaction [28] has recently been ex-
tended to study the thermostatics of finite-temperature
nonuniform nuclear systems [29]. In its original ver-
sion, where the entire burden of saturation was placed
on the momentum dependence, the Seyler-Blanchard in-
teraction gave a too rapid unbounded increase of the re-
pulsion as a function of the incident energy for the zero-
temperature optical potential [30]. When an explicit den-
sity dependence is introduced [27], the observed energy
dependence of the optical potential can be fitted up to
= 200 MeV in the total energy of the incoming particle.
Asymptotically the Seyler-Blanchard interaction will be
dominated by the (p — p’)? term, with increasing repul-
sion between particles of large relative momenta.

In the present work we focus our attention on infi-
nite systems and high energies. We expect to have no
momentum-dependent interaction at large relative mo-
menta of the interacting nucleons. We therefore opted
to use a parametrization of the momentum dependence
applied recently in several heavy-ion calculations [31, 32],
which leads to vanishing repulsion when |p — p’| — oc.
For the present study we consider this property more
important than the ability to account for finite range ef-
fects. The form of the interaction used is motivated by
the Pauli principle, and v;; can be written as

22 6(r—r')

(0)
=t

(7

where c is a constant of energy dimension and A is a
momentum range or characteristic momentum, conve-
niently parametrized in terms of the Fermi momentum

of standard nuclear matter, A = App ©) The momentum-
dependent part of the two-body mteractlon (7) is of
zero range in coordinate space, while the momentum-
independent part can be represented with either a zero-
range or a finite-range effective interaction. With the
zero-range form (5) and an additional three- and more-
nucleon contribution for the momentum-independent
part, the total energy can be written as

2
B= [or | [ @olesm)+ulfl]. ®
with the potential-energy density u[f] given by
b notl
ulfl =570 oc+1 n§
3, 13 /f(r p)f(r,p")
/d pd'p 1+ (’;P—)2 ’ ©

where b is a constant of energy dimension and the dimen-
sionless parameter o can be chosen to effectively rep-
resent the three- and more-nucleon interactions. Since
the second term in (7) is proportional to the Fourier
transform of a Yukawa function, this interaction is re-
ferred to as momentum-dependent Yukawa interaction
(MDYTI). The momentum-dependent part of the MDYI
has the form arising from the exchange term in a more

complete (antisymmetrized) calculation, and, with the
proper choice of the constant ¢, can be thought of as
incorporating an approximate representation of the ex-
change effect [31]. It should be kept in mind, however,
that the MDYT is of zero range in coordinate space.

III. CALCULATIONS WITH THE MDYI

Single-particle properties in the momentum-dependent
mean field are often needed in practical applications.
Here we derive the mean-field approximation for the
MDYI in general, then analytically calculate the optical
potential and the nuclear matter incompressibility at zero
temperature. To achieve this we utilize the fact that the
necessary integrals are analytical for a zero-temperature
Fermi gas [31]. In subsequent finite-temperature appli-
cations (see Sec. IV) the Maxwell-Boltzmann approxima-
tion will be used for the thermal part of the energy.

A. Mean-field approximation

The mean-field approximation can be derived from
the potential energy density u by taking the variational
derivative with respect to the distribution function f,

@ = bu[f]/6f(r,P). (10)

Using Egs. (9) and (10), one obtains for the momentum-
dependent part of the mean field

c f(r,p’)

r,p) = — [ d¥p —21"— , 11
Pmom (T, P) no] p 1_’_(27\2 )2 (11)
hence for the momentum-dependent part of the single-
particle energy

2

6‘mC\m(r, p) = _2% + (Pmom(rv p) . (12)
With the parametrization of the momentum-independent
part as given in Eq. (9), the full single-particle energy
takes the form [10, 11, 31]

2 /

P n no . 2 [ 5, frp)
= ee— —— — — d —————
e(r,p) 2m+ano+b(no) +n0/ p1+(2_7\21)2

(13)

At finite temperature, f(r,p) depends on the single-
particle energies e(r,p), and Eq. (13) implies a self-
consistency requirement. For a zero-temperature Fermi
gas, the distribution is specified by the Fermi momen-
tum, which provides an upper limit to the integral in
Eq. (13). In general, the self-consistency requirement
can be implemented by a numerical procedure [32]. In
our simplified approximation (discussed in Sec. IV) the
momentum distribution is calculated analytically, and we
make further progress introducing an “equivalent-mass”
approximation.

B. Optical potential at zero temperature

Using the analytical form of the integral in Eq. (13)
for a zero-temperature Fermi gas, we calculated the
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TABLE 1. Parameters of the equations of state used in
this work. Simplified MD stands for the simplified momen-
tum-dependent interaction of Sec. IV.

EOS a b c o A
(MeV) (MeV) (MeV)
MDYI -110.44 140.90 -64.95 1.24 1.58
Simplified MD  -144.90 203.30 -75.00 1.17 1.50
SBKD -365.00  303.00 1.17

depth of the optical potential for the MDYT for cold nu-
clear matter at standard density with the parameter set
a = —110.44 MeV, b = 140.9 MeV, ¢ = —64.95 MeV,
o = 1.24, and )\ = 1.58 [31]. These parameters are fitted
to yield a nuclear matter binding energy E/A = 16 MeV
at standard density no = 0.16 fm~3 and an incompress-
ibility K = 215 MeV. Moreover, to fix all five parameters,
the zero-temperature optical potential is required to have
a value of —75 MeV at zero kinetic energy, and to van-
ish at 300 MeV kinetic energy. The parameters of the
MDYT and other interactions used in the present work
are summarized in Table I.

Figure 1 displays the calculated optical potential
depth, and compares the results to available optical po-
tential analyses. It should be kept in mind that the
central depths of optical-model potentials extracted from
scattering data depend on the models used in the anal-
yses. We use this information for qualitative compari-
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FIG. 1. The depth of the real part of the optical poten-

tial for MDYI (a) as a function of the total neutron energy
at relatively low energies, and (b) as a function of the neu-
tron kinetic energy in a wider energy range. Points are from
Ref. [33] in (a), and from Ref. [34] (full dots) and Ref. [35]
(open circles) in (b).

son to the MDYI results for uniform nuclear matter. In
Fig. 1(a) we plot the depth of (the real part of) the op-
tical potential as a function of the total energy of the
incoming neutron, and we use an extensive compilation
up to =~ 200 MeV in total energy [33], against which
the Seyler-Blanchard interaction was also tested [27], as
a reference. In Fig. 1(b) we present the depth of the
optical potential obtained with the MDYT over a wide
energy range. We extend our inquiry to neutron kinetic
energies up to 1 GeV, and compare to an earlier (and less
detailed) standard analysis [34], and to a Dirac-equation
based investigation (35]. (We will need this wide energy
range for our EOS and QGP studies, see Secs. V and
VI.) At high energy, the MDYT optical potential grows
much slower than the ones based on different versions of
the Seyler-Blanchard interaction [27], and saturates at
~ +30 MeV.

C. Incompressibility

For applications and comparisons it is frequently of
interest to know the isothermal compression modulus of
nuclear matter,

2
K =9n %—g— . (14)
% | T=const
The value of this density- and temperature-dependent
quantity at standard nuclear matter density and at zero
temperature is traditionally referred to as the incom-
pressibility (or “compressibility”) K of nuclear matter.

Exploiting again the analytical form of the integral in
Eq. (13), it is straightforward to calculate the compres-
sion modulus at T' = 0. The result can be written as

r¥
KT=0(TL) = 9[ % + a;l—o

2\ n o2 4 ng
X {1—T(n—0)3 ln(1+x'2‘—n" }},

YL IV
+ab(n0) +ecA (no)

(15)

where pr is the Fermi momentum. For standard nuclear
matter density, n = nog,

(0)2

Kr—o(n =mnp) = g[p—F +a+ob
3m
A2 4
2
+cA {1 - —4—-11’1(1 + xz')}jl 3
(16)
where pﬁé” stands for the Fermi momentum of standard

nuclear matter.

The T = 0 incompressibility (15) is plotted in Fig. 2
(full line) as a function of the density with the param-
eter set used in Sec. IIIB. At standard nuclear matter
density a compressibility K = Kr—o(n = ng) = 215
MeV is obtained, as already mentioned above. For com-
parison, we have included the incompressibility obtained
when the momentum-dependence is turned off (¢ = 0)
in MDYT (dashed), and the incompressibility for the soft
momentum-independent interaction referred to as SBKD
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FIG. 2. The incompressibility at zero temperature as a

function of the density for the MDYI (full curve), for the
MDYI with the momentum dependence switched off (dashed),
and for the SBKD interaction (dotted line).

(dotted line), which, except for a slight change in the
value of the parameter a (yielding a softer equation of
state), is the soft BKD introduced in Ref. [4] (see Table
I). The SBKD interaction is used as a reference through-
out the present work.

IV. SIMPLIFIED MOMENTUM DEPENDENCE
FOR INFINITE NUCLEAR MATTER

A somewhat simpler momentum-dependent mean field
was used in Ref. [10]. This can be obtained by replacing
P’ in the denominator of the integrand of Eq. (9) by its
average, < p’ >, yielding

meom(r7 p) = éu[f]/éf(r, p)
PN
no |1+ (B=SP>)2

+c n ! 17
no \ 1+ (Lf\l)l_?)2 ) ’

where < --. >, represents averaging with respect to the
momentum p. A simple p dependence is isolated in the
first term of this expression. Note, however, that the
manifest symmetry between p and p/, reflecting the sym-
metry of the nucleon-nucleon interaction [see Eq. (7)], is
lost in this approximation. The use of Eq. (17) is accept-
able for nuclear matter calculations, where we deal with a
globally static, infinite system. However, the approxima-
tion is obviously not valid in the actual nuclear collision
scenario, where the relative momentum of the two nuclei
will play an important role [31, 36]. For simplicity, we re-
strict the following considerations to the case of infinite
nuclear matter. Moreover, we will assume sufficiently
excited and not too dense nuclear matter in the follow-
ing, so that the Maxwell-Boltzmann approximation can
be used for the nucleon distribution function at a given
temperature.

A. Momentum distribution

In a momentum-independent mean field, the momen-
tum distribution in the classical limit has the usual
Maxwell-Boltzmann form

fo(p) = exp [—p?/2mT], (18)

n
(2rmT)3/2
where n is the baryon density of nuclear matter.
With a momentum-dependent mean field, the exponent
of the momentum distribution will contain the entire
momentum-dependent part of the single-particle energy
[see Eq. (29)], and the corresponding distribution func-
tion will no longer be a simple Maxwellian. However,
it will be advantageous for calculational purposes to ap-
prozimate the full distribution with a Maxwellian at a
given temperature and density.

In the following, we introduce an “equivalent mass,”
mMB which can be used at a given temperature
and density in a Maxwell-Boltzmann distribution to
fit the momentum-distribution obtained with the full
momentum-dependent mean field,

MB(p) = N exp [—p*/2myPT] (19)

where N = n/(2rmMBT)%2. The equivalent mass will
depend on the temperature and the density, but will be
momentum-independent, mMPB = mMB(n,T). (The re-
lation between the equivalent mass and the momentum-
dependent effective mass will be discussed in Sec. IVB.)

As a particular example, we consider the momentum-
dependent mean-field potential of Ref. [10]. The poten-

tial energy density is written as

2 b 7710'+1 n
ulf] = 22 _ -+-c—/ 3 f(li)or
2np o+1 n§ no 1+(P;AP——)

(20)

where py is the local mean momentum. The correspond-
ing single-particle energy is

n 1
no 1+ (BER2)2

n 1
+—<r+<—uzr> @)

For static nuclear matter po vanishes and the last term
of Eq. (21) can be evaluated at zero temperature to give

2 n n
e(r,p) = 2p—m +a;l; +b(;};)o +c

e(r;n) = 36% (%)3 [p—: — tan”l(z—)AE)} . (22)

To ensure proper ground-state behavior, the parame-
ters of the approximate form of the interaction used in
this section need to be fitted to ground-state nuclear mat-
ter properties. The parameters in Eq. (20) are chosen
as a = —144.9 MeV, b = 203.3 MeV, 0 = 1.17, ¢ = =75
MeV, and A = 1.5 [10]. This yields E/A = —16 MeV,
np = 0.163 fm~3, Kr_o(n = ng) = 215 MeV. As demon-
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strated in Sec. III, the full MDYI becomes repulsive at
large kinetic energies. The approximate form with the
above parameter set does not become repulsive, and the
potential goes to zero at large kinetic energies [36]. This
difference may be important for the description of highly
nonequilibrium properties, but it is not expected to lead
to strong effects in equilibrium situations. Thus our fol-
lowing conclusions about the EOS based on Eq. (21) will
approximately hold for both parametrizations.

The single-particle energy (21) can be decomposed into
a momentum-dependent and a momentum-independent
part, and for static nuclear matter (po = 0) we can write

2
P n 1 n
om " nol+ ()2 no

+b(_)¢7 +c— <1 +1(2)2>

e(r,p) =

(23)

where o’ = a + c. Using the result (22), the last term
in (23) can be separated into a zero-temperature and a
T-dependent part as

n 1

oy € [ 3 f(P)— fTEF(P)
€ (r,n)+no/dp T+ (2)? . (24)
According to the usual convention, the density-

dependent, T = 0 part of the single-particle energy,
(r, p), will be referred to as the compressional energy:

J
mMB(n T)——l— d3pe —é —1-—c -
a V)T onT PeXP =7\ 2m ng

where we have used the normalization condition for the
distribution function.

B. Equivalent mass and effective mass

The equivalent mass mMB can be related to the usual
effective mass m* (see, e g., Ref. [37] and references
therein) defined by

p
m*

= -&d;s(r, p;n). (32)

1 2/3
p2+A2)]} ’

Ceoms (1) = () + D)7 + &2(e5m)
_ /_"_ LAY
=a _” + b(no)
n(ANPE (o -1(PE
+3CTL0 (pp) [ A ¢ ( A )]

(25)

In addition to the compressional energy, the total single-
particle energy contains a density- and temperature-
dependent (thermal) part, which, however, does not de-
pend on the momentum,

: s, £(P) — f128"(p)
Etherm(; N, T) = /d 1 +(E)2 ,  (26)
and a momentum-dependent part:
1 n 1
=92 | = — o —) ——
bmom(,9) =7 [ — ()] - (@D

Thus, the total single-particle energy (21) is decomposed
into three terms,

£(r,P) = Ecomp(T;n) + Etherm (51, T') + Emom(T, P) -
(28)

The momentum-dependent part of the interaction gives
rise to the following distribution:

f0)=New -1 (£ - o222 )] 9

where N is the value of the distribution function at zero
momentum, as it should be.

The momentum distribution (29) is plotted in Fig. 3
for temperature T = 40 MeV, and density n = 4ng (full
curve), together with the Maxwell-Boltzmann distribu-
tion at the same density and temperature (dash-dotted),
and with the “equlvalen ” Maxwellian (dotted line). The
equivalent mass m B s fixed by the condition

flp=0) = fMB(p=0).
This yields

(30)

(31)

-

The effective mass is of course momentum dependent,
but independent of constant shifts of the energy scale.

From Eq. (32) we obtain

p _p_ n_2pA°

m*  m  ng(p?+A2)? (33)
or

m* 1

m LI (34
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T = 40 MeV
n=4n,

mY%e = 0.273
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Momentum p (MeV/c)

FIG. 3. The momentum distribution in a momentum-
dependent mean field (full curve) together with the Maxwell-
Boltzmann distribution at the same density and temperature
(dash-dotted) and with the “equivalent” Maxwellian (dotted
line).

We see that the effective mass m* in the model is equal
to the physical mass in the limit of very large momenta,
while it approaches the equivalent mass when p — 0.

In Fig. 4 the equivalent mass md4® is plotted in units of
the free nucleon mass as a function of the density for four
different temperatures. At twice standard nuclear matter
density and T = 40 MeV, one needs an equivalent mass
which is about half of the free mass to fit the distribution
function in the momentum dependent mean field.

C. Pion production rate

To demonstrate the effect of the momentum depen-
dence on pion production, we calculated the produc-
tion rate in the equivalent-mass approximation. Here
we are interested only in the modification of the rate

1.5
1.0
£
e
Qo
23 T = 40,60,80,100 MeV
£
0.0 : : :

Baryon Density (n/n,)

FIG. 4. The equivalent mass in units of the free nucleon
mass as a function of the density for four values of the tem-
perature.

Rinom-dep / Ro

Baryon Density (n/n,)

FIG. 5. The ratio of the pion-production rate in the
momentum-dependent mean field to the rate without momen-
tum dependence as a function of the density at four temper-
atures.

due to the momentum-dependence. For illustrative pur-
poses we assume pion production through the single delta
channel only, and use the free inelastic cross section as
parametrized by Cugnon [38] in both the momentum-
dependent and momentum-independent calculation.

The pion production rate can be written in the on-shell
approximation as [16, 39]

R(NN — 7X) = / i3 a3 £(p) f(©')0 (V3) trel
(35)

where o(+/s) is the inelastic cross section as a function
of the center-of-mass energy s/2, and v, is the relative
velocity of the colliding nucleons. In calculating the rate
(35) at a given temperature and density, the distribu-
tion (19) has been used with the equivalent mass (31)
in the momentum-dependent mean field, while the free
Maxwell-Boltzmann distribution (18) was utilized in the
momentum-independent case.

The application of the equivalent-mass approxima-
tion leads to similar expressions for the rates in the
momentum-dependent mean field (Rmom-dep) and in
the free case (Rp). The ratio of these quantities,
Rmom-dep/Ro is shown in Fig. 5 for four different tem-
peratures as a function of the density. The rate in the
momentum-dependent mean field is significantly below
what is expected without momentum dependence even at
standard nuclear matter density at not-too-high temper-
atures. The effect is enhanced as the density is increased
to several times the standard density. Since in-medium
modified cross sections do not appear in general to devi-
ate from their free values by more than a factor of 2 [40],
we expect that this effect remains important when in-
medium modifications are taken into account. It should
be noted, however, that here we presented an equilibrium
calculation for illustration only; a more dynamical calcu-
lation in the presence of momentum dependence can be
carried out along the lines of Ref. [41].
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V. EQUATION OF STATE

In order to utilize the momentum-dependent interac-
tion in practical applications, the equation of state (EOS)
needs to be evaluated [23,11]. We turn to this task next.
It is important to emphasize that, due to the change
of the equilibrium momentum distribution, the thermal
part of the EOS will be modified. For instance, the in-
compressibility [given in Eq. (15) for MDYI at T' = 0] can
be evaluated in the present approximation at sufficiently
high temperature, and will increase more rapidly with
temperature in the presence of the momentum-dependent
interaction than without momentum dependence.

To obtain the correction to the EOS relative to a non-
interacting system of nucleons, we apply thermodynamic
perturbation theory [42]. The free energy of the system
is calculated as

F=Fo+<V>—-2-1T<(V—<V>)2>+---, (36)

where < V > is the average of the interaction energy
over the phase space. We take the kinetic energy to de-
termine the zeroth-order approximation, Fy. Only the
first nonvanishing correction will be evaluated here, in
accordance with the approximations made earlier in the
momentum-independent part of the interaction energy.

With the kinetic energy as the single-particle contri-
bution, E = 2;4:1 p?/2m, the zeroth order of the free
energy can be calculated as

7
Fo=—Tan0=—Tln{/ dPe‘E/T}, (37)

where Zj is the canonical partition function and [ "dr
accounts for the proper Boltzmann counting in the phase-
space integral. The average of the potential energy over
the phase space is given by

/ !
<vs=LaV ALYV _ e(Ro-m)/T / v . (38)
J7dr

The calculation is carried out in the Appendix. We ob-
tain simple expressions for the relevant thermodynamic
quantities, which do not require more than the error func-
tion to be numerically evaluated. In particular, for the
pressure we get

an?  bo n°t!  n? 8I(n,T)
Pn,T) =nT+— _ -
(n,T) =n +2n0 +a +1 ng ng On |p

(39)

)

where the integral I(n,T) is defined in Eq. (A7).

The EOS is plotted in Fig. 6. The solid lines dis-
play the pressure as a function of the density calcu-
lated in the present model for temperatures T' = 40
MeV [Fig. 6(a)] and T = 100 MeV [Fig. 6(b)]. The
momentum-dependent results are compared to the EOS
in the momentum-independent SBKD parametrization
[32] (dashed line). It is expected that the Maxwell-
Boltzmann approximation breaks down at some density
for any given temperature. We associate the fact that the
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FIG. 6. The equation of state for temperatures (a) T =
40 MeV and (b) T = 100 MeV in the present model (full
curves) and in the momentum-independent SBKD (dashed
lines). The fact that the momentum-dependent pressure falls
below the SBKD pressure at high densities is associated with
the Maxwell-Boltzmann approximation (see text).

momentum-dependent result falls below the SBKD curve
with this unphysical feature of our approximation at high
densities, and conclude from Fig. 6 that the present ap-
proximation is not applicable beyond ~ 2ng at T' = 40
MeV, and beyond = 5ng at T = 100 MeV. For the dis-
cussion of the quark-gluon phase transition in our ap-
proximation it will be sufficient to focus on temperatures
above T' ~ 80 MeV and not too high densities.

VI. PHASE TRANSITION TO THE
QUARK-GLUON PLASMA

Ideally, a phase transition should be described by a
model which possesses both phases. To what extent and
in what sense QCD admits such a phase transition is be-
ing investigated. Soliton-matter models give an indica-
tion of the transition [43-45]. For our present investiga-
tion, where we wish to use the EOS discussed in Sec. V for
the hadron phase, we adopt a bag-model EOS for the de-
scription of the quark phase. The bag model exhibits two
major features of QCD: asymptotic freedom and confine-
ment. It has been used in the past with several versions
of the hadronic EOS, not including the effects of momen-
tum dependence [46-49]. Here we follow Ref. [49], which
demonstrated that the phase diagram is rather sensitive
to the hadronic EOS, while variations of the quark EOS
typically give smaller effects, the bag constant B being



744 CSERNALI, FAI, GALE, AND OSNES 46

the most important quantity in this regard.

We calculated the phase diagram for the SBKD
interaction (no momentum dependence) and for the
momentum-dependent mean field treated in first-order
thermodynamic perturbation theory. To ensure proper
low-density behavior, an ideal massless pion gas with free
energy

F(T) = -7 40
(where Q is the total volume of the system) was added
to the hadronic EOS in both parametrizations.

In zeroth-order perturbation theory for two flavors of
massless quarks, the bag-model QGP pressure Py can be
written in terms of the temperature T, the baryochemical
potential u, and the bag constant as

3772 1
P = ______T4 - 2T2
°= 50 " Tt T e
To obtain the phase boundaries we solve the Gibbs cri-
teria, which can be reduced at any given temperature T
to the equation

Py(n,T) = Po(p(n,T),T), (42)

ut—B.

(41)

where Py = P + P, with P being the baryon pressure
(39) and P, the pion pressure from the free energy (40).

The phase diagram of the first-order phase transition
observed in the model for B = 123 MeV /fm?, and with-
out perturbative corrections to the quark phase is shown
in Fig. 7. When discussing Fig. 7, it should be kept in
mind that only an ideal massless pion gas was added to
the nucleons in the hadronic phase. This is a minimum
requirement for the phase diagram to show proper behav-
ior as m — 0. The inclusion of further mesons and reso-
nances may lead to quantitative changes at small densi-
ties. With respect to baryonic resonances, the inclusion
of antinucleons [49, 50] and A resonances [49] changes the
results by less than 1%.

Figure 7(a) reflects the softness of SBKD. Starting
from zero temperature we note that the hadronic phase
boundary starts at n = 2.1 fm™2 at T = 0 (not shown).
A “critical point” is reached at T.3 = 105 MeV and
ne3 = 1.1 fm~3. With the density decreasing, equilib-
rium can only be maintained at a lower temperature,
due to the softness of SBKD. There is an unusual mixed
phase, where both temperature and density decrease, un-
til the pressure of the pion gas takes over. This results
in the critical points at Tpo = 97 MeV, ne =~ 0.45 fm~3,
and T.; = 126 MeV at zero baryon density.

The phase diagram with the momentum-dependent
hadronic EOS [Fig. 7(b)] approximates the SBKD result
for n = 0, where the pion gas dominates. At 7" = 0
the two equations of state are identical. In the inter-
mediate region, a flat plateau with a narrow region of
mixed phase develops at T' =~ 86 MeV. It is interesting
to note that, although the pressures of the two hadronic
EOS’s are approximately equal at 7' = 100 MeV and
n = 1.4 fm~3, the corresponding chemical potentials are
different by about 50%. This is nicely reflected by the
fact that the phase boundaries are not identical either.
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FIG. 7. Phase diagram for the transition to the quark
phase with (a) SBKD and (b) in the present approximation.
The full line represents the boundary of the hadronic phase;
dashes give the boundary of the quark phase. A mixed phase
is found between the full and the dashed lines. The n = 0
“critical point” is completely determined by the pion gas and
the bag constant, and is identical in temperature value for (a)
and (b).

The hadronic-side boundary of the mixed phase is about
10% lower at n = 1.4 fm~3 for MDYI than for SBKD.
Since the Boltzmann approximation is not valid at high
densities and low temperatures, the phase diagram can-
not be fully calculated in our simple (almost analytic)
approximation. However, we have carried out a calcula-
tion of the shock adiabates, which determine the density
and temperature in the compression stage of a nuclear
collision, along the lines of Ref. [49]. This computation
indicates that the density does not become too high in
nuclear collisions, and therefore the Boltzmann approxi-
mation is sufficient from the point of view of describing
the QGP phase transition in heavy-ion experiments.

VII. CONCLUDING REMARKS

In the present work, we have studied the equation of
state of nuclear matter with a momentum-dependent ef-
fective interaction. In order to afford a description which
leads to vanishing interaction between nucleons of large
relative momenta, we chose the momentum-dependent
Yukawa interaction (MDYI) as the specific interaction
used in this study. No attempt has been made here to
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provide a theory of nuclear matter starting from a real-
istic interaction. A first step to compare the MDYI to
more elaborate nuclear matter calculations [51, 52] was
taken in Ref. [32].

We have presented analytical results for the zero-
temperature optical potential and incompressibility. The
results for the optical potential appear to agree well with
optical-model analyses of reaction cross sections in a wide
energy range indicating the usefulness of the MDYT in
studies at high energies. The effective incompressibil-
ity is growing faster than linear with the density at zero
temperature.

To make further progress, we have used a simplified
version of the MDYT to obtain the momentum distribu-
tion in a momentum-dependent mean field. An equiv-
alent mass was introduced to simplify numerical calcu-
lations. We have demonstrated that the modified mo-
mentum distribution implied by the momentum depen-
dence reduces equilibrium pion-production rates. We
have studied the equation of state with the simplified in-
teraction, including the phase transition to a quark-gluon
plasma described by a bag-model equation of state. It
was found that the momentum dependence decreases the
temperature at which the quark phase can be reached
in the model. The region of the mixed phase is also de-
creased, which may be an advantage experimentally.

The equilibrium pion-production rates obtained here
indicate that it is important that full dynamical pion
and dilepton-production calculations be carried out with
the momentum-dependent mean field. Our conclusions
on the phase transition are based on a bag-model equa-
tion of state for the quark phase, and on no meson reso-
nances other than the pion in the hadronic phase. Under
these assumptions we found a reduction of the critical
temperature at finite density due to the momentum de-
pendence. Further studies of the phase transition are
needed in a framework that naturally encompasses both
the hadronic and quark phases. It will also be interest-

1 1 1
_ (Fo—-E)/T 1 34,34 )1
<V>=e i (27rh)3A /d rd>?p 2 iij

’: (0)(r, r;) + 2¢_6(ri—r;) ]

ing to see whether our simplifying approximation used
in the equation-of-state and phase-transition studies can
be relaxed in order to carry out similar calculations with
the full complexity of the momentum-dependent Yukawa
interaction. We are presently pursuing these aspects.
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APPENDIX

In this Appendix we calculate the free energy (36)
through first order. We make the spin-isospin degen-
eracy of nucleons, g = 4, and % explicit, while keep-
ing ¢ = k = 1 units. For the zeroth order of the
free energy, Fy of Eq. (37), we take the kinetic energy

E = Zz_l pZ/2m, as the single-particle contribution to

get
!
Fo=-TIn {/ dI‘e‘E/T}

_ n(2nh)3
=—-AT + ATIn [g(27rmT)3/2] .

(A1)

Next we evaluate the average of the potential energy
over the phase space (38). For the full momentum de-
pendence (7) this can be written as

o 1 + (B7BL)2 (42)

Performing the major part of the phase-space integrals leads to factors cancelled by e(f~E)/T  The sums over identical

terms give factors of A(A — 1). The resulting expression is

1) c /d3 d3 ,e—p2/2mT €
ng Q (2rmT)3

A(A-1 A(A
<V>= —(292 ) /dardsr'vg-))(ri —rj))+ —a——

where 2 is the total volume of the system.

—-p'?/2mT

1+ (B3)2 (4

We now assume a sufficiently large system (A > 1) with a constant (position-independent) density n. Then
(A-1)/Q =~ A/Q = n. Further, we specialize to the MDYT potential energy density (9) to get

an? b not? cn?

2ng  o+1 ng

<V>= Q{

Observing that fo(p) =

—-p*/2mT
3 /dapdap’e ! 2
no(2rmT) 1+[(p—p')/Al

—p'?/2mT
z ] (A4)

3
g(Z,,ff,’{;)!rr e~?*/2mT  expression (A4) can be reduced to
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an? b n°tl ¢ g2 3, 3 Jo(P)fo(P')
<V>_Q[-2"r£+a+1 ng +%(27m)6/dpdpm_—_ 27\2,)2 . (A5)

To simplify further, we apply the approximations used in Sec. IV, i.e., we replace one of the momenta in Eq. (A5) by
its average, p’ =< p’ >= po, and assume that po = 0. This leads to

an? b notl n g s fo(p)
<V>—Q|:§,-n—0+0_+1 e +Cn—0(2”h)3/dpw]. (A6)
Let us introduce the notation I(n,T) for the integral in the last term:
- _ 9 3, fo(p)
In,T)= /d —_— . AT
(n,T) (27h)3 PT¥ (%)? (A7)

From (36), (37), and (A6), the total free energy in this approximation is

3 2 o+1
F(n,T) =Q {—nT+nTln [ n(2nh) ] an” b n

g(2mmT)3/2 2n¢ o +1 ng
The corresponding pressure, entropy, energy, and chemical potential are, respectively,

bo notl cﬁ 0I(n,T)

+ cnﬁoI(n, T)} . (A8)

2
an
P(n,T)=nT + —
(n,T)=nT + 2ng + o+1 ng no on |p’ (A9)
3
S(n,T) _ 5 _1 n(2mh) _ ¢ 0I(n,T) , (A10)
A 2 g(2rmT)3/2] ng 0T |,
E(n,T)=F+TS
3 an? b not! n 8I(n,T)
=0< = — —_ =/
{2nT+ e + P - +cn0 [I(n,T) T 5T n]}, (A11)
O(F/Q) F + PQ
pn,T)= ——- LA (A12)
A straightforward calculation yields for the derivatives of the integral I(n,T)
8I(n,T) 3
—— =—= T T
aT |, 2TI(n, )+ J(n,T), (A13)
M = l](n, T), (A14)
on ip n
where
1 g s, P> _fo(p)
= —_—— A15
T T) = T2 Gy /d PomT+ ()2 (A15)
is essentially a second moment.
The integrals I(n,T) and J(n,T) can be evaluated to give
I(n,T) =2mx* {1 - vAxeX [1 - 2(x)]}, (A16)
2nx? (1
son1) = 22 L i e - 2001} (a17)
where x? = fnz—T- and ®(z) = 72-; Iy e~ dt is the error function.
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