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Two-pion-exchange (TPE) nucleon-nucleon potentials are derived for one or two b isobars in the
intermediate states. Strong dynamical pair suppression is assumed. At the NNm and the NAm
vertices Gaussian form factors are incorporated into the relativistic two-body framework by using
a dispersion representation for the one-pion-exchange amplitudes. The Fourier transformations are
performed using factorization techniques for the energy denominators, taking into account the mass
difference between the nucleon and the b, isobar. Analytic expressions for the TPE potentials are
obtained, which contain at most one-dimensional integrals. The TPE potentials are 6rst calculated
up to orders (f~~ f~~ ) and f~~ Th.ese come from the adiabatic contributions of all planar
and crossed three-dimensional momentum-space TPE diagrams. We also give the contributions of
the OPE iteration, which can be subtracted or not, depending on whether one performs a coupled-
channel calculation for, e.g. , the NN, NA system, or a single N¹hannel calculation. Next, we
calculate the (m /M) corrections. These are due to the 1/M terms in the pion-nucleon vertices, and
the 1/M terms in the nonadiabatic expansion of the nucleon energies in the intermediate states.

PACS number(s): 13.75.Cs, 21.30.+y, 12.40.Qq

I. INTRODUCTION

Recently, we have developed techniques to calculate
the two-pion-exchange (TPE) nucleon-nucleon (NN) po-
tentials for Gaussian form factors in an elegant fash-
ion [1]. This makes it possible to study TPE in NN
in the same approach and using the same type of param-
eters as in the Nijmegen soft-core one-boson-exchange
OBE model [2, 3]. In this paper we extend the work
of [1] to include the first 6 isobar and we calculate the
2m-exchange potentials (TPEP's) due to one and two b
isobars in the intermediate states. Below we give a brief
account of our approach and refer the interested reader
for more of the relevant background to [1]. In the com-
panion paper [4] we calculate the harp-exchange potential.

The investigation of the role of the b,33 isobar in
the nucleon-nucleon interaction and nuclear matter dates
back to the 1960s and early 1970s. We limit our brief dis-
cussion to the potential-model approaches, since this pro-
vides the proper context for this paper. The early work
involved the evaluation of NN ~ Nb, , hh transitions
and TPEP's in both configuration space and momentum
space. Here we mention the work of Sugawara and von
Hippel [5], Green and Haapakoski [6], Smith and Pand-
haripande [7], and a review on the early work on transi-
tion potentials [8). For the dispersion relation approach
of the Copenhagen, Paris, and Stony Brook groups, see
Refs. [9—11]. From this work it was concluded that the
NA mass difference cannot be neglected. The incorpo-
ration of this and other features can easily be achieved
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by working in momentum space. Extensive work in mo-
mentum space has been done by the Bonn group, and
for references and a review we refer to Ref. [12]. Also,
the behavior of nucleons and 6 isobars in nuclear matter
has been discussed by Malfliet and ter Haar [13] in the
context of the Dirac-Brueckner theory. For a study of
the role of the 6 isobar in the NN interaction using the
Bethe-Salpeter equation, see the paper by van Faassen
and Tjon [14]. A recent treatment using phenomenolog-
ical transition and TPE potentials, with an emphasis on
the inelastic region was done by Lomon [15].

Although the momentum-space techniques have the
advantage that the energy dependence can be handled
without making certain approximations, we consider a
configuration-space treatment useful and to a certain ex-
tent complementary. In configuration space the Coulomb
interaction and many other electromagnetic efFects can
be included easily in an accurate way. Furthermore, the
physical interpretation of the efFects on wave functions,
phase parameters, etc. , in terms of central, spin-spin,
tensor, and spin-orbit potentials is very instructive. In
this paper we show how to incorporate the NA mass dif-
ference properly in the configuration-space calculation.
Also, the energy dependence is included in our treat-
ment of the once-iterated graphs and the second-order
Born terms.

We start the derivation of the TPEP from the rel-
ativistic coupled-channel two-body equations [16—18],
where the interaction kernel is given by the two-baryon-
irreducible Feynman diagrams. These are the diagrams
with at most two pions in the intermediate states. The
channel space includes the NN, the NA, and the A6
channel. So, in principle, with our techniques we could
calculate the TPEP's for such a complicated system. We
will not carry through such a complete treatment in this

46 73 Oc 1992 The American Physical Society



TH. A. RUKEN AND V. G. J. STOKS

paper, but will restrict ourselves to the TPEP in the NN
sector. After that, the derivation of the TPEP for the
complete coupled-channel system will be obvious to the
reader. To proceed from the four-dimensional relativistic
equations to the three-dimensional equations, we apply
the procedure of Salpeter [19] to the relativistic two-body
(two-nucleon) equation by performing the energy integra-
tions. Completely analogous to Ref. [1) this leads to the
three-dimensional integral equation of Thompson [20], a
definition of the interaction kernel, and a definition of the
wave funct ion .

In general, of course, one is unable to perform the en-
ergy integrations needed to derive the three-dimensional
equations, and certain approximations are necessary.
The particular approach we used in this matter [1] was
given by Klein [21]. Actually, in the derivation of the
TPEP's we may restrict ourselves to reproduce the Feyn-
man graphs up to second order in the exchange and so we
need in reality the Klein ansatz only to the free two-body
wave function, where this is easily seen to be correct. In
[1] we have shown that in this way we arrive at the "old-
fashioned perturbation" diagrams in a straigthforward
and unambiguous way.

The procedure to include the Gaussian form factors is
exactly the same as in [1]. We generalize the results for
pointlike vertices for the presence of the Gaussian form
factors by employing the Lehmann spectral representa-
tion of the one-pion-exchange (OPE) amplitude. Then
the generalization from the point coupling to the coupling
with a form factor down to the level of the "old-fashioned
perturbation" diagrams is easily derived.

To perform the analytic derivation of our formulas, we
extend the technique used by us in [1] to account for the
mass difference between the nucleon and the 6 isobar.
This is particularly important for the treatment of the
denominators coming from the intermediate states. Re-
rnarkably, also here it appeared feasible to carry through
a complete factorization of the two-pion exchanges, al-
beit in most cases at the cost of one-dimensional inte-
grals. This enables us to express the potentials in terms
of one-dimensional integrals over products of the OPE
functions already given in Ref. [2].

The diagrams we calculate are (i) the parallel and
crossed TPE diagrams of the type that were calculated
by Brueckner and Watson (BW) for nucleons in the inter-
mediate states [22]; and (ii) the iterated OPE diagrams
of the type that were calculated by Taketani, Machida,
and Ohnuma (TMO) for nucleons in the intermediate
states [23]. Although these calculations were generalized
in Ref [1] usin.g Gaussian form factors at the vertices
instead of point couplings, we still referred to the poten-
tials as the BW and TMO potentials. As this distinction
was convenient as a means to denote the different con-
tributions, we will adopt this nomenclature also in this
paper.

As in Ref. [1], we adopt the working hypothesis that
in nature there is a "strong pair suppression" (see,
e.g. , Ref. [24]). In fact, we simply neglect the transi-
tions from positive-energy to negative-energy states com-
pletely. One might assume that there exists a covariant
phenomenological prescription to implement such strong

II. RELATIVISTIC TWO-BOD% EC}UATIONS

We consider the coupled NN, NA, and AA channels

Na(pa~ sa) + Nb(pb) sb) '- : N~~ (p~~, s~l) + NbI (pbI, sb~)

:N (p, s )+Eb(pb sb)
(pa', sa ) + &b'(pb, sb')

suppression arbitrarily close. Although pair diagrams are
totally absent in this work due to our assumption, our
techniques are, as will be clear from the sequel, fully ad-
equate to treat also the pair diagrams and there techni-
cally is no impediment to include these diagrams.

The paper is organized as follows. In Sec. II the general
approach within the framework of relativistic quantum
mechanics is presented. Here the multichannel approach
is presented and the decomposition of the Feynman prop-
agator in positive- and negative-energy poles is given. In
Sec. III the connection between the relativistic two-body
equation description and that of the three-dimensional
formalism is reviewed. In Sec. IV we derive the two-pion-
exchange kernels for point interactions, which are then
implemented with the various different form factors that
occur. The definition of the TPEP for the Lippmann-
Schwinger equation is given and the adiabatic expansion
of the energy denominators from the intermediate states
rs discussed.

In Sec. V, using Appendices B and C, the TPEP's
for the BW graphs and the TMO graphs are derived for
the Nh. and A6 intermediate states. The TPE poten-
tials are calculated up to orders (f~N f~~ ) and f&~
We also present the once-iterated OPE kernels for the
Nb, and 6b, graphs. These can be subtracted or not,
depending on whether one performs a coupled-channel
calculation for, e.g. , the NN, Nb, system, or a single NN
channel calculation. In Sec. VI, (m /M) corrections due
to the 1/M terms in the pion-nucleon vertices and the
1/M terms in the nonadiabatic expansion of the nucleon
energies in the intermediate states are evaluated. Finally,
in Sec. VII the results are shown and discussed.

In carrying through the calculations, we have ignored
purely ofF-energy-shell contributions to the potentials. In
principle these could be included as well, but this would
make the algebra more cumbersome. Moreover, we do
not distinguish between the difFerent nucleon masses (col-
lectively denoted by M) or between the different pion
masses and coupling constants, hence our results are
SU(2) symmetric. The (average) pion mass is denoted
by m

In Appendix A the treatment of the energy denom-
inator of the intermediate state of the TMO graphs is
discussed. In Appendix B the procedure to include the
Gaussian form factor is described and demonstrated. In
particular, here the factorization technique for the energy
denominators is extended to include the mass difference
between the nucleon and the b, isobar. In Appendix C we
indicate how the difFerent characteristic potential forms
emerge and we introduce a notation which makes it pos-
sible to present our results in a succinct manner.
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Introducing the total and relative four-momentum for the
initial and final states

P = p + S» p = z(p. —ps)—1

P' = p +py, p' =
z (p, —pb ),1

(2.1)

we have in the center-of-mass system (c.m. system) for a
and b on-mass shell

P=(WO) p=(0 p) p =(0 p). (2.2)

d(»&) = d'(», P)+ G(»;P) fd'»'I(»»')d(»', P),

(2.3)

where g(p, P) is a 4 x 4 matrix in Dirac space, and a
3-dimensional column in channel space. The interaction
kernel I and the two-particle Green's function G are 3x3
matrices in channel space. We describe here the b, isobar
as a particle with a fixed mass using the Rarita-Schwinger
formalism (see, e.g. , Ref. [25]). Therefore, in the chan-
nels with a 6 there will be extra Lorentz indices, which
will occasionally be suppressed in order not to have to
distinguish the difFerent two-particle channels explicitly.
The contributions to the kernel I(p, p') come from the
two-baryon-irreducible Feynman diagrams. In writing
Eq. (2.3) we have taken out an overall 6-function which
signals the total four-momentum conservation.

The two-particle Green's function G(p; P) in Eq. (2.3)
is simply the product of the free propagators for the
baryons of line (a) and (b). The nucleon and the 6-
isobar Feynman propagators are given by the well-known
formula

In general, the particles are off-mass-shell in the Green's
functions. In the following, the on-mass-shell momenta
for the initial and final states are denoted by p; and pf,
respectively. Hence, p~~ = E~(p, ) = (p2+ M~~)~/z and
po, = E, (pf) = (pz/ + M2, ) /z, and similarly for b and
O'. Due to translation invariance, P = P' and

~ = ~' = E (p') + E((p') = E (py) + Eb'(pf)

The relativistic two-body scattering equation reads

where @&'I are the free Rarita-Schwinger fields which

describe the s =
2 and s = e baryons (see, e.g. , Ref. [26]).

For the nucleon (p) = I, while for the 6 isobar (pj = p.
In terms of these one-particle Green's functions the two-
particle Green's function in Eq. (2.3) reads

- (a)
11& -~(-,'P+ p)G p;P

(2vr)4 (-,'P +p)' —M2+ ib
- (b)

II~ &(-,'P —p)

(z P —P)z —M~~ + i6

Using now a complete set of on-mass-shell spin-s states
in the first line of Eq. (2.4), one finds that the Feynman
propagator of a spin-s baryon off-mass-shell can be writ-
ten as

11~ l(p)
pz —Mz + i6 E(p)

A,"(p)
po —E(p) + i6 pp + E(p) —ib

(2.6)

+1/2
A+~'/ ~(p) = ) u(p, o) (g) G(p, o),

sr= —1/2

+l/2
A (p) = — ) v(p, o) (g) v(p, o),

(r=—1/2

(2 7)
+3/2

A+'"(p) = ). u~(p ~) 6 (p ~)
(r=-3/2

+3/2

A (p) = — ) v„(P, o) (3) v~(p, o),
0 =-3/2

where E(p) = (pz + Mz)~/z with M the nucleon or the
6-isobar mass. A+~'i(p) and A~'l(p) with s =

2 or z are
the on-mass-shell projection operators on the positive-
and negative-energy states. For the nucleon and for the
6 isobar they are respectively [27]

Il
p2 —M2+ ib ' (2 4)

where u& and v„denote the Rarita-Schwinger spinors for
spin-zsparticles. Therefore, in the c.m. system, where
P = 0 and Po ——W, the Green's function can be written

P

(
i ~/' M ( A+ (p)

(2 )' «-(P)y —,'~+p. -E.(p)+ 6

A(d )( p)
~W+pp+ E (p) —ib

( M, i A,"(-p) A"(p)x
( E&(p)) 2~ —po —Eb(P) + ib z~ —po+ Eb(p) —ib1 (2.8)
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Performing the multiplication in Eq. (2.8), we write
the ensuing terms in shorthand notation as

G(p; W) = G++(p; W) + G+ (p; W)
+G +(p; W) + G (p; W),

III. MULTICHANNEL THREE-DIMENSIONAL
INTEGRAL EQUATIONS

Following the same procedures as in Ref. [1],we intro-
duce the three-dimensional multichannel wave function
according to Salpeter [19] by

where, e.g. , G+~ corresponds to the term with A+ A+'.
Introducing the wave functions (see Ref. [19])

(2.9)

E (p)Ei(p)
M Ma b —ao

(3 1)

the two-body equation (2.3) for Q++ can be written as

g++(p) = Q~+(p) + G++(p; W)

X p' I p, p' ++„, „,y', 2.10
r, s

and similar equations for g+, Q +, and gati

Invoking "dynamical pair suppression, " as discussed in
Ref. [1],Eq. (2.10) reduces to a four-dimensional equation
for Q++, i.e.,

MaMb I

E (,)E (,)
w(P„)P(P ),

W —W(p')
2~i y(a)(pi pi)y(i)( I I)

Aw(p„) =—

Here we used the notations

Ew(p, po) =
z W + po —E(p) + i6,

~(P) = E (P) + E((P)

Using the approach of Klein [21], we make the ansatz

0++(p) = @++(p) + G++(p w)

x J I p) p +,+, ,+.+ +.+. p (2.11)

Then, after performing the po and po integration in
Eq. (2.11) one arrives at the multichannel Thompson
equation [20]

with the Green's function

i6p, M Mi,
G++(p; W)p, =

( ) E (p)E (p)
+ +

x ~~W+ po —E,(p) + i6

x ~~W —po —Eb(p) + i6 (2.12)

i))++ (P') = i))+~ (P') + Ez+ (P'; W)

x pK'" p', p ++ p

where now the Green's function is

(+)(, )
6p, A+(p')A~( —p')

(27r)s W —W(p') +i6 '

(3.2)

(3 3)

where oi and P are channel indices.
and where again a and P are channel indices. The kernel
is given by

1 M, Mi, M, Mb
(P', Plw) =-(, ), E (,)E(,) [w-w(P')]tw- (P)] E ( )E( )

GtPO Sl0

x &w'(p' po) +w'(-p' -po)
- —1

[ (p'o p' po p)]++,++ ~w'(» po)~w'( —p —po) (3 4)

The M/E factors in Eq. (3.4) are due to the difference
between the relativistic and the nonrelativistic normal-
ization of the two-particle states. In the following we
simply put M/E(p) = 1 in the kernel. The corrections
to this approximation would give (rn /M)~ corrections
to the potentials, which we neglect.

The contributions to the two-particle irreducible ker-
nel K"' up to second order in the meson exchange are
given by single- and double-meson exchange. For the def-
inition of the TPE potential in the Lippmann-Schwinger
equation we shall need the complete fourth-order kernel
for the Thompson equation (3.2). In operator notation,

we have from Eq. (3.2)

4'++ = 4+~+ E2 ~ 4++
(O) (+) irr

y( ) + E(+) Ii irr + birr E(+) birr + y(o)++ 2 2 ++

&+ 8(+) & (3.5)

which implies for the complete kernel K the integral
equation
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K(p', pi W) = K'"(p', pi W)

p"K'" p', p" W

xE2(+)(p"; W)K(p", piW) . (3.6)

Note that diagram (a) of Fig. 1 is generated from the
iterated one-pion exchange in Eq. (3.6), albeit with the
Thompson two-particle propagator of Eq. (3.3).

r

I rr
2r

+ mirror graphs

IV. NUCLEON-NUCLEON
TWO-MESON EXCHANGE

r
r

r

r L
L

r
E

In the first part of this section we calculate the com-
plete kernel K(p', p; W) for the nucleon-nucleon sec-
tor only. In the second part we define the potential
V(p', p; W) such that up to second-order meson ex-
change the Thompson amplitude is recovered completely
when using this potential in the Lippmann-Schwinger
equation. Although we deal with 2~-exchange only in
this paper, we keep the discussion partly general such as
to apply also to np exchange, which will be dealt with in
the companion paper [4].

A. The nucleon-nucleon kernel

For convenience, we multiply each baryon-baryon-
meson (BBM) vertex by a factor A, which in the end
will be set equal to 1. In the calculation of the inter-
action kernel, we restrict ourselves to terms up to and
including the fourth order in A. Writing the wave func-
tion as a series in A, and the interaction kernel as a sum
of the second- and the fourth-order term, we have

4'++(p') = 4++(p') + &'4p+(p') + &'4++(p') + ".
K(p', pi W) = A K( ) (p', p i W) + A K( ) (p', p i W) .

FIG. 1. Feynman diagrams for two-pion exchange with
(a) one or (b) two b,33 isobars in the intermediate states.

From Eq. (3.6) one sees that, written in operator nota-
tion,

K(2) Kirr(2)
)

K(') = K'"(') + K'"(') Z"' K'"(')
2

and so the K(2) term corresponds to the OPE Feyn-
man diagram, whereas the K(4) term corresponds to the
graphs in Fig. 1. From Eq. (3.5) we then find for the
wave function

~(2) g(+)Kirr(2) ~(0)+++- V'++

~(4) g(+) Kirr(2) g(+) Kirr(2) + Kirr(4) ~(0)
+++ 2 ~++ '

In this paper we exclusively deal with the fourth-order
A terms, which correspond to the Feynman diagrams of
Fig. 1. These fourth-order Feynman diagrams, the so-
called planar-box and crossed-box diagram, lead to the
following expression for the fourth-order kernel:

«'"(~'~))r). ~ =-(~r)-'(~-))'(v'))(~-))(v)) &: fdrofdro f~~. f~)ofdk fd)
~II /I I

)

~ I[r F-'(p-&, p. -kp) r,]("')[I,F-'(-p+k, -&, ik, ) I,](")

+ [r ' F~ (p —k, pp —kp) r,]( ")[r, F-'(—p' —k, —p' k ) r .)(&"))
- —1

x F~ (p, po)F(4 ( p, —pp) [k' ——rn'+3p]-' (4.1)

x i(2vr) 6 (p —p' —k —k')[k'2 —m2+ jb]-' F~~')(p' pp)F(3')( p~ p~)

Here a, a', a" = N, L and b, b', b" = N, L, where a" and
b" denote the baryons of the intermediate state. The
initial baryons a, b and the Gnal baryons a', b' depend, of
course, on the particular transition. We have indicated
the c.m. momenta for the planar and crossed diagram

in Fig. 2. Note that the Grst term between the curly
brackets corresponds to the planar-box diagram and the
second term to the crossed-box diagram in Fig l. In.
Eq. (4.1), I', and r~ denote the BBM vertices. They
follow from the interaction Lagrangians. The expression
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~(~) k (b)rl

Q b FIG. 3. Planar BW two-pion-exchange potential graphs
with one A33 isobar in the intermediate state.

(b)

Q' i b'

k'
/

/

/

Q Ii p k,", —p k
/

/
/

/

k

b
Pl

Q

FIG. 2. Definition of momentum vectors in second-order

(a) planar and (b) crossed graphs.

between curly brackets is the fourth-order contribution in
A to the kernel I(p', p)++,~+. In the latter we use the ND
or the AA Green's function (2.12) for the intermediate
states. Also we have put here M/E = l.

So far our discussion has been quite general. From
now on we restrict ourselves to the nucleon-nucleon sec-
tor and henceforth specialize to the TPE potentials which
are actually derived in this paper. From the explicit ex-
pression in Eq. (4.1) it is clear that one can perform the
integration over the energy variables po, po, and ko. The
execution of these integrations is quite similar to those
worked out explicitly in [1], as are the results. To illus-
trate the results we restrict ourselves to the graphs of
Figs. 3—5. Those for the mirror graphs can be readily
obtained by inspection of these graphs. The results for
the planar- and crossed-box diagram are as follows.

(i) The planar box diag-ram. Here we encounter the
integral

) = [~-~(&'))[~-~(p)) dso dpo dko[(p-p'-k)'-m +ib)

(4.2)

i —1

x Fw (p po)Fw ( & po) Fw (p k po "o)Fw ( p+k, —po+ o)

- —1
Fg~', l (p, po) F~~l (—p, —po) [k2 —m2 + i6]

which is treated in Ref. [1], to which we refer for details. There appear two contributions. For the N6 intermediate
state, the first corresponds to the planar BW diagrams of Fig. 3 and the second to the TMO diagrams of Fig. 5. Their
contributions to the interaction kernel are

(3a) I 1
&Bw„(p,pl~) =— dsk [r,A, (p —k)r, ]i.l [r,A, (-p+ k)1,]~'l

4~k~k' [~p—k + Ep ~ + 4 k] [Ep' + Ep —k ~ + ~k']
1

[E~ + Ep —W + u)k + u)k ]
' (4 -')

(5)~TMo(p &l~) =
(2~)3

d k [I' A+(p —k)I', ]~ l [I' A (—p+k)I', ]~~i

4ldk(dk [Ep k+Ep —W+Ldk] [E~ +Ep k —W+ldk]
1

[Ep k+ Ep k —W]
' (4.4a)



533 ISOBAR CONTRIBUTION TO THE. . . . I. . . . 79

( ), 1 dsk [I' A (p —k)I',]() [I' A (—p+k)r, ](')

(2.)s 4~k~k. [E', k+E, —W+~k] [t, k+E, —W+~, ]
1

[~~-k+ E.-k —W]
' (4.4b)

where cu = gk +rn and ~' = gkI +m with k'—:p —p' —k. Also, we have denoted the energies of the nucleons
by E and the energies of the 6 isobar by Z. Here we have to add the kernels of the graphs (a') and (b'), and all
mirror graphs. They merely contribute a total factor of four when we evaluate the potentials.

(ii) The crossed box-diagram. Here the integral to be performed is essentially

lx(V', r&l~) =[~—~(p')][~ —W(p)] fdI'o fdno f~ko](I —y' —4) —m+o'4]

gII
- —1

x F)(()(p', p())F~()(—p', —p()) E~ )(p —k, p() —ko)F~()(—p' —k, —p()
—10)

- —1

F)v (p, po)F~ (—p, —p()) [I —m +ib] (4 5)

wher«or details we refer again to Ref. [1]. The results correspond to the crossed B~ diagrams of Fig. 4, snd the
corresponding interaction kernels are

(,). . . , 1 dsI' [I;A (p —k)I', ](') [I',A (—p' —k)I' ](')

(2p) f 4-k-k'[~p-k+~p W+~k] ]~p'+~p'+k ~+~k]
1

X
7[E~+E~ —W+ ~k+ ~k ]

(4.6a)

( ) , 1 dsA [I', A (p —k)I', ](') [I';A (—p' —k)I', ](')

(2') 4'(uko [Zp k+Ep —W+cuk] [Epp+ Epopk —W+ (uk]

X
[~p—k+ Ep'+k W+&k+ k']

(4.6b)

1 dsk [I' A (p —k)I', ]( ) [I',A (—p' —k)I', ](')

(2 ) 4~k~k' [~p k+ E—p W+ ~k] [~p-k+ Ep' W+ ~k']
1

X
[~~-k+ E, +k —W+ ~k+ ~k']

(4.6c)

I
I

Jtrrt

II

I

J
o

Here also we have to add the kernels from the graphs (a'),
(b'), and (c'), and all their mirror graphs, which again
merely gives rise to a factor of four when we evaluate the
potentials.

The particular vertices we need for the TPEP in the

J
J

JJ

I

'~
'k

IC

k

+ mirror graphs

+ mirror graphs

r
E

kr
r

r

o

r

r

FIG. 4. Crossed BW two-pion-exchange potential graphs
with one A33 isobar in the intermediate state.

FIG. 5. TMO two-pion-exchange potential graphs with
one 433 isobar in the intermediate state.
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(p')I'" (P) =
l l

(P')7 1 (p-&') (P)( m. )
and for the Ne'er vertex:

(p')I'„" '(p) =
l l

(p') (p) (&-&')"
( m

The generalization of the interaction kernels given above
to the case with Gaussian form factors has been treated
and explained in [1]. The same procedure can be used
here and we will indicate only the minor changes in
Eq. (4.1). For each OPE line in the Feynman propagator,
we make the substitution

[k' —m'+i6] ' ~(~')
k2 —p~+i6 ' (4.7)

where in the right-hand side p(p2) is the spectral func-
tion, representing the form factors involved in OPE. In
principle, p(p ) depends on whether we have an NN —+

NA transition or an NN -+ AA transition.
At low and medium energy, we have to a very good

approximation t = k —k ( 0, and so for spacelike
momentum transfers we can use Gaussian form factors
F(k ) = exp( —k /A2), where A denotes the cutoff mass.
Having Gaussian form factors, we make the substitution

„2 ~(~'), F(k')
l,~+ m~

(4.8)

Since by exploiting our separation techniques in handling
the k and k' dependence, the substitution (4.8) is an
adequate recipe for the inclusion of the Gaussian (or any
other) form factor in all cases.

Differentiating between an N¹vertex and an Nkvd

vertex by using

F~~ (k ) = e k ~2Aww» F~~ (k2) —e
—& /2Am&»

we get for an NN ~ NA transition in Eq. (4.8)

F(k') =F .(k')F (k'), A '=(A ' +A ')/2,
whereas for an NN ~ LA transition we have

F(k ) = F (k ), A = A~~ .

B. The nucleon-nucleon potential

nucleon-nucleon sector are the N¹and the Ne'er vertex.
Explicitly, for point couplings the relevant Lagrangians
are

&sr~ =
I 14&s&170 ~"rt,ffNNm )—
qm

l
QT@„0"P+H.c. ,

& fN~. It-
q m

where T is the isospin-& isospin-& transition operator.
In momentum space this gives for the Nor vertex

with the Green's function g p given by

(p; W) p = '
s A+(p)A+( —p)

b p b M

V(&) K(&) V(4) K(4) K(2)g K(&) (4.11)

These equations have to be taken to where the initial and
final states are on the energy shell. The second-order
potential V(~) is given by one-meson exchange taken on
energy shell, which is then equivalent to the potential
diagram (a) in Fig. 9. The fourth-order potential V~4&

consists of two parts. The first part is represented by
the fourth-order planar- and crossed-box BW diagrams.
The second part is represented by the TMO diagrams,
from which we have to subtract the once-iterated meson-
exchange contribution, so

V/Mo = K/MO —K g K (4.12)

which will be henceforth referred to as the TMO contri-
bution, in analogy with the definition in Ref. [1). The
second (Born) term is pictured in diagram (a) in Fig. 9.

So much for the general multichannel approach. As
stated before, in this paper we will largely restrict our-
selves to the nucleon-nucleon sector. In that sector
the initial and final states are restricted to two-nucleon
states. Furthermore, in this paper we focus on the con-
tributions to the NN potential due to the Ass isobar up
to A4. This means that the only contributions to be con-
sidered are the planar- and crossed-box diagrams with at
least one 6 isobar in the intermediate state. When the
Lippmann-Schwinger equation is solved in the nucleon-
nucleon sector only, the subtraction of the iterated meso-n

exchange does not apply and so V~4& = %~4&. For that
purpose, in Sec. VC we give the once-iterated pion-
exchange kernels. These should be added to the TMO
potential of Eq. (4.12) in order to compensate for the
subtraction.

For Eq. (4.9) the transition from Dirac spinors to Pauli
spinors is given in Appendix C of Ref. [1]. There we

derived the Lipprnann-Schwinger equation

x(p') = x"'(p') + 0(p') d'p V(p', p)X(p) (4»)

for the Pauli-spinor wave functions y(p). The wave func-
tion y(p) and the potential V(p', p) in the Pauli-spinor
space are defined by

0(p) = ) X . .(p) u (»& )»(—p &~) (414)

(4.10)

The multichannel potential V, up to fourth order in

A, is defined such that to that order the wave function
and the T matrix are the same as that generated by the
multichannel Thompson equation. This implies for the
potential V

& =&' +g,n &n~ &~
(o) (4 9)

The multichannel Lippmann-Schwinger equation is
given by Vy

' y, = u (p', ,')u (—p', ')V(p', p)
u (»~ )u&( P o~) (415)
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Like in the derivation of the one-boson-exchange poten-
tials [2, 3], we make the approximation

E(p) = (p +M ) M+p /2M

everywhere in the interaction kernels of Sec. V, which
of course is fully justified for low energies only. As a
consequence, we have a similar expansion of the on-shell
energy

2(P2 + M2)1/2 2M + P2/M

In contrast to these kinds of approximations, the full k2

dependence of the form factors is kept throughout the
derivation of the TPEP. Note that the Gaussian form
factors strongly suppress the high-momentum transfers.
This means that the contribution to the potentials from
intermediate states which are far off energy shell cannot
be very large.

For the reduction of the TPEP from Dirac-spinor space
to Pauli-spinor space, we use Eq. (2.7) for the A~ oper-
ators, which leads to matrix elements of the vertex op-
erators between positive-energy Dirac spinors. Using the
aforementioned energy approximation, the vertex opera-
tors in Pauli-spinor space up to order 1/M read as fol-
lows. (i) N¹vertices:

&(p')I'"(p' p)&(p)

=+i
~

I rr& kp o& (p'+p),. (fax &

i rn P 2MN

(4.16)

Products of this type will occur for each baryon line.
Identical formulas hold for the isospin operators r, and
T;, respectively, where T; (i = 1, 2, 3) are the compo-
nents of the isospin-z isospin-z transition operator [26].
Using Eq. (4.18) for the latter, the isospin factors for the
planar and the crossed TPE diagram can readily be eval-
uated. One finds for one 6 isobar in the intermediate
state for the planar (//) and the crossed (X) graph [28]

C)v~ (I) = 2+ sri r2& C)vg (I) =2 —sri r2,(tl)

(4.19)

where I denotes the total isospin of the NN state. For
two 6 isobars in the intermediate state one gets for the
planar and the crossed graphs

C~~ (I) = s
—sri rg, C~~(I) = s + sri(//) 4 ~ (X)

(4.20)

For the definition of the Fourier transformations to
configuration space, we introduce Q = z(p + p') and
will occasionally exploit the relation p —p' = k + k'
before doing the Fourier transformations.

In the next section, we calculate the TPE contribu-
tion to VC, V, Vr, and Vsc), which refer to the central,
the spin-spin, the tensor, and the spin-orbit potential, re-
spect;ively In Sec.. V, we give the so-called adiabatic con-
tributions (see, e.g. , Ref. [29] for the definition). In the
adiabatic approximation we expand the energy denomi-
nators in the expressions for the planar- and crossed-box
diagrams in powers of 1/MN and keep only the leading
term, order O(1). For example,

~, kp o, (p+p),. (f~~ )

q rn ) 2M)v

(ii) err vertices:

(4.17)

where always k = p —p'. For the I'-matrix elexnents
in Eq. (4.16) the upper sign applies for the creation and
the lower sign for the absorption of the pion at the ver-
tex. Note that for line (a) and line (b) we have used
the subscripts 1 and 2 for the o and the X operators,
respectively.

The X' operators are the spin-2 spin-2 transition oper-
ators (see, e.g. , Refs. [26, 28]). Useful for the evaluation
of the second-order diagrams are the relations

Ep+fp k —W+u) (4.21)

Sec.

where a = M~ —M)v. In the evaluation of the TMO
graphs, we encounter the intermediate-state energy de-
nominator [E~ k+ Ep ), —W], the treatment of which
is explained in Appendix A. Since the leading term of the
TMO graphs is cancelled by the once-iterated OPE term
[see Eq. (4.12)], the contribution of the TMO graphs has
to be evaluated up to order O(1/M).

The next-to-leading contributions to Eq. (4.21) are re-
ferred to as "nonadiabatic" and will be given in Sec. VI.
There we also give the (a/M)v) contributions due to the
pseudovector nature of the NNn vertex {4.16). They ob-
viously only contribute in the NL graphs. In Sec. VI
we only include the Erst-order recoil corrections. This
means that for the TMO potential we do not include the
nonadiabatic contribution, which is order O{1/M2). In
the following sections we work out the various contribu-
tions to the TPEP. To distinguish between the diferent
contributions we employ the notations as listed below

&j&i = ~ij + &&jik&k )

Z, ~o.){o[Zt = ~~b,, —~sr, ,i,oi, .
(4.18)

V
VIA
VIB

TYpe

Adiabatic

(1/M) adiabatic

(1/M) nonadiabatic

NA

V(o) (~)
V~~(~)
Vivz (n)

V(o)( )

V~&(~)
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BW//, TMO

O))r~ (k12 k2)

s(k1 k2) + s(o1.k1 x k2)(o2 k1 x k2)

TABLE I. Momentum operators 0 (k1, k2) of the pla-
nar (BWyy and TMO) and crossed (BWX) graphs for the ND
and AA intermediate states.

(a)—(c) of Fig. 4 correspond to the expressions Kx of
Eqs. (4.6a)—(4.6c). The TMO graphs (a) and (b) of Fig. 5
correspond to the expressions of Eqs. (4.4a) and (4.4b).

The TPEP's from the graphs of Figs. 3, 4, and 5 can
be written as [30]

BW~

BW//, TMO

BWX

s(k1 k2) —s(o1.k1 x k2)(o'2 k1 x k2)

O~~ (k1) k2)

s(k1 k2) —s(cr1 k1 x k2)(cr2 k1 x k2)

s(k1 k2) + s(o1 k1 x k2)(o2 k1 x k2)

2 2

V' '( ) = —~"(I)! "
l, rn ) ), rn„p

' e*("+")' Z(k')S(k')

x O~~(kl) k2)Da (gaol ) a)2)

Here e refers to the diferent class of potentials BWg/,
BWX, TMO, and the once-iterated OPE contribution.

V. TWO-PION-EXCHANGE POTENTIAL

A. NL graphs

The parallel BW graph (a) of Fig. 3 corresponds to the

expression K// of Eq. (4.3). The crossed BW graphs

where I denotes the total isospin of the NN channel
(I = 0, 1) and n refers to the different class of graphs
BW//, BWX, and TMO. The isospin factor C)v~ is given
in Eq. (4.19). The operator 0( &(kq, k2) contains the
vertex operators, given in Eqs. (4.16) and (4.17), and the
explicit expressions for each case e are given in Table I.
In all expressions we have made use of the symmetry
k) ~ k2 to discard the antisymmetric terms. From Ta-
ble I we can define factors pq „which are the rational
numbers in front of the momentum operators. These en-
able us to write the expressions for the potentials in a

TABLE II. Adiabatic approximation of the energy denominators D for NA and D for AA intermediate states. Here

p1 = k1 k2/M and p2 = k1 k2/M~.

D~ ((dr 2 M2)
(~)

BW//
1 1 1 1+

2~1~2 (a)1 + a)~2 ~1(~2 + a) (~1 + ~2)

BW~
1 1 1 1 1 1 1 1+ + + +

2u)pug cup + a uy u)2+ a (u2 u1y + ug u)y + u)2+ a u)g + a cup + a u)gu2 u)g + (u2+ a

TMO
1 1 1 1 1 1 1 1 1 1+ + + + +

4221222 (221 + 2)2I2 (ill + 2 222 221(222 + 2) ! 22 + 2 22 22 ll I22

+ 1 1 P1
(~1 + a)(a)2 + a) ~1 + a ~2 + a a —p1

Born
1 1 1 1 1+ + +

2a)la)2 (a)1 + a)a)2 a 1(~2 + a) (~1 + a)(~2 + a) a)1~2 a —Pl

BW//
1 1 1

(a)1 + a)(u)2 + a) (~1 + u)2)

D."'(~1,~2)

BW~
1 t'

+ 1 ) 1 ( 1 1
! +! 2+ 2+~1~2 ((al+ a)' (~2+ a)') (~1+~2) q(~1+ a)' (a2+ a)' (~1+a)(~2+ a)) (41+~2+ 2a)

TMO
1 1 1 2

'k'Jla)2 (~1 + a)'(~2 + a) (a)1 + a)(~2 + a)' 2a —P2

Born
1 1 1

a)1cu2 (cu1 + a)(~2+ a) 2a —p2
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concise form. To be explicit, we have

(//) 2 (//) (//) 1
~1,C' 3 ~ ~l, cr ~1)T 3 &

(5.2)

Since in Appendix B it is shown that the separation of
the ki and k2 variables can be achieved in all cases, we
can use the same procedure as given in Ref. [1].We write

(X) 2 (X) (X)
~1,C 3 & ~1,cr ~1,T

eg(kg+kg) r lim ikq rx eiki rq
f

Fy, l'g ~F (5.3)

where t, cr, T refer to the central, spin-spin, and tensor
parts of the potential.

The energy denominators D~ l of the TPE process are
calculated in the adiabatic approximation, i.e. , E(p) =
MN and f(p) = M~. The appropriate expressions in
terms of (o, = u(k, ), including the contributions from
all graphs, are given in the upper half of Table II. The
latter also contains the 1//2(o factors from the pion field
at each vertex. Note that for the TMO graphs we have
expanded up to order G(1/M) and already subtracted
the once-iterated OPE contribution, in accordance with
Eq. (4.12). The intermediate-state energy denominator
8~ k, +E~ k, —W is approximated by (a—pi) with pi ——

ki k2/M and M = (M~ + MN)/2 (see also Sec. VI B).
The evaluation of the momentum integrations is read-

ily performed using the formulas given in Appendix B.

and take the limit operation before the momentum inte-
grations. Next, we replace all momenta occurring in the
numerator by Vi and V2 operations, which are the V
operations with respect to ri and r2, respectively, and
take these in front of the momentum integrations. After
the momentum integrations we perform the difFerentia-
tions and take the limit. The structure of the potentials
which will appear in the course of this calculation are
explained in Appendix C. There we introduce the (gj op-
eration, which allows us to write the expressions for the
potentials in a succinct form. The results we obtain are

(i) BW-parallel graphs. Application of Eqs. (B9) and
(Bll), together with the definitions (C6) and (C7) leads
to the expressions for the potentials given in this item.
The other expressions of this and the following sections
can be derived similarly. We find

2 2
V"' (BW ) = —C""(I)

i

~ m. ~ q m. &
"

a 1 2 dA
~ —,(G., G. , ),()--(G, G, ).()+-, „(FF). (A )a ' ' ' ~ () a2+A2 (5.4)

where i = C, o, T, and

F(A, r) = I2(gm + A, r) exp (—A2/A2)

The functions I2(m, r), Gi, i(a, r), and G2 1(a, r) are defined in Eqs. (B4), (B14), and (B16) of Appendix B, respec-
tively.

(ii) BW crossed graph-s.

2 2

V (BWX) = —C (I) iN&,i X NA ( m ) ( m ) ~l, i

1 2 dA
x a(G2, 1 G2, 1) '(r) + (G1,1 (3 Gl, l) '(r) + 2(I2 G2, 1) '(r) 2 A2

(F 8 F) (A r)'
7t 0

(5.5)

(iii) TMO graphs.

V~~, (TMO)

2 2

CVI)1(I) ~(fN&
I

~(fNN&
)~

&0)

q m. P ~ m. ) ~"

x a dze ' ~ '"
2 I3011, z;r + I2 G12, z;r + G'11G12, z;r + I2 I3 z;r

0

2 ((13 S Gl 1),(T) + (12 S G1,2), (l') + (Gl I 8 Gl 2) (T) + (12 g 13) (P)])

where the separation into the two contributions between square brackets is explained in Appendix A.

(5.6)
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B. AA graphs

The parallel BW graph of Fig. 6 corresponds to the expression K«of Eq. (4.3), substituting Ep k - Z. z.
The TMO graphs in Fig. 8 correspond to the expressions in Eqs. (4.4a) and (4.4b) using the same substitution. The
crossed BW graphs of Fig. 7 correspond to the expressions in Eqs. (4.6a)—(4.6c), substituting E~+k ~ E~+".

The TPEP's from these graphs with two b, isobars in the intermediate states can be evaluated completely analogous
to the one-6 graphs T.he result can be written as

dsk dsk
V~('~)(~) = C~-~(I)

~

"~
~

'" "'e(" +" )'O~(-~)(k„k,)F(k')F(k', )D( )(~„~,),'m~ ) 7r
(5.7)

where a again refers to the difFerent class of graphs
BW~y, BWX, and TMO. The isospin factors C~~ are
given in Eq. (4.20). For the different cases n we have
given the explicit expressions for O~~(ki, ks) in Table I.
Similarly as for the Nb. case, we define factors p2, which
are now found to be

(i) BW paral-lel graphs.

4
y() (BW ) C,(ll)(I)(f&~

~

(II)

, (FF), (A, r).
1 dA

(//) 4
~2C 9~

(//) =~(/1/) = 1
2)cr 2 T 9&

(5.8)
(X) 4 (&) (X)

~2,C 9 & ~2, cr ~2)T 9

The energy denominators D~ are given in the lower half(2)

of Table II, where again the adiabatic approximation is
made. In the TMO graphs the intermediate-state energy
denominator Z~ k, +E~ ~, —W is approximated by (2a-
P2) with now P2 = ki k2/M~. In Table II, the expression
in square brackets for Dx can be written as

(ii) BW crossed -graphs.

(5.10)

1X—

(5.11)

4

I (G) (BW ) = —C(x)(I)
~

~Ãdm
~

x

as —As
dA. ..(FgF), (r).@2+A2 2

da ((ui+ a)((up+a)((ui+~s)
1+

((ui+ a)((us+ a)
(5.9)

In this form, the Fourier transformation to configuration
space can be carried through immediately using the re-
sults given in Appendix B.

The momentum integrations can be carried out simi-
larly to those in the foregoing section. We find the fol-
lowing.
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FIG. 6. Planar BW two-pion-exchange potential graphs
with two A33 isobars in the intermediate state.

FIG. 7. Crossed BW two-pion-exchange potential graphs
with two A33 isobars in the intermediate state.
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(t'ii) TMO graphs

OO

&~~ (™)=-C~~(I)
1 ~

&";" d« "" '""(G~,~GG~, s)'(z r) —-'(G iGi2)'(r)m. 0
(5.12)

C. Berated one-pion exchange

Our definition of the TMO potential, Eq. (4.12), ex-
plicitly includes the subtraction of the once-iterated
OPE. However, in case of a single-channel Lippmann-
Schwinger or Schrodinger calculation for the NN channel,
one should include only the pure TMO diagrams (next
to the BW diagrams, of course). This can simply be
achieved by adding to the TMO potentials of Eqs. (5.6)
and (5.12) the second-order Born approximation to the
interaction kernels. These are given by the following.

(i) NA graphs. The Nb graph of Fig. 9 gives the kernel

2 2
~(4& ( ) C(//&(I) )(few )( ((few )(Born 1'

x & s ei(kz+kg& r~(k2) ~(k2)
(2~)s

'

xO~~ (ky) ks)Dn„„(ug, (4$) ~ (5 13)

where DB,„can be found in Table II. Our treatment(~)

of the intermediate-state energy denominator (a —Pq) is
explained in Appendix A. The resulting potential reads

2 2
y& & (Born) C&//&(I)

~

f +~
(

~

f ~
~

p&//&
Nn. ,i Nih

i m )l i m ) /l, i

x 2 dze ' ' ~ "[2(Is Gq, q), (z; r) + (Gq, q S Gq q), (z; r) + (I2 I2), (z; r)j .
0

(ii) 6A grupA:s. The hA graph of Fig. 9 gives the kernel

(5.14)

K~„„(r)= Cr/~&(I)
~

—
~ s

e'~"'+"'&'E(k ) F(k )O~~(kg, ks)Ds„„(u)g, (us),) 7t.

where DBi„„is given in Table II. The corresponding potential reads

00

V&&,(Born) = —C&~& (I) ~ ~

pz/i/ dze '~ ~ "' (Gq, q Gq, q);(z;r) .

(5.15)

(5.16)

So, for an (NN, Nb) -+ (NN, Nb) coupled-channel
calculation the potential of Eq. (5.16) should be added
to the TMO potential of Eq. (5.12) in order to compen-
sate for the subtraction of the iterated OPE with two 6
isobars in the intermediate states. For a single-channel
NN calculation one has to add the potentials of both

Eqs. (5.14) and (5.16) to the TMO potentials of Eqs. (5.6)
and (5.12), respectively.

VI. 1jM CORRECTIONS

A. Corrections from pseudovector vertex

The adiabatic (1jM) corrections originate from the
ujM~ terms of the N¹vertex of Eq. (4.16). These

+ mirror graphs

FIG. 8. TMO two-pion-exchange potential graphs with
two 433 isobars in the intermediate state.

FIG. 9. Second-order potential scattering diagrams with
(a) one or {b) two Ess isobars in the intermediate state.
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TABLE III. Momentum operators 0'{kq, kq) for the adiabatic {m /M) corrections of the BWyy, the BW», and the
Born graphs for NA intermediate states.

BW//

O~~ {(dy ) ky', ld2) k2)

{kq k2) (~qk2 —~2k, ) +i{kq . k~) {ur~k2 —a&2k~) x Q {o~ + o2) + 2{o~ + o2) k~ x k2 {~~k2+~2k~)

BWx, b

Born, a

Born, b

—{k~ k~) (cu~k2 —~2k', ) —i{k~ k~) {~~k2 —~2k~) x Q {o~ + o2) + 2{o~ + o2) k~ x k~ {~~k2+~2k~) . Q

—{kq kg) (&uqkz+arqk&) —i{kq kq) {vqk2+ vqkq) x Q {cry+ aq) + ~{cry + op) kq x kq {vqk2 —&uqkq)

{kq k2) (urqkq —uqkq) + i(kq k2) {urqkq —eqkq) x Q {oq + aq) + 2(oq + oq) kq x k2 {~qk2+ &qkq)

{kq kq) (urqk~+ eqk~) +x{kq k2) {urqk2+&qkq) x Q {oq + o2) + ~{oq +oq) kq x kq {&uqk2 —urqkq)

terms are typical for the pseudovector coupling of the
pseudoscalars and in particular will give a spin-orbit po-

tential V&&~ &o(n) L S. The different contributions can
be written as

2 2

I'~II(&) = —C~&(1) i ) & )
dsk sk1 2 ei(kx+k2) rP(k2) F(k2)

(2~)s

xO&z (~q, kl', M2, k2)Da((ug, u)s) .

(6.1)

For the different cases n, the explicit expressions for

Or&&(k&, k2) snd D' sre given in Tables III and IV, re-

spectively. There, BWx, refers to graphs (a) and (a')

of Fig. 4, and BWX p refers to graphs (b), (b'), (c), and
(c'). Note that the Born and TMO graphs give rise to
the same pseudovector vertex corrections, so they do not
contribute in what we refer to as the TMO potential,
which includes the Born subtraction. Again, the isospin
factors CN~(I) are those of Eq. (4.19).

In order to be able to evaluate the integrals in an easy
way, we define for the planar graphs

0//(kg, ks) = 6s (kg k2) (k~ 6 k2)

+2i(kg ks) (kg + k2) x Q S

—i(ky x ks) . S(kg pk2) Q, (6.2)

and for the crossed graphs

TABLE IV. Adiabatic approximation of the energy de-
nominators D' for contributions from {m /M) corrections of
the NNm vertex for the BW//, the BWx, and the Born graphs
for NA intermediate states; Pq

——ky k2/M.

Ox(kg, ks) = + s [
—(kg k2) (k, + k2)
—2i(kq k2) (kq + kq) x Q S
—i(ky x ks) S (ky p ks) Q] . (6.3)

BW//

D~ ((dy, ld2)

1 1 1 1

4CI)$4J2 {Kl + a)~2 a 1 {td2 + a) (~l + ~2)

The operators 0&& of Table III can then be written suc-(n)i

cessively as

BWx,a

BWx, b

1 1

4'&~2 (~z + a)~1
1 1

(~2+ a)~2 (~i + ~2)

1 1 1 a+
4u~u2 (~a+ a) (~a+ a) (~a+ a)(~a+ a)

(~g —~g)O//(ki) ka) + (~i + ~2)0(((k» k2),

(~1 ~2)OX(kl) k2) + (~1 + td2)»( l~ k2)

(~y + cu2)0»(kg, ks) + (ldl —&2)0»(kl, k2), (6.4)

1 1 1 1
Born, a

4&1&2 (Ml + a)~2 ~1{~2+ a) a Pl

1 1 1 1
Born, b

4a 1~2 (~1 + a)(~2 + a) ~1~2 a Pl

(u)g —u)2)0//{kg, kg) + {u)g + u2)0//(ks, k2),

(Ldy + (d2)0//(k&) k2) + (~1 ~2)0//(kl~ 2)

The potentials (6.1) can now be written in general as
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V~'&(~) = C& &(I)
~

"
~ ~

""
~ ) llm O'(-iV„—iV'2) A:(r„r2),

]( m~) (m~ MN»
7

(6.5)

where the A+(» T2) denote the Fourier transforms of the energy-denominator combinations that occur. They read

a
ABW (Tl, T2)= [Gl, l(T1)G2,1(T2) —G2 1(»)G1 1(T2)] ~

a
ABW (»~ T2)= —[Gl 1(»)G2,1(T2) + G2 1(T1)G1 1(T2) —4+1,1(»~T2)) . (6.6)

ABW (», r2) =0,
ABw (», r2) = Gl, 1(»)Gl, 1 (&2) + a%,1(r1, r2) (6.7)

OO

AB (», T2) = —— dze ' ' ~ "' [Gl, l(rl)G2, 1(r2) —G2, 1(rl)G1,1(r2)]
0

OO a
Az„„(rq, rg) = —a dze *' ) " Gx &(rg)Gt g(t'a)+ —[Gx t(rx)Gsc(r2) + Gsz(rx)G»(ra)]) .

0
(6.8)

The functions Gl 1(r), G2, 1(r), and Hl 1(»,T2) are defined in Eqs. (B14) and (B16) of Appendix B, respectively.
In Appendix C, we introduce various Q) operations, working on functions F(r) and G(r). It will be convenient to

define the central and spin-orbit combinations

(F p G)~ = (F p G)+~ —(F p G)~,
(F P G)so« ———2(F P G)+, + (F8 G)2+ + 2(F 8 G), —(F 8 G)2,
(F 0 G)so„=—2(F P G)+, —(F 8 G) 2+ + 2(F P G), + (F 8 G)2 .

(6.9)

The explicit results can then be written as follows. (i) BW-parattel graphs.

2 2

V"' (B'& ) = —C' "(I)
I( m~ ) ( m,„) 3MN

1 1 2 dA
(Gl, l G2, 1)&(r) + (Gl, l @Gl 1)~(r) (F '3 F)~(A~ ")

2 ' ' 6 ' '
7l' () a + A

where i = C, SO~y. (ii) BW-crossed graphs

(6.10)

2 2
V~'l (BWX) = —C&xl(1)

~

fNr m

~

fNNwl

( m~ ) (m~) 3MN

where i = C, SOX. (iii) Bom graphs.

2 dA

, (F m F);(A, r)
vr () a2+ A2

2 2

V .(Born) =+ C (I) i( m„) ]), m~ ) 3MN
OO

x dze ' ' '" —(Gl 1 g G21),. (z;r) + (Gl 1 g Gl 1),. (z;r) (6.12)

where i = C, SOyy.

B. Nonadiabatic corrections

In the following we will use an average-mass approxi-
mation for the NA graphs. With M = (M~ + MN)/2,
we have MN = M —a/2 and M~ = M + a/2. Therefore

1 a ')] 1

M 4M) M '

1 1 f a ) 1

In order to obtain all contributions to the potentials up
to order (m /M), we expand the three energy denomi-
nators in the expressions for the planar- and crossed-box
diagrams (see Sec. V) in 1/M. Then, we get, for example,
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Ep+8'p k —R'+u

1 1—
(8+Q

—2p k+ k2
+

2M(u)+a)
(6.13)

where we neglected the purely off-energy-shell coIltribu
tion p —p, , with p, the initial-state momentum. This
also implies, for example, that

—2p ki+k1 -Q (k1 —k2) —ki k2,
2

2p' ki+k1-+Q (ki —k2) —ki k2)
-2p k2+k2=++ (k1 —k2) —k1 k2.

(6.14)

Upon integration over k1 and k2 the Q (k1 —k2) terms
vanish because of the symmetry of the remainder of the
integrands. Hence, all left-hand sides in Eq. (6.14) are
equal effectively. Identifying the terms of order G(1/M),
we find the following nonadiabatic corrections.

(i) Nb, graphs

~Na(1)!( m. ) ( m. )
d3k d3k 2 ei(kl+k2} P(k2)P(k2)

(2')

l ONa(kl)k2)D-' (&1,(J2),
2M )

(6.15)

where O&~l can be found in Table I. The energy denomi-

nators D(il" are given in the first part of Table V. There
we have introduced the splittings Dx ——Dx, + Dx z+
Dx, for the crossed BW graphs in order to distinguish
the various contributions. The TMO contributions are
not given, since they are G(1/M2).

In order to evaluate the potentials, it is more conve-
nient to rewrite the expressions for the energy denomina-
tors D(1l" in a form such that the results of Appendices B
and C can be applied to do the integrations in Eq. (6.15).
We find

1 1 1 a 1 1 a

(~1+a) ur (u1(~2+ a) u)1(~1+ a) ~2(~2+ a) ~1(&1+ ) ~2(~2+ a)
+ 2

d ( 1 1 2—a—a!
da &~1(~1+a)u)2((u2+ a) ~1(u)1+ a)~2(~2+ a) ~1~2(~1+a)(u)2+ a) ~1+~2)2 + (6.i6)

1 (d1+(d2 —(d1(d2+ a((d1+(d2) a

2~1~2 (w1+ a)(~2+ a) ~1~2(~1+a)(~2+ a)(u)1+ ~2)

d ~1+~2+a d 1

da 2-,wa(a~+a)(~a+a) da ~~~a(tu&+a)(era+a)(v&+era) I (6.17)

1 1

v (~1+ a) ~z(~2+ a) 2~1(~1+a)~2(~2+ a)2 2~1~2(+2+ a)2+ 23
1 1

2(d, (cJ]+a) 412(4)2+ a) 24l13((di+ a)(d2
(6.iS)

~ivy(BW//) =+ ~~& (I)!
x lim (V1 V2)O"~(—iV1, —zV2)(//)

r1~r'
XB1(ri,r2), (6.19)

where

Bl(rl r2) —~1,2(rl)13(r2)+ aG2, 2(rl)~2, 1(r2)

+a a[~2,2(rl r2) ~2,1(rl)~3,1(r2)j
da

(6.20)

pote that all denominators with~1+~2+a have cancelled

against similar factors in the numerators. Using these
expressions, the integrals are easy to do. We find

to write Eq. (6.20) in a concise form. Here, we have

also suppressed the a dependence of G„- and H„"
for notational reasons. The differentiations and limits

can be worked out using Eqs. (Cll) and (C12) in a
straightforward manner, which comes down to inserting
the S operation defined in Appendix C between the ri
and r2-dependent functions in Bi(ri, r2). This is com-
pletely analogous to the evaluation of Eq. (6.5) to, e.g. ,

Eq. (6.10) as discussed in Sec. VIA.
In a similar way, for the crossed 8%' graphs we find

f 2 2

O"'(I)!"!
l

"!—'m' ™I
x 1™(Vi V2)O-~( iV1, —iV'2—)'

PI ~X'g

xB2(r» "2) ~ (6.21)

where we have made use of the symmetry ~~ ~ ~2 with
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a
+2(rl T2) —a [G2,1(rl)G3,1(T2) +2,2(rl T2)] Gl, l(rl)G2, 1(T2) + G2, 1(rl)G2, 1(T2) II1,1(rl T2)

+Gl, l(T1)G3 1(T2) + 2G2, 1(T1)G2,1(T2) + Gl, l(T1)G2 2(T2) + G3,1(T1)I2(T2) (6.22)

where 0&& can be found in Table I. The energy denom-

inators D(2)" are given in the second part of Table V,
where we have already used a little algebra to bring the
contributions from the crossed graphs in a convenient
form. Note that again all denominators with (dl+(d2+2a
are cancelled against similar factors in the numerators.
Evaluating the integrals, we find for the planar BW graph

4

y(2)(BW ) + C(ll)(I)
/

f&&

im. & 2M~

x lim (Vl V2)Oa& ( i Vl, —iV2)—
ry~rg

x Cl(rl, r2), (6.24)

(ii) 66 graphs.

4
V( )

( ) = —C(™)(I) l(
)

3 3
1 2 ei(ki+k2) rF(k2)P(k2)

l O~~(~1, k2) Da""((dl) (d2)(2M~ j
(6.23)

where

1
Cl(Tl) T2) = Hl, l(Tl) T2)2da

Similarly, for the crossed BW graphs

(6.25)

4
V( '(BW ) =+ C' '(I)

iim. i 2M&

x lim (Vl V2)O&(z( —iV1, —iV2)
rg -+rg

x C2(T1, T2) ) (6.26)

where

1 d
C2(rl, r2) = —

2 [Gl, l(rl)G1, 1(r2) +GH1, 1(rl, r2)] .

(6.27)

All differentiations and limits can be easily worked out
again using Eqs. (Cll) and (C12).

VII. RESULTS AND DISCUSSION

The complete TPEP for the Nh and b,b, graphs for
a single-channel calculation for the NN system can be

TABLE V. Nonadiabatic approximation of the energy denominators D " for ND and D
for AD intermediate states.

D~' "((dl, (d2)

BW]i
1 1 1 1 1 1 1 1 1 1+ 2+ +

2(dl(d2 ((dl + a) (d2 (d1 ((d2 + a) ((dl + a) (d2 (dl ((d2 + a) ((dl + (d2)

1 1 1 1 1 1 1 1 1 1+ 2+ +
2(dl(d2 ((dl + a) (dl (d2 ((d2 + a) ((dl + a) (dl (d2 ((d2 + a) ((dl + (d2)

BWx,s
1 1 1 1 1 1 1 1 1 1—+— 2+ +2l2 1+ + 1 2 2+ + 1+ ~ ~y 2 &2+0 1+2+ +

1 1 1 1 2+ —+-
(ill + 6) tdl ll2 (ll2 + ll) j (&Jl + &2 + ll)

BWx,, 1 1 1 1+ + +2~1~2 ~y~2 ~1~2 ~1++ ~2++ ~1++ ~2++ 1+~2++
1 1 2+ +

ill ll2 (ill + ll)(ll2 + 0) j (4' + &2 + ll)

BWi]

D~ ' '((dl, (d2)

1 d 1 1
2(di(d2 da ((di + a)((d2 + a) (di + (d2

BWx
d' 6 1+

2(dl(d2 da ((dl + a) ((d2 + a) ((dl + a) ((d2 + a) (dl + (d2
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written as

V(TPE) = ) V(')(BW)+V(')(TMO)+V(' (Born),
i=0

(7.1)

where BW contains the planar- and crossed-box contribu-
tions, and each potential consists of a central, spin-spin,
tensor, and spin-orbit part. The relevant expressions can
be found in Sec. V for V(o), in Sec. VIA for V(i), and
in Sec. VIB for V( &. The inclusion of the Born term
V('&(Born) is due to our special definition of the TMO
potential, Eq. (4.12), which explicitly includes the sub-
traction of the once-iterated OPE. For a coupled-channel
calculation this Born term should be left out.

In Figs. 10—15 the results for the several potentials
and several of the difFerent contributions are shown. In
these numerical results we have evaluated the TPEP for

f&~ /4vr = 0.075 from the Nijmegen partial-wave anal-
ysis [32j, f&& /4~ = 0.35 from the b,ss isobar decay
width, and A = 664.52 MeV. Of course, due to the Gaus-

sian form factors all potentials are finite at r = 0 and
rather soft. When not stated explicitly otherwise, we
have evaluated the potentials for Ti,b = 150 MeV. We
have also tacitly assumed that the strong form factor for
the nucleon and the b,ss isobar are the same, which need
not be the case, of course.

In Figs. 10 (a)—(d) we show the total 6-isobar con-
tributions, due to the N6 and b,h, intermediate states,
the contributions from the NN intermediate states, and
the total TPEP. This for the central, spin-spin, and ten-
sor potentials. Noteworthy is the strong cancellation be-
tween the isobar and the nonisobar potentials for I = 0.
Tuning, for example, the NAm coupling constant could
make these cancellations almost complete Fo. r I = 1, on
the other hand, the isobar and nonisobar contributions
reinforce each other. The total potentials resemble a mix-
ture of about 70'%%uo isoscalar and 30'%%uo isovector exchange.

In Figs. 11 (a)—(d) the N6 and b.k intermediate-state
contributions to the central, spin-spin, and tensor poten-
tials are shown. In the central potential, the hb, contri-
bution is important, in particular, for the I = 0 case. The
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FIG. 10. TPEP central, spin-spin, and tensor contributions due to NX, or NA and AD intermediate states. The tot»
contribution is also shown. (a) j = 0 and r & 1 fm; (b) j = 0 and 1 & r & 2 fm; (c) j = 1 and r & 1 fm; (d) j' = 1 and

1&r &2fm.
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total central potential has an isoscalar exchange charac-
ter. The spin-spin and tensor potentials are dominated
by the Nb contribution and are dominantly isovector ex-
change.

In Figs. 12 (a)—(b) the BW, the TMO, and the Born
contributions are compared. The I = 0 channel is
strongly dominated by the BW graphs. This is natural
since only the b b intermediate state can contribute for
TMO and Born. In the I = 1 channel this is no longer
the case. As far as the short-range part is concerned,
there appear large cancellations between the TMO and
the Born contributions below r = 1 fm.

In Figs. 13 (a)-(b) the V( &, V( ) and V& ) poten-
tials are compared. For r & 1 fm, V&P& clearly domi-
nates. This is also the case at very short range. In I = 1
there are large cancellations between the Nb and the Ah
contributions for the spin-spin and the tensor potentials,
which result in extremely small contributions.

In Figs. 14 (a)—(b) the spin-orbit potentials are shown.
The tail of the spin-orbit potential from the 1/M term in
the pseudovector vertex is positive and much larger than
for the TPEP from the NN intermediate states [1]. It is
also stronger than that from the heavy-boson exchange

(HBE) (see [1]). Moreover, this spin orbit is not like that
from scalar exchange. As can be seen from the figures,
the central potentials are dominantly I = 0 exchange,
whereas the spin-spin and the tensor potentials are dom-
inantly I = 1 exchange. Therefore, the central potential
could be described by the exchange of an efFective scalar
meson. The corresponding spin-orbit potential, which is
purely the Thomas term [31], can be obtained from the
formula

(7.2)

where we have included only the dominant contribution
to Vg. In Fig. 14 both the Thomas and the pseudovector-
correction contributions are shown together with their
sum. Beyond r = 1 fm there is virtually a complete
cancellation of the spin-orbit contributions.

In Figs. 15 (a) and (b) the energy dependence of the
once-iterated Born term contributions are shown. We
give the curves for Tj~b = 0, 150, 350 MeV, respectively.
As can be seen from these curves, the energy dependence
is very mild. The TMO potentials show a similar behav-
ior.
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FIG. 10. (Continued).
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The actual choice we made for A in Figs. 10 to 15 is
not totally arbitrary. First of aB, it has the same value as
used in the figures of [1]. Furthermore, a low value for theN¹form factor (A = 770 MeV) seems to be preferred
with regard to the Goldberger- Treiman relation and some
recent NN and NN partial-wave analyses [32, 33]. Here
we only consider it as an efFective parameter, which in a
later stage should be determined by a confrontation with
the data. In Fig. 16 we show the effect of the form factor.
The value A = 964.52 MeV is the value found in Ref. [2]
in a fit to the NN data. One sees that the tail of the
I = 1 potential starts at r —1.5 fm. The same is true
for the I = 0 potential.

As compared to the isobar TPEP's in the literature,
the tail of our potentials are roughly the same as those
of Chemtob et at. [9]. Of course, the intermediate and
inner regions are very difFerent because they do not in-
clude any form factors. The differences between [9] and
this paper can be seen clearly by comparing the results
for the NN box d-iagrams. In [9] the N¹pseudoscalar
(ps) coupling was used in contrast to the pseudovector
(pv) coupling in the present paper. Moreover, we ne-

gleet the pv-pair terms which are an order of magnitude
smaller than those from the ps coupling. So the diKer-
ences between [9] and our work are mainly due to the pair
terms. Indeed, the latter explain the difFerent tails com-
pletely. This is demonstrated in Pig. 17 for the TPEP
with NN intermediate states. The curve labeled "no-
pair" (corresponding to the ps-pv theory) represents our
p„pq theory, assuming strong pair suppression. Adding
the dashed curve labeled "pairs, " which represents the
pair terms of the pq theory [34], results in the solid curve
of the ps-ps theory. A similar behavior is shown when we
include the pair terms of the TPEP with Nh and A6
intermediate states.

ACKNOW'LEDG MENTS

We would like to thank Prof. J.J. de Swart and the
other members of our group for their stimulating inter-
est. We appreciated the help from Drs. C. Terheggen in
making the figures. Part of this work was included in the
research program of the Stichting voor Fundamenteel On-
derzoek der Materie (FOM) with financial support from

vc(Mev) vc(Mev)

-300

-600
Total
Nh
hh

-18

-900 -27

-1200— {=0

-1500—

0.25
I

0.5 0.75

-45-

1.25 1.5
i

1.75

r(fm)

240

V (MeV) Total
Nh
hh

VT{MeV) Total
Nh
hh

V (MeV) VT{MeV) Total
Nh
hh

0.25

r(fm)

p

(a)
0.25

I

0.5

r(fm)

I

0.7S
I

1.25
I

1.5

r{tm)

I

1.75

(b)

I

1.25
I

1.5

r{fm)

I

1.75

F&G. &&. Separate TPEP central, spin-spin, and tensor contributions due to ND and AD intermediate states for I = 0 and
I = 1. Contributions (a)—(d) as in Fig. 10.



46 633 ISOBAR CONTRIBUTION TO THE. . . . I. 93

the Nederlandse Organisatie voor Wetenschappelijk On-
derzoek (NWO). ( 2)

APPENDIX A: TREATMENT TMO AND
BORN ITERATION

Using

Pi = = (k —ki —kz)
M 2M

(A3)

The NN an-d Nh, -threshold difference causes special
problems in the treatment of the TMO graphs and the
Born iteration. Making the nonadiabatic expansion of
the energy denominator for the NA intermediate state in
the kernels (4.4a) and (4.4b), one gets

we get in combination with the Gaussian form factors

Fg(kq)Ez(kq)
(a —Pi)

(&p k, +Ep-k, —~) = (a —Pa) (A1)
dz exp[—z(a —k /2M)]

0

with a = Mh —M~ and pq = kq kq/M, where M =
(Mh + M~)/2. In order not to limit the applicability
of our formulas to the very low energy region, we avoid
the expansion of the denominator (Al) as a power series
in Igq. Restricting ourselves to energies below the ND
threshold (so a —Pq ) 0), we write

Here

x exp —k&/Af(z) exp —k,'/A', (z) . (A4)

(A5)
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In making the nonadiabatic expansion in the other en-
ergy denominators in the kernels (4.4a) and (4.4b) for
the TMO graphs, and after subtracting the OPE itera-
tion, we obtain terms of the form Pq/(a —Pq), which we
write as

V(r) = ld k2 '(] +k )
(27I )6

X a dze z(a k —/2&) p(z. Q2)g(Z' k2)

-z(a+5./2M V(z. (A6)

1+
& —Pi a —PI

The term on the right-hand side in the limit a ~ 0 cor-
responds to the TMO potentials with NN intermediate
states [1]. This contribution will therefore be included in

(O)
TMO'
To the second term on the right-hand side we apply the

procedure described in the following. The contribution
to the nucleon-nucleon potential will essentially be of the
general form [cf. Eq. (A4)]

V(r)Q(r) = a —z(a+6/2M)V( . )y(

dze '(' ~ ")V(z;r)g(r), (A7)

where

where the Laplacian 6 operates on V(z;r) only. Oper-
ating with V(r) on the NN wave function Q(r) gives

VC(M
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FIG. 12. Isobar TPE central, spin-spin, and tensor contributions to the potential tail of the BW, TMO, and Born diagrams
for (a) I = 0 and (b) I = 1.
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V( .
) e-zb/2MV(z. r)ezra/2M

= V(z;r) + z V(z;r), +'2M
=V(z;r) . (AS)

Moreover, in Eq.(A7) we used the Schrodinger equation

( 6/—M + Vjy~)g Tjabg and neglected the NN poten-
tial V~~. We believe this is a reasonable approximation
since the total potential is in general rather weak. The
alternative would be to use some average potential. In
Eq. (A7), the integrand clearly shows that our formulas
are limited to the region below the NA threshold. This
occurs at Tjab = 2a - 600 MeV.

The treatment of the b,h intermediate state is similar
to that for the Nh intermediate states described above,
except that a is to be replaced by 2a and p1 by p2 =
k1 ks/M~.

APPENDIX 8: INTEGRAL REPRESENTATIONS

We give a catalog of integral representations for the en-

ergy denominators which occur in the potentials in mo-
mentum space. The techniques used are similar to those
given in Appendix B of Ref. [1]. We start from the basic
representations (a ) 0)

1 2 dA

vr ~ +A

1 2 A2 dA

~ + a ~ (su~ + As)(a~ + A~)
' (Blb)

where u = u(k) = y k2 + p~, and derive from these
the following formulas by simple fraction splitting and/or
differentiation:

30-
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FIG. 13. The V~o, V~', snd V|2 contributions of the isobar TFE central, spin-spin, sud tensor potential tails for (a)
I = 0 and (b) I = 1.
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1 1 2a
~ ~+a ~ 0 (cu2+A')(a'+A') '

&a A~dA

(~+ a)' 7r (~2+ A')(a'+ A2)' '

(B2)

1 1 1 t 1 2a dA

~2 (~+a) a ((d ~ (Ld +A )(a +A )

dA
1 2 ~

(a,2 —A2)

w (cu + a) x (u + A )(a2 + A )

The basic Fourier transformation for OPE with a
Gaussian form factor is

where in the last equation we used the substitution (4.8).
In terms of the error functions [35], this transformation
has been given explicitly in Ref. [2 and it reads

I2(rn, r) = —gP~(m, r)4'

P&(m, r) = e e "erfc
~

— + —
~

0 ~' A' ~„( Ar m&

A)
(Ar rn) 1—e "erfc +-
i 2 A) 2mr

The derivatives are easy to obtain and we list

I2(m, r) = (2m) dsk eik r I (k2)

00 2 —k /A„2 ~(~)"k+, -k+ ~

(B3)

—Pc(m, r) = mr+—o(m, r),
2

qPg(m, r) = rn yg(m, r) + 2m gPgg(rn, ),
0 4 1 0

3 2

s Pc (m, r) = —m rg&o(m, r) — P~(m, r),
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FIG. 14. Spin-orbit potential contributions to the isobar TPE potentials for (a) r & 1 fm and (b) 1 & r & 2 fm.
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where Px can be found in Refs. [2, 3]. Above, we have
written all the occurring forms of energy denominators in
such a way that the Fourier transformation of Eq. (83)
given in Eq. (84) is sufficient to handle all cases that we
will encounter in this paper. For example, the Fourier
transformation of Eq. (Blb) is, using Eqs. (84) and (4.8),

AzdA —A /A, I,(urn&+Az, r)e-" ~' .
o (az+ Az

(85)

The Fourier transformation of Eq. (Bla) is obviously
Iq(r)—:Iq(0;r), while for the higher powers (~+ a)
we find I„(a;r) = —(d/da)I„q(a; r). In the formulas for
the potentials we sometimes use for brevity the notation

(Compare with the procedures as described in Appendix
8 of Ref. [1].) Also, the application of the above for-
mulas in the presence of (Gaussian) form factors is com-
pletely analogous to the TPEP derivation in the case of
two nucleons in the intermediate states (a = 0) as given
in Ref. [1). To illustrate the method in more detail, we
consider as an example the following typical integral:

u(Vi)~(uz)
'[(k)+ (k)]

1

[~(kt) +' a] [(u(k2) + a]
'

(87)

which is the analog of the expression (8.10) of Ref. [1].
Here, we can use also the trick of Levy [36] by writing

(86)

The double Fourier transformations can be carried
through without difficulty once the dependence on kq and
kz is factorized directly or under a A integral. This can
always be achieved by using the identities given above.

1 1

((ug + a) (~2 + a) (ug + ~z 2 24)y
—

Ldll

(4Jz + 6 id( + 6)
(88)
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FIG. 15. Energy dependence of the once-iterated Born diagrams to the short- and intermediate-range isobar central, spin-
spin, and tensor TPEP's for (a) I = 0 and (b) I = l.
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Then, with Eq. (Blb) we find the important result

1 1 2 ~ A2dA

(uq+ a)(cuz+ a) uq+ wz m'
o (a + A )x, B9)

1

((u~z+ Az)(~z2+ A )
'

which is the very cornerstone for achieving the separation
of the ~q and az dependence and which enables us to do
the momentum integrations in an elegant manner. Sub-
stituting Eq. (B9) into Eq. (B7) we obtain a factorization
of kq and kz under the A integral:

2 AzdA
~1(kl, kz) =

(
2 A2)

I (Pi)
s 'u)(ki)z+ A2

I (I z)
u)(kz)z + Az

where a(kq) = Y k& + p& and a(k2) = /k' + pz. Using
the substitution (4.8), we get

2
Jg(kg) kz) =— p2gp —(k~+A )/A

(az + Az) kz + mz + Az

2
—(k'+A')/A'

X k'+m +A

For the latter expression, the Fourier transformation can
readily be performed and yields

2 A2dA -2
~, ( ar) =—,, e-'"'/" 1,(gm&+A2, .)

0 (az + Az)

(810)

All Fourier integrals appearing in the course of the cal-
culation of the TPE potentials can be treated similarly.
Note that the tricks, employed here, also work in the case
of the two-meson-exchange potentials, where in general
the mesons have different masses.

Next we indicate briefly how to use the results of
this Appendix to perform the momentum integrations.
To evaluate the Fourier transformations of the different
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FIG. 16. Dependence of the tail of the central, spin-spin,
and tensor potentials on the value of the cutofF mass A for
I = 1.

FIG. 17. Influence of the pair terms on the tail of the
TPEP with IVX intermediate states for (a) I = 0 and (b)
I =1~
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d ( a
da (id iid2 (id i + a) (id2 + a) (id i + id2)

+ 1
!

idi id2 (id i + a) (id2 + a) )
' (812)

Within parentheses there have appeared the by now al-
ready familiar expressions discussed in this Appendix.
Interchanging the Fourier transformation and the differ-
entiation with respect to the variable a, the evaluation of
the corresponding potentials in configuration space is, al-
though a little tedious, straightforward. The evaluation
of the various other D(2) expressions poses no problem.

We finally summarize the results of this Appendix by
giving a list of the Fourier transforms for the expressions
in Eqs. (82) and (89). In order to be able to report our
results in a somewhat concise form we introduce some
convenient notations. First we define

1 1G„(a,id =
id' (id + a)rn (813)

From Eq. (82) the Fourier transforms are seen to be

OO

Gi,p(a, r) = — dA F(A, r),
7t Q

2 AzdA
Gp 1(a, r) = — F(A, r),

p a2+ A2

2a dAG(, )=— F(A, ),
p a2+ A'

1
G2 1(a, r) = —[I2(m; r) —Gi, , 1 (a, r)],6

(814)

where F(A, r) was defined in Eq. (86), and for m ) 0,
G„, +1(a, r) = —(d/da)G„, (a, r)

Next we de6ne

1 1 1H„(a, id 1, cd2) =
idi~d2 (idi+ a)(id2+a) idi i~2

(815)

graphs given in Sec. V we use the following identities.
(i) NA graphs For the evaluation of the contribution

due to D&& we use(~)

1 1 1 1+-
idl (id2 + a) id2 (idl + a) (qadi + ~2)

1 f' 2 a+
(idl + a) (id2 + a) (idl + id2 idlid2 )

(811)

The Fourier transformation of this expression follows
from the application of Eqs. (89) and (82). The other
expressions appearing in the energy denominators can be
handled by application of the formulas listed in Eq. (82).

(ii) Ab, graphs: The contribution due to D&~&) is the

same as Eq. (Bll). The expression for Dx is seen from(2)

Eq. (5.9) to be of the form

2 dA
Hi, i(a, ri, r2) = — F(A, ri)F(A, r2)

& p a2+A2
1

Gi, i(a, ri)G1,1(a, r2) (816)

2 dA
H2 2(a, rl, r2) 2 2 2)p

A2 a2 +
x [I2(m, ri) —F(A, ri))
x [I2(m, r2) —F(A, r2)] .

APPENDIX C: CHARACTERISTIC
POTENTIAL FORMS

The momentum integrations are carried out as de-

scribed in Ref. [1]. We write

i(ki+kq) r
1 m ikq rqeikq rq

e
Fg 1E'g ~F (Cl)

and take the limit operation before the momentum in-

tegrations. Then, we replace all momenta occurring in

the numerator by Vi and V2 operations, which are the
V operations with respect to ri and r2, and take these
in front of the momentum integrations. This procedure
leads to the following typical forms:

lim (Vi V2) F(ri)G(r2) = [V; 7&F(r)] [V, 7&G(r)],
&& ~~a

(C2)

lim (o 1 Vi x V2)(o 2 Vi x V2)F(ri)G(r2)
Fy ~X'g

&1 &2j 'siki&jna [V'kVmF(r)] [V&V G(r)]

(C3)

where, as usual, we use in this Appendix the convention
that repeated indices are summed over. In Eq. (C3) the
differentiations work only within the square brackets. For
functions depending on r only, one has

(1 d iI+0 I(d' l
(r dry '~ (dr2 j

(C4)
(y) X~X~
'j " r2

(g) XjXj
U r2

The tensors O(1) and O(2) satisfy the rules

O(1)O(1)

0(')0(') =1
U U

(~) (~) (~)0 03 = 03

(&) (&) (&)0,. 0. = 0,
(C5)

From these rules it is easy to calculate Eqs. (C2) and

(C3). Furthermore, one finds

From Eqs. (89) and (810) one easily sees that the various

Fourier transforms read

2 A2dA
Hp p(a, ri, r2) = — F(A, ri)F(A, r2),

vr g a~+ A~
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(i) lim (Vq Vq) F(rq)G(rq) = (F tm G)& (r) = —F'(r)G'(r) + F"(r)G"(r), (C6)

(ii) lim (crq . Vq x V2)(oq Vq x Vq)F(rq)G(r2):—(F @G} (r)(crq rr2) + (F I3 G)z (r)Sq2

= — —F'( )G'( )+ -F'( )G"( )+ -F"( )G'( ) ( )3 T T T

+-
~

-F'(") —F"(r)
I
-G'(r)+-F'(r)

I

-G'(r) —G"(r)
~

~» (C7)
3 qr j r r qr j

(iii) lim (Vy V2)(Vq + Vq)F(ry)G(rs) = (F Q) G)~ (r) = [(bF)'(r)G'(r) 6 F'(r)(b G)'(r)] (CS)

(xv) lcm (Vq Vq)(Vq + Vq) x Q SF(rq)G(rq):—(F g G)z (r)L S = —[F"(r)G'(r) +F'(r)G (r)] L S,
1

(c9)

(v) lim (Vq x Vq) S(V& p Vq) Q F(rq)G(rq) = (F SG)2 (r)L S = — F'(r)G'(r)L S . (clo)

The product combinations (F G)& (r), (F G)~(r), and (F ta G)T (r) introduced above, are used in Sec. V. The
product combinations (F Q) G)z (r), (F g G) q(r) and (F g G) q(r) are used in Sec. VIA.

For the computation of the nonadiabatic corrections of Sec. VIB we need also the higher derivatives. We easily
derive (see also Ref. [1],Appendix D)

(vi) lim (Vq V2) F(rq)G(rs):—(F Q G)& (r) = —
s ~

F'(r) —F—"(r)
~ ~

G'(r) -—G"(r)
~ + F"'(r)G"'(r),3 6 fl, „&(1

r' qr ) 0r )
(C11)

(vii) lim (Vq V2)(crq Vq x V2)(cr2 Vq x V2)F(rq)G(rs) = (F 0 G') (r)(o'y erg) + (F S G)T, (r)Sq2

= ——,
I

-F'()-F"()+ F"'() ll -G'()-G"()+ G"'() i-F"'()G'"() ( .)

+- —
2 ~

F'(r) —2F—"(r) + F"'(r)
~

-G'(r) ——2G"(r) + G"'(r)
I

—— F'"(r)G"-'(r) Sq2 . (C12)
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