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We have implemented a dynamical microscopic n+ p+ n model for the description of the ground
state (g.s.) of Li in an attempt to achieve the perfection of macroscopic u+p+n three-body models.
We use a generator-coordinate approach, which includes (pn)n, (o.n)p, and (op)n partitions with
all angular-momentum components of any siginificance. The trial function is constructed out of Os

and a set of Os, Op, Od harmonic-oscillator (h.o.) eigenfunctions of the n intrinsic and of intercluster
Jacobi coordinates, respectively, with the generator coordinates being the h.o. size parameters. The
efFective nucleon-nucleon force used contains tensor and spin-orbit terms, We have determined its
parameters by fitting to the properties of the subsystems. We found that the description of the
subsystems is less perfect than with central forces, and explained this by the inconsistency of the
use of a tensor force with describing the n g.s. by Os oscillator states. The binding of Li with
this force was found to be about 1 MeV too weak. After readjusting the force to yield the correct
energy, we calculated some properties of Li. The radius obtained is somewhat too large, and the
tiny quadrupole moment has the wrong sign. The results for the weights of the components of
summed nucleon spin and orbital momentum (S, L) = (1,0), (1, 1), (1,2), and (0, 1) are 94.6%,
0.2%, 3.9%, and 1.3%, respectively. The (1,2) component comes predominantly from clusterization
(pn) n; the others can be attributed to any of the highly overlapping partitions. The o.+d and s He+@
spectroscopic factors were calculated with a new formula, which expresses them in the generator-
coordinate basis directly, without resort to integral transformations. The estimates for the n + d
spectroscopic factor, 0.9, are realistic, but those for He+@ are a factor of 2 too high. This is
understood to be a consequence of the model's tendency to compress the low-energy continuum,
which appears to be a general defect of forces that are constrained to reproduce the bulk properties
of the a particle in terms of Os states. Thus a radical remedy would require an improvement of the
description of the cluster internal motion.

PACS numbers: 21.60.Gx, 21.10.Jx, 27.20.+n

I. INTRODUCTION

All bound or scattered few-nucleon systems tend to
be clustered strongly [1]. Strong clustering implies that
the behavior of the system is primarily determined by
the motion of the clusters relative to each other, and
that renders both the microscopic and macroscopic clus-
ter models of such systems realistic.

In the microscopic models all nucleonic degrees of free-
dom are treated explicitly, and the nucleons are usually
assumed to interact via a two-body force. The cluster in-

ternal motions are mostly described by simple harmonic-
oscillator (h.o.) configurations, and the Pauli principle is
taken into account exactly. The basic version of the mi-

croscopic model assumes that the system is partitioned
into two clusters. Refinements either include further con-
figurations (other cluster partitions [2] or excited clusters
[3]) or allow a cluster to split into two clusters [2], which
move subject to some constraint.

The macroscopic approach [4] neglects the internal
structure of the clusters except for a phenomenological
treatment of the Pauli principle, and uses phenomeno-
logical two-body intercluster potentials. At the expense
of this simplification, however, it is able to treat the rel-
ative motion of three clusters with the rigor of few-body
physics [5].

The reduction of the microscopic cluster approach to
the macroscopic description is a nice example for the re-
duction problem in few-body physics. Unlike the quark
level of description, these two levels are still within the
realm of nonrelativistic quantum mechanics, thus their
relationship can be elaborated thoroughly.

In this paper we wish to examine, through one ex-
ample, to what extent the two approaches correspond to
each other. To this end we present dynamical microscopic
three-cluster calculations that treat the intercluster dy-
namics with an accuracy comparable with that of ex-
isting macroscopic three-body calculations. We consider
the ground state (g.s.) of sLi as composed of n + p+ n
[6], which is the simplest three-cluster system. Our work
has been prompted by the controversial results produced
by microscopic [7—10] and macroscopic [ll—17] models.

Our earlier model [7—10] of Li can be regarded as an
a+ (p+ n) three-cluster microscopic model in which the
summed nucleon spin is constrained to S = 1 and the
relative orbital momenta between p and n (li) and be-
tween (pn) and n (lz) to li = t2 = 0 (and thus the total
orbital momentum to L=O). Though all these calcula-
tions reproduce the electromagnetic properties reason-
ably [18—20], there is a significant discrepancy between
them in the spectroscopic factors of deuteron and proton
removal (s" and s H'"). While the discrepancy in s
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seems to be accounted for by Pauli effects neglected in

the macroscopic models [21], the disagreement in s H'"

is too large for that. Moreover, experiment supports the
macroscopic model in that respect [17].

The logic of the paper is as follows. To outline our ap-
proach, we shall first specify the model state space used
in the description of sLi (Sec. II). In accord with the
usual philosophy of the few-body approach, we choose
an interaction (Sec. III) that is optimized to describe the
two-body (two-cluster) subsystems in state spaces com-
parable with those to be used for a+ p+ n (Sec. III A).
The first test of the approach is to see how well this repro-
duces the sLi energy (Sec. III B). We shall elaborate fur-
ther on the physical properties of sLi in Sec. IV. After a
brief diversion to the problem of the quadrupole moment
(Sec. IV A), we shall examine in detail the ingredients of
the model wave function and its predictions for the frag-
mentation properties. The ingredients of the model sLi
will be analyzed energetically as well as directly in terms
of the the weights of the various components in the wave
function (Sec. IV B). This gives an opportunity to make
a comparison with previous microscopic and macroscopic
descriptions and to assess the significance of the different
segments of the state space. We find a non-negligible dif-
ference between the macroscopic and microscopic models
in the S = 0, L = 1 component. Therefore, in comparing
the predictions for the spectroscopic factors (Sec. IVC),
we shall examine the role of this component. We shall see
that, in fact, the discord in the weights cannot account
for the discrepancy found in the spectroscopic factors.
We thus have to conclude (Sec. V) that the cause of the
discrepancy is more fundamental, and its existence points
to a limitation of the few-cluster approach that involves
a schematic description of the cluster intrinsic states.

Some formulae for the weights ("amounts") of cluster-
ing and a new method for the calculation of the spectro-
scopic factors are presented in the Appendices.

II. MODEL

We have set up a microscopic multiconfiguration mul-
ticluster formalism, similar in many respects to earlier
ones [22]. This is combined with a variational approxi-
mation to the A-particle problem. Our trial function is
a sum over various cluster arrangements, each associated
with a particular set of intercluster Jacobi coordinates.
A general term in the model of sLi has the form

@S (I I )L + @S(XI (Pl)XI ( 2)]PL ),(12)3 12 (12)3

momentum coupling. While the internal wave functions
C" and C)" are just spin-isospin eigenstates, the function
Ca is

=) cPp, ,

where ((t)p,. are h.o. Slater determinants, of different size
parameters P, , each projected onto the Os h.o. wave func-
tion describing the respective zero-point vibration of the
a center of mass. (The spatial factor of such a Pp,. is
equal to a product of Os h.o. functions of three intrinsic
Jacobi coordinates. ) To correspond to the macroscopic
models, this combination should describe the a g.s. The
coefficients of combination can be obtained by a diago-
nalization of the a intrinsic Hamiltonian in the space of
the center-of-mass-projected Slater determinants. The
intercluster functions y~ (p, ) are expanded as

Ns

with r&~'&l being h.o. eigenfunctions of radial node number
zero,

rg) (P ) (x P exP( —z'Y &P. )&& (P )

The matrix elements involving the basis functions are
expressed as integral transforms of matrix elements of
Slater determinants, of shifted Gaussians, projected to
total momentum zero. One can derive such a relationship
by using the fact [24—26] that, apart from a trivial factor,
a shifted Gaussian is the generating function of the h.o.
eigenfunctions.

We thus describe sLi as a superposition of the three
arrangements, (pn)a, (ap)n, (an)p, with the a parti-
cle constrained to be in a spin-isospin zero state. From
among the [S, (l), lz)L]J values adding up to J = 1+,
we include those with S = 0, 1, L = 0, 1, 2 with at most
one of the l; exceeding 1. The various arrangements of
the same S, L are highly nonorthogonal because of the
completeness of a basis of each arrangement by itself and,
in addition, because of antisymmetrization. We therefore
truncate the basis in the different arrangements in a com-
plementary manner. The sets of [S, (lq, lq)L] J that are
clearly favored energetically in one or two of the arrange-
ments, are only kept in those particular arrangements.
The trial function is thus composed of terms 4S (l l )LS,(l1lg) L
the following types:

where 1,2, 3 in the superscripts are elements of any one
of the permutations of the labels a, p, n; A is the inter-
cluster antisymmetrizer [23]; C'sM~ = [(C)~4z)C)s]sM~ is
composed of the cluster intrinsic wave functions 4'; the
y(p) are functions of the intercluster Jacobi coordinates

@apn @(pn)a + @(pn)a + @(pn)a + @(pn)a
1,(00)0 1,(20)2 1,(02)2 0,(11)1

+@(ap)n + @(ap)n + @(ap)n + @(ap)n
1,(11)0 1,(11)1 1,(11)2 0,(11)1

+@(an)p + @(an)p + @(an)p + @(an)p
1,(11)0 1,(11)1 1,(11)2 0,(11)1' (6)

P1 = I'2 —I'1,
m1F1 + m2F2

m1 +m2P2 = I'3—
(2a)

(2b)

(m; are the cluster masses); and [ ]~ denotes angular-

This basis incorporates all microscopic bases of the form
of a+d, a+p+n, He+@, and Li+n used previously in
Refs. [2, 27], and, in the relative-motion space, it is more
extensive than the variational macroscopic bases [15].
The model is more restrictive than the Faddeev mod-
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@clopA + QAypA (7)

The breathing modes are obtained as the excited states
in the diagonalization that produces the o; g.s. The ex-
citation of the breathing modes in the composite system
allows for the distortion of the o; cluster in the vicinity
of the others. The model may hereby include the state
spaces of the n-distortion models [3, 7—10] as well.

We had to compromise on the basis to limit its
size and to avoid numerical instabilities arising from
its being close to linear dependence. We had to omit
the two clusterizations that proved the least signif-
icant energetically: ((pn)o. ; S, (tilz) L=1, (02)2) and
((op)n; S, (litz)L=l, (11)1). In test calculations the
weights of these terms were found to be less than 0.2%
each. The sets (p;), (p1,), (p2, j, which can be regarded
as discretized values of some generator coordinates p, p1,
pz, had also to be restricted. The n, relative pn, and all
other relative-motion bases were chosen to have dimen-
sions 2, 9, and 6, respectively. The ]9 and p(„„) values
were determined by minimization of the n and d ener-
gies, while the other p values were taken from Kukulin et
aL [15], who used such bases in a macroscopic n+ p+ n
model for the (pn) + n relative motion. Test calculations
show that a three-dimensional o. basis (optimized) would

only yield 0.005 and 0.02 MeV lower o. and sLi energy, re-
spectively, than the two-dimensional one. The dimension
9 for p(~) seems unnecessarily high (for the deuteron we
had found 5 to be adequate [9]); nevertheless, we kept
this high value because we wanted to conform to the cal-
culations of Kukulin et aL [15]. The values of the sets of
P and p are given in Table I.

We describe the two-cluster subsystems analogously.
In keeping with (1), we define

-12
O(12]](S,l, ]1,] = A 4(12](S,]XI, (Pl) 1,M ), (8)

where (t](1z)(s,M )
= [4 O ]s,M, . The wave function of

the deuteron involves summation over S1,

Od O(Pn) [(10)1] + C (Pn) [(12)1] 2 (9)

whereas the five-nucleon wave functions involve summa-
tion over the a states, e.g. ,

(aon) [(~l1)I1] + (n1n) [(~l1)I1] ' (10)

Unless stated otherwise, the parameters of the subsystem
bases correspond strictly to those of the three-cluster ba-
s1s.

III. INTERACTION

If the dynamics contained in the macroscopic a+p+ n
calculations has anything to do with the actual six-

els [5, ll—13] only in the spatial region of three-particle
breakup, which is not expected to play any role in the
g.s.

Moreover, our formalism allows to include, in addition
to the o. g.s. (a0), the first few breathing modes n1,
A 2 ) ~ ~ ~ ~

nucleon system, it must be derivable from a microscopic
picture. Since even a structureless n particle seems a
realistic assumption, one expects that it suffices for the
underlying microscopic model to be sketchy for the a par-
ticle. It must, however, depict the relative motion faith-
fully. It is thus reasonable to assume that there exists a
nucleon-nucleon interaction that is appropriate for the a
cluster in a truncated subspace and, at the same time,
for the n+ p, a+ n, and p+ n systems in the full state
spaces of these relative motions. To produce realistic re-
sults even in the minute admixtures with (S, L) g (1,0),
this interaction has to contain tensor and spin-orbit terms
as well. We have chosen the form

1 = ——,'ih, r x (V, —V, ) (12)

is the orbital momentum of the relative motion of the
two nucleons.

We adopted one of the spin-orbit interactions of
Ref. [28] and constructed the central and tensor parts
step by step drawing on the fact that the dynamics of
some of the subsystems only contains certain combina-
tions of the force terms [9], but all subsystems together
contain all parameters.

Since our present formalism has been put onto a com-
puter for only bound states for the time being, in describ-
ing the scattering states of the subsystems o. + p, n + n,
and p+ n we used the traditional generator-coordinate
scattering formalism, in which the relative motion is
described by a combination of angular-momentum pro-
jected shifted Gaussians [10].

A. Description of subsystems

In the search for the force parameters the free clusters
d, t, and a were described by superpositions of intrinsic
Os h.o. states Pp, of difFerent size parameters P. These
expansions were similar to Eq. (3), but here the bases
were chosen large to form nearly complete sets in the
subspaces spanned by all P values. In the deuteron a
similar set of Od states was also included. The parameters
V1, V2, V3, V4, aj, a2, a3) a4, and TV+M were determined
by fitting them simultaneously to the experimental g.s.
energies and rms charge radii of d, t, and n and to the
singlet 8 deuteron energy, while the weight of the d-state
admixture of the deuteron was kept close to 4%. We
included the triton in this fitting procedure to facilitate
the use of the force in calculations involving any of the
Os clusters. It was after this procedure that the smaller

Viz(r) =(W+Mp" +BP —HP ) ) V,e "'I"
i=112

+(W& + M&P")r'

x ) V,e ' ~" [3(crir)(crier)/r —cricrz]
i=3,4

+V];e "~'&h I(or+ crz), (»)
where P are the space-, . spin-, and isospin-exchange op-
erators, W+ M +B+H = 1, WT +MT = 1, r = rz —r1,
o, are the Pauli vectors of the nucleonic spin, and
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TABLE I. Width parameters of the basis functions.

Width parameters (fm )

0.303, 0.646
0.0101, 0.0256, 0.0620, 0.147,
0.341, 0.757, 2.91, 6.51, 13.82

0.0548, 0.1728, 0.32, 0.54, 1, 3.16

For all relative motions except pn.

sets of n and deuteron size parameters for the cluster-
model calculations (Table I) were determined by energy
minimization. With the reduced dimensions adopted, the
energy minima were shifted up by less than 20 keV.

The subsystem that depends neither on the tensor nor
on the spin-orbit force but solely on the singlet-odd com-
bination,

u=W+H —M —B, (13)
is the Pq wave of the p+ n scattering. The parameter ~
was therefore fitted to the iPi wave p-+n phase shift. The
last independent combination of the mixing parameters,
of the central force, whose effect can be separated is [9]

rI = 4W —M+2B —2H. (14)
The subsystems affected by rI are o. + p and n+ n. The
partial wave that is very sensitive to rI (and is unaffected
by the tensor interaction) is the p wave. To eliminate
the effect of the the spin-orbit term as well, ri was deter-
mined by fitting the weighted average of the calculated

ps/Q and pi/z n+p phase shifts to that of the experimen-
tal ones. The phenomenon that is most sensitive to the
mixing parameters of the tensor force, the only parame-
ters that are still undefined, is the the splitting between
the st (J = 0, 1, 2) p+n phase shifts. We thus adjusted
Wz (and Mz) to this splitting.

The parameter values obtained are given in Table II.
[For the exchange mixtures, see set (1).] The resulting
g.s. properties of d, t, and a are compared with exper-
iment in Table III. Although the agreement is accept-
able, it is less satisfactory than what we obtained earlier
with a purely central force [8, 9]. In particular, all free
clusters are somewhat larger than they should be. The
present model appears to be cruder because, for the clus-
ter intrinsic motions, it is less consistent than the one

implied by the central force. The matter is that, while
the constraint on the weight of the d-wave component of
the deuteron forces the tensor interaction to play a sub-
stantial role in the deuteron binding, it is not allowed
to contribute to the binding of the other clusters. It is,
however, in agreement with the central forces used in the
previous model that the present force binds the singlet
deuteron.

What the central force cannot produce but the present
one can is quadrupole moment. The deuteron quadrupole
moment we obtained is 0.43 e fmz, while the experimen-
tal value is 0.28 e fm~. When the force is made artificially
stronger so as to give the correct binding, the quadrupole
moment reduces to 0.28 e fmz, while the rms charge ra-
dius reduces to 2.138 fm. Thus these discrepancies are
all interrelated.

The resulting phase shifts are qualitatively correct, but
are not perfect. We only present the ps/z and pi/2 ci +
n phase shifts, which are certainly the most important
ones (Fig. 1). Although the spin-orbit coupling chosen
[28] works well [30] in combination with another central
force, and that is reproduced by our computer code, the
same spin-orbit coupling does not give enough splitting
in combination with our central force [with q of set (1)
in Table II]. The two il values obtained by fitting to
these phase shifts separately [sets (2) and (3) in Table II]
reproduce the experiment better but still with a smaller
accuracy than our earlier model with a purely central
force [10].

B.The energy of Li

The interaction optimized for the subsystems accord-
ing to Sec. III A [with exchange-parameter set (1)] puts
the energy of the Li g.s. at —30.923 MeV, which is to
be compared with the experimental value, —31.994 MeV.
The difference is of the order we obtained with central
forces [8], and is of the correct sign, leaving space for
the inclusion of further configurations to lower the the-
oretical energy. This lack of binding is somewhat larger
than those found in the most realistic macroscopic three-
particle models. Their binding energy with respect to
the energy of the three-cluster dissociation threshold is
typically 0.2—0.5 MeV too weak [11,14, 31,32].

TABLE II. Force parameters.

V, (MeV)
o, (fm)

Exchange mixtures

(1) il fitted to average of p3/2 pi/2 cl + n
(2) il fitted to p3/2 o+ n; best for Li
(3) il fitted to pi/2 n+ n
(4) Artificial

105.16
0.4

-31.56
2.2

0.4051
0.4328
0.3697
0.8474

338.28
0.3

0.6386
0.6109
0.6739
0.1962

-3.54
2.2

-0.0425
-0.0148
-0.0779
-0.5401

-224.8
0.707

-0.0012
-0.0288
0.0342
0.4964

Wz = 0.3, MT = 0.7.
u changed to produce a large (8, L) = (0, 1) component in Li, ii refitted to the Li energy.
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ESH, ESH, —E
Full model -27.354 0.952
Frozen model -27.347 0.959
Experiment -27.41 0.89

EeL,.

-32.043
-31.934
-31.994

E6g; —E~

-3.737
-3.628
-3.697

Bound-state approximation.

IV PROPERTIES OF eLi

TABLE IV. Energies of the He and Li g.s. in MeV arith
the force fitted to the subsystems [set (2) in Table II].

e fm2 for the quadrupole moment. Thus we can con-
firm the significance of this component, along with sev-
eral others, without being able to name definitely what
is lacking from an agreement with experiment.

In a recent paper [37] Eramzhyan et al. report on
a microscopic extension of the macroscopic three-cluster
model of Kukulin et aL [14, 15, 20]. For the quadrupole
moment they obtained a positive value, which is an order
of magnitude larger than ours. To explain this failure,
they propose that the d-state component of the n cluster
in sLi may be important due to a polarizing distortion
effect, and that may well be true.

As was discussed in Ref. [9], no realistic estimates of
the fragmentation properties are conceivable without the
separation energies being correct. The most important
one, the a+ d separation energy can be made correct by
changing the rl value of the force. Set (2) of the exchange
parameters (Table II) yields E6q; ———32.043 MeV (Ta-
ble IV) and ESL; —E~ —Ed, = —1.534 MeV, and that is
good enough since the experimental value is —1.47 MeV.
Therefore, throughout this section, we used this set for
6Li.

A. Radius and quadrupole moment

The size of sLi refiects the puffiness of the free clusters,
though it is inflated to a slightly lesser extent. The rms
charge radius we obtained is 2.763 fm, while the experi-
mental value is 2.56 fm [35]. The theoretical rms radius
of the point matter density is 2.643 fm.

Although we do not attempt to solve the enigma of the
quadrupole moment of sLi here, we have to state that our
wave function yields 0.246 e fm2, while the experimental
value is —0.064 e fm2 [35]. This cannot be accounted
for simply by the too-large deuteron quadrupole moment
because the deuteron contraction in sLi [7] completely
blurs the picture.

The sLi quadrupole moment has recently been repro-
duced fairly well by Unkelbach and Hofmann [36] as a
result of an interplay between (pn)cr configurations of
(S, (tit2)L) = (1, (00)0), (1, (20)2), (1, (02)2), and of
the negligibly small configuration, (1, (22)2). Since we
chose to drop even the (1, (02)2) component on account
of its insignificance for the energy, we had to test the ef-
fect of this omission. Therefore, we temporarily restored
this component, and got 0.229 e fm~ for the quadrupole
moment. The difference is so little, obviously, because
the other clusterizations that overlap with this one do
already represent it almost completely (cf. Sec. IVB).
To seek further the cause of the discrepancy, we repeated
the calculation in a model which only contains (pn)a con-
figurations, with components (S, (lilq)L) = (1, (00)0),
(1, (20)2), and (1, (02)2). This model differs from that of
Unkelbach and Hofmann [36] only in the tiny (1, (22)2)
component. The quadrupole moment was found to be
—0.18 e fm~. This finding clearly shows how delicate the
balance of the various effects is in the quadrupole mo-
ment. To check the role of the (1, (20)2) component in
this restricted model, we dropped it, with the result 0.297

B. Cluster ingredients

TABLE V. Decomposition of the g.s. of Li into compo-
nents of definite summed nucleon spin S and total orbital
momentum L.

S, L Lehman Bang Kugulin' Danilin Micr. '
1,0
1,1
12
0,1

0.9178
0.0050
0.0371
0.0401

0.928
0.007
0.012
0.053

0.9554
0
0.0338
0.0108

0.9304
0.0024
0.0338
0.0334

0.9462
0.0020
0.0391
0.0127

Reference [38], force given in [11].
Reference [31],force given in [39].

'Reference [15], force given in [40].
Reference [32], force given in [41].

'Present microscopic model; force: set (2) in Table II.

Before we show anything comparable with experimen-
tal data, it is important to relate the present approach
to others and to assess the significance of the physical in-
gredients one by one. To this end, we have calculated the
weights of various components and examined the effects
of their omission. The present model improves on the ear-
lier one [7—10] in that it contains noncentral force terms
and the (crn) + p and (crp) + n clusterizations. We are
therefore interested in the magnitude and role of angular-
momentum mixing and of cluster-configuration mixing.

In Table V we show the weights of the different (S, L)
components in the g.s. of sLi, along with similar results of
four macroscopic models. The state space of our former
model [7—10] corresponds to the (S, L) = (1,0) subspace
of this model, so the enormous extension of the basis now
gives rise to new components of weights totalling 5.38%%uo.

Very slight though this may seem, such components may
have appreciable effects.

All results agree in putting the weight of (S,L) g (1,0)
at a few percent. A bifurcation can, however, be observed
in the estimate for the amount of the (S,L) = (0, 1) ad-
mixture: while three calculations give values around 4%%uo,

our calculation, in keeping with that of Kukulin et aL

[14, 15], yields about l%%uo. The (S,I) = (0, 1) component
is fed by all three clusterizations with quantum numbers
(ti, tz) = (1,1). It is plausible and has been corroborated
by test calculations that the weight of this contribution
depends crucially, and almost solely, on the singlet-odd
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term of the nucleon-nucleon force, i.e., on the exchange
parameter ~. The Gt to the low-energy P~ phase shift
with our force is excellent (see Fig. 2), and so is it with
the force [40] used in Ref. [15]. Thus the deviations ap-
pearing in other calculations must be caused either by
the nucleon-nucleon force used or by the treatment of the
(0, 1) component. In particular, in the model of Lehman
et al. [11] no singlet-odd nucleon-nucleon force term is
included, whereas in the work of Bang and Gignoux [31]
the (0, 1) component is only included in the (np)n and
(nn)p partitions, possibly with some truncations [38]. We
thus believe that the correct value of the weight of this
component must be about 1'%%uo.

Nevertheless, for test purposes, we performed a calcu-
lation with an cu value that gives a large weight (0.0649)
to this component. The modified parameters are dubbed
"artificial" in Table II. The ~Pq phase shift produced by
this force is also shown in Fig. 2.

The presence of a type of clustering p, in the wave func-
tion @ is to be characterized by the weight of the compo-
nent, of @, that lies in the segment of the state space as-
sociated with that particular clusterization. This weight

8„ is called the amount of clustering [7], and is defined as
the expectation value of the projection operator P~ that
projects onto the subspace p:

8„=(4']P„]@).

The subspaces p, that we consider are those constituting
the model space. Each bears a partition label, (pn)n, ,

(a~p)n, or (a,n)p, and a set of angular-momentum cou-
pling labels S, (lql2)L. The calculable formula of 8„ is
given in Appendix A.

The amounts of all clusterings represented explicitly in
the basis of Eqs. (6) and (7) are given in Table VI. The
most conspicuous feature of these data is that the values
belonging to the same (S,L) but different partitions are
surprisingly close to each other. Examining Table V, one
can recognize that the major components (S, L) = (1,0),
(S, L) = (1,2) are almost completely covered by the par-

TABLE VI. Cluster decomposition of the g.s. of Li.
[Force: set (2) in Table II.]

Clusterization
Partition S, (l&12)L

(pn) n 1,(00)0
(pn) n 1,(20)2

(pn) a 1,(02)2

(pn) n 0,(11)1
(np) n l, (11)0
(np)n 1,(11)1
(ap)n 1,(11)2
(ap) n, 0,(11)1
(nn) p 1,(11)0
(nn) p 1,(11)1
(an) p 1,(11)2
(an) p 0,(11)1

'Omitted from the basis. Sec. II.

Amount of clustering
Cl = 0,'p A = Ay

0.9414
0.0376
0.0030
0.0119
0.8575
0.0016
0.0036
0.0123
0.8550
0.0019
0.0035
0.0123

0,4614
0.0002
0.0006
0.00005
0.0254
0.00006'
0.0003
0.00008
0.0252
0.00008
0.0003
0.00008

tition (pn)n. For example, the weight of the fraction, of
the (S, L) = (1,0) subspace, that is not covered by the
partition (pn)ao is 0.9462—0.9414=0.0048. The largest
clusterizations ((pn)a; 1, (00)0), ((np)n; 1, (11)0), and
((an)p; 1, (11)0) overlap strikingly with each other, even
more than in less sophisticated models [7], and some of
the minor clusterizations are essentially identical with
each other. The closeness of the basis to overcom-
pleteness is also revealed by Table VII, which shows
how little the energy is changed when any one of the
clusterization components is excluded from the basis.
(The components involving ao and aq are dropped si-
multaneously. ) It is fascinating that when the main
component, ((pn)a; 1, (00)0) is dropped, the energy is
raised by a mere 0.65 MeV. Moreover, the amount of
((pn)no, 1, (00)0) clustering changes from 94.14'%%uo to just
93.60%%uo.

The role of each individual clusterization component
is seen better in Table VIII. This comprises the results
of a series of calculations in which the number of clus-

60

40-

TABLE VII. Change of the Li g.s. energy when each one
of the clusterization components is omitted. [Force: set (2)
in Table II.]

Ql
Ct

20-
uO

Omitted component
Partition S, (lyl2)L

Energy
(MeV)

-20
0 10 20

E (Mev)
30

FIG. 2. Pq p+ n phase shifts calculated with the opti-
mized value of the mixing parameter u (solid line) and with
the artificially modified ur value [set (4) in Table II; dashed
line]. Experiment: Ref. [42].

(pn) n
(pn) n
(pn) n
(np)n
(np)n
(np)n
(nn) p
(nn) p
(nn) p
(nn) p

None
1,(00)0
1,(20)2
0,(11)1
1,(11)0
1,(11)2
0,(11)1
1,(11)0
1,(11)1
1,(11)2
0,(11)1

-32.043
-31.397
-30.500
-32.043
-32.010
-32.034
-32.037
-31.999
-31.956
-32.034
-32.038
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TABLE VIII. Change of the energy and of the angular-momentum decomposition of the g.s. of
6Li with a gradual elimination of the clusterizations. [Force: set (2) in Table II.]

None

(ay)n, (an)y
(ay)n, (an)y

(an)y
(ay)n, (an)p

(pn) a
(pn) a

1,(11)2
0,(11)1
1,(11)1
1,(11)0
0,(11)1
1,(20)2

Omitted component
Partition S, (lil2)L

Energy
(MeV)

-32.043
-31.982
-31.940
-31.852
-31.732
-31.574
-29.348

(10)

0.9462
0.9453
0.9479
0.9491
0.9492
0.9595
1

Weights of components (SL)
(11) (12)

0.0020 0.0391
0.0021 0.0391
0.0023 0.0391
0 0.0393
0 0.0399
0 0.0405
0 0

(01)

0.0127
0.0135
0.0107
0.0116
0.0108
0
0

C. Spectroscopic factors

1. For~a,e,lae

The spectroscopic factor of fragmentation into the two-
body channel c—:ci + cz = (12) + 3 is the norm square
of an amplitude function g, (r),

8 = F g F

defined as

(17)

where 4", is the antisymmetrized angular-momentum
coupled product of the intrinsic wave funtions of the frag-
ments pinned down at a relative distance r. In the cou-
pling scheme [(IiSz)I, lz] 2 the function @; is given by

@' = &( [@,(l,l4', (s,l]lbi, (& —P2) z), (18)

where

(~ P) = " ~(" P)+& (P). (19)

terizations included is decreased from all to one. The
trial function resulting in the last line is contained in the
subspace of the earlier model, f(pn)a; 1, (00)0) [7—10].
We see that the energy steps are very small except for
the last one. This shows that the new model entails one
major improvement, owing to the inclusion of the com-
ponent ((pn)a; 1, (20)2), and a number of small ones.
It is paradoxical that the (ap)n, (an)p clusterizations
with S, (li4)L = 1, (11)0 seem to play a much smaller
role now than the more restrictive sHey component, with
S, (lilz)L = 1, (11)0 in an (a + d, sHe+p) model [27],
which contributed to the binding by 0.6 MeV. The expla-
nation is that the present j(pn) a; 1, (00)0) trial-function
term is much more flexible than the ad term in Ref. [27],
so that the (yn)a subspace contains a much larger frac-
tion of the (ap) n, (an) p components of the wave function
than the ad subspace contains of the sHep component.
The remarkable stability of the weights of the (S, L) sub-
spaces against the omission of clusterizations up to the
last one of those having a component in the particular
(S,I) is again due to the large overlap of the difFerent

clusterizations.

The label ci is understood to contain all labels written
explicitly in Eq. (8) and not summed over in Eq. (9) or
in (10):

H

(I ) ) A P (12)(S )Xl, (pl)
mixing

(20)

where the summation goes over ti and over the a states 1
whe»+2 = p+ n and when 1+2 = a+ n, respectively.

The spectroscopic amplitude is in f~t ~ overlap b~
tween two three-cluster states. It is therefore usual to
express it in terms of overlaps between the generator-
coordinate basis states involved in the cluster model.
However, owing to the delta function in (18), it is not
trivial to find such an expression. The standard method
involves integral transformations [25]. We avoided these
at the expense of a matrix diagonalization. To our
knowledge, our method is new, and we present it in Ap-
pendix B.

8. Bewdts

We are interested in a + d and sHe+p spectroscopic
factors. The results are summarized in Table IX.

The a+ d spectroscopic factor in the model of Lehman
et aL [12] with OFO and with 4% deuteron d-state ad-
mixtures is 0.632 and 0.654, respectively. The former
value is modified to 0.847 by Pauli corrections [21], so
a similar correction on the the latter value may be ex-
pected to yield some 0.87. This is in full accord with our
present estimate, 0.883. The reduction from 0.93 to
0.883 should primarily be due to a boader spread of the
6Li wave function on the complete set of states of the a+d
system. The only other appreciable cause may be a size
mismatch between the free deuteron and the deuteron in
Li. The larger the free deuteron, the more the deuteron

cluster is contracted in sLi [7] and the smaller the over-
lap is between them. Thus our too-large deuteron may
cause the spectroscopic overlap to be too small. The a
cluster being, on the contrary, rigid, its size in Li [7]
cannot differ too much from that of the free a particle.
To test the effect of the deuteron size, we constructed a
deuteron of rms radius 2.138 fm (and of energy —2.230
MeV, d-state weight 4.1'%%up, and quadrupole moment 0.28
e fmz; see Sec. III A) by an ad hoc modification of the
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TABLE IX. Spectroscopic factors s[(I s )I & ]z of the decomposition of Li.[(I1S2)I,/2] J

Model

(pn) + o., I g = l2 = 0
(pn) +n. , lg = lg = 0
n+ p+ n'
A+@+7l

dn
[(10)1,0) 1

0.930
0.930
0.883

5Hep 5Hep
[(3/2, 1/2) 1,1]1 [(3/2, 1/2) 2) 1)1

0.436
0.415

0.044+0.456=0.500
0.015+0.406=0.421

Hep 5Hep
[(1/2, 1/2) 0,1)1 [(1/2, 1/2) 1,1]1

0.283
0.280

0.113+0.241=0.354
0.093+0.337=0.430

'Computed with the shifted Gaussian bases and force of Refs. [7, 10].
Computed with the force of Ref. [7] and with changing-width h.o. bases, as in the present model.

'Force: set (2) in Table II.
Force artificially modified to yield a large component of S = 0, L = I; set (4) in Table II.

0.6

0.4-

cv 0 2-
I

E
0.0

L

Ql
-0.2-

-0.4, —

0.6 ~ s s

0 2 4 6 8 10
r (fm)

PIC. 3. Alpha+deuteron spectroscopic amplitudes calcu-
lated in our present model (s = 0.883, solid line), with the
same Li wave function but with a deuteron of the correct
size (s = 0.901, dotted line) and in the earlier (pn)a model
with l„=ls = 0 of Ref. [7] (s = 0.929, dashed line).

force. The spectroscopic amplitude calculated with this
deuteron yields almost the same, s" =0.901.

The amplitude functions belonging to these two val-
ues of the spectroscopic factor are compared with that
of Ref. [7] in Fig. 3. The node position depends appar-
ently just on the cluster sizes. For instance, the node
of the dotted line (the present sLi with the well-sized
deuteron) is shifted outwards with respect to the dashed
line (taken from Ref. [7]) because of the oversized cr par-
ticle of the present model. The rather large value of the
asymptotic normalization constant, C g = 3.75, belong-
ing to the solid curve fits into a simple trend of cluster-
size dependence [9], too. The prediction of the (pn)n
model of l„„=lg~ = 0 with an interaction that sets the
cluster sizes correct is about 3.2 [9]. We deem this to
be a more realistic estimate. Nevertheless, the fact that
the present model gives rise to no reduction makes one
suspect that the disagreement [9] with the experimental
value, 2.15+0.06 [43], is likely to survive any extension
of the a+ p+ n relative-motion space.

The nucleus sHe being unbound, the sHe+p spectro-
scopic factor is to be defined as a continuous function of
the sHe energy ("difFerential spectroscopic factor" [10]).
The (pn)a model with I„„=ld, = 0 overshoots the tran-

sitions found in the sLi(e, e'p) experiment as well as in
the macroscopic model [17] beyond the peak due to the
ps/z resonance in the a + n channel [10]. (The agree-
ment is much better beyond the t + d threshold, where
the structure of sHe is dominated by the 0+d component
[44, 10]). In the region of the discrepancy the transition
goes predominantly to the pqgz n+ n state, although the
contribution of the psgz n+n wave is also significant. The
discrepancy is thus to be expressed as a disagreement in
the spectroscopic factors pertinent to the sHe quantum
numbers (8 „,l „)I„=(z, 1)z and (z, 1)z.

For the description of the sz and z~ states of sHe
we used the exchange-parameter sets (2) and (3), respec-
tively, in Table II. Since we can compute continuum
wave functions only in the shifted Gaussian representa-
tion [10], we computed the sHe+p spectroscopic factor
in the pseudobound-state approximation [10],with a ba-
sis that produces the correct resonance energy [33]. The
values obtained in this way should correspond to single
resonances. They are thus somewhat smaller than the
integrals of the spectroscopic factors over the whole re-
gion of our interest, but they closely follow the tendency
of the integrated spectroscopic factors from one model to
the other. We can thus infer from the bound-state es-
timates for the behavior of the differential spectroscopic
factors.

The values calculated in the present approach for the
model of Ref. [10] (line 2 in Table IX) difFer slightly from
those of Ref. [10] (line 1) mainly because the way in which
the tail of the pseudobound n + n wave function is cut
off is specific to the relative-motion basis. In line 3 we
see that by introducing the improvements entailed by
the present model the spectroscopic factors are enhanced,
whereby the discrepancy with respect to experiment is
bound to become even larger.

We can thus conclude that, despite earlier expecta-
tions [10], the enlargement of the sLi model space does
not improve the 5He+p spectroscopic factor. We still
have to clarify, however, an even more unnerving aspect
of the differences from the predictions [17] of the model of
Lehman et a/. In Sec. IVB we have found that the only
prominent difFerence in the sLi wave function between
the two models was in the weight of the (8, I) = (0, 1)
component. In Ref. [10] we conjectured that the macro-
scopic model owes its success in producing the correct
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sHe+p spectroscopic factor just to this component. In
Sec. IV B we have, however, established with some confi-
dence that the correct weight of this term should not be
as large as that. Is it thus possible that the macroscopic
model gives so satisfactory results due to a defect? The
answer is fortunately negative. As the last line of Ta-
ble IX reveals, the artificial enhancement of the weight
of this component does not improve the spectroscopic
factor at all.

To sum up, the inclusion of all small terms, whether
they are realistic or overestimated, does not cause any
qualitative change. Thus the origin of the discrepancy is
to be found in circumstances common to the old model
[10] and the present one.

V. CONCLUSION

We have rigorously implemented the viewpoint of the
microscopic cluster approach to the most perfect existing
representative of nuclear three-cluster systems, the g.s.
of sLi=o, + p+ n. That there is room for improvement
on the earlier models, at least in one respect, was shown

by the success of the macroscopic three-cluster approach.
We wanted to eliminate a flaw of our earlier microscopic
model of the same breed or wanted to know the limits of
the microscopic multicluster approach. The results seem
to realize the latter alternative.

The philosophy of the microscopic cluster approach al-
lows the cluster internal motions to be described essen-
tially as single-particle motions. The improvement intro-
duced now consists in the inclusion of noncentral force
terms and an extension of the intercluster relative-motion
state space to embrace three-cluster dynamics more com-
pletely. We sought an interaction that describes the sub-
systems and applied it to the three-cluster model. The
description of the subsystems turns out to be less perfect
now than with the more primitive pure central force ob-
viously because the more realistic treatment of the p+ n
system now is not consistent with the description of the
a particle in a space of Os Slater determinants. Never-
theless, the force optimized for the subsystems requires
only a minor correction to set the sLi energy right.

The model sLi so obtained is slightly oversized, and
its quadrupole moment, small as it is, has the wrong
sign. Test calculations revealed that by trimming the
state space, one can easily reverse the sign. A recent
reproduction of the quadrupole moment with a smaller
state space [36] thus needs confirmation by calculations
with an extended state space.

The Qaw of the previous approach was its inability
to reproduce the He+@ spectroscopic factor, and the
present model fails to improve on it. We have now shown
that this problem is unrelated to the truncation of the
relative-motion space or to the neglect of any angular-
momentum components. To clarify its origin, we recall
[10] the sum rule which states that the sum of the spec-
troscopic factors of the removal of a proton from Li
with any angular momentum and with the residual five-
nucleon system left behind in any state is 3. The sum
rule is model independent in the sense that its deriva-

tion only requires quantum mechanics; thus our models
strictly observe it, and, presumably, so does nature to a
good approximation. The fact that the calculated value
is larger than the experimental one in the n + n energy
region below 17.6 MeV [10] implies that somewhere at
higher energies their relation must be reversed. So the
behavior of the theoretical value may be interpreted as a
"distortion of the a+ n continuum" such that the excess
of spectroscopic strength at low energies is compensated
for by a lack of strength at higher energies. In this con-
text it is appropriate to recall Fig. 1, which shows a sim-
ilar compression effect for the o. + n, phases. (The change
of the phase shift between energies zero and infinity is
predetermined by Levinson's theorem in much the same
way as the integral of the spectroscopic factor is set by
the sum rule. ) Such an effect was observable in the pre-
vious model [10] as well to a lesser extent, whereas the
Lehman model [ll] is certainly free of this defect. It is
now plausible to relate the two observations, and infer
that the discrepancy comes from the same defect of the
interaction that causes the error in the n+ n phase shift.

The quality of the p-wave fits is so mediocre because
there is only a single parameter to control it, g. The in-
teraction is constrained, to a great extent, by the state
spaces assigned to the cluster internal motions. The
macroscopic approach appears to be superior because it
is free of such constraints. In the microscopic approach
the constraint could be loosened by a force of more com-
plicated functional form, but could only be eliminated
entirely by abandoning the use of Slater determinants,
which, however, entails formidable complications.

Attributing the failure in the sHe+p spectroscopic fac-
tor to the inadequacy of the description of the o; + n
continuum, we can regain our confidence in the sLi wave
function we obtained. The interaction can indeed be ex-
pected to work better for bound states because its geo-
metrical and strength parameters were set to bound-state
properties. Thus it is not surprising that the estimates
for the a+ d spectroscopic factor, ranging 0.88-0.90, are
in full agreement with the Pauli-corrected [21] value de-
rived from the macroscopic model [12].

By inclusion of partitions other than (pn)o. we tested
the adequacy of (pn)o; bases commonly used in macro-
scopic models [14, 15, 20] as well as in microscopic ones.
We have found that the (nn)p and (ap)n partitions add
very little components to the wave function, which jus-
tifies the use of pure (pn)n bases. Although this conclu-
sion is valid for the macroscopic approach as well, the
true extent of its validity is revealed only at the micro-
scopic level, where the tendency of antisymmetrization to
make macroscopically different function spaces indistinct
is manifest.

The only appreciable ()) 1%) (S, I) P (1,0) com-
ponent we have found is the one with [8, (l~lg )L]
[1,(20)2]. This contradicts some of the macroscopic-
model results, which put the (S, L) = (0, 1) component
at 3—5% [38, 31, 32]. We propose that the treatment of
the singlet-odd component of the nucleon-nucleon rela-
tive motion used in these works is responsible for the
discrepancy.

Of course, the details of the angular-momentum com-
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position matters primarily in the electromagnetic form
factors, which we did not consider in this paper. But
understanding the correspondence with the macroscopic
models better, one may now accept, with more conf-
idenc, the results obtained in the macroscopic model [19,
20] as authentic. For instance, the role of the (S, L) =
(0, 1) component in the electromagnetic properties can
be tested in the macroscopic framework as well. What
remains to be done in the microscopic model of sLi is to
go beyond the o(+ p+ n picture.

particular nonorthogonal basis in a state given as a su-
perposition of similar clusterizations has been derived in
Ref. [7] [Eq. (3.10)]. That formula can be generalized
to multicluster clusterings included explicitly in a multi-
cluster basis. An application of that formula to a three-
cluster clustering p of the present type gives

S~ —) ).
VP ii'j j'kk'll'

x [N~~]( ~ .)l.(~~)l N~gy) Pi()FPi(l ) (A4)
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APPENDIX A: COMPUTATION OF THE
AMOUNT OF CLUSTERING

where

= (I',, I', , lA„„lI', I,,
(1) (2) " (1) (2)

(A5)

(A6)

The terms (1) of the trial function (7) are constructed
explicitly by substituting (4) into (1). Thus, the com-
ponent of the trial function belonging to subspace v =
f(12)3;S„,(l» l»)L„) can be written as

(12)3
@s„(i„i„&r,„—g &i&i"(l'vii') (A1)

where

0-' = &( o.(.)I(',"„' (P., )(',"' (P..)I . .&
(»)

Each subspace v is thus spanned by the nonorthogonal
set of functions (@„,), so that

with A„„being an integral operator, whose kernel is the
overlap

/ /
Av~ (ri rz ri r2)

C„(g ) b)„r1 —P„, b)„r2 —P„,
" &( @.(s.)(«., (~( —('., )«..(~2 —n, ))i. ,))

(A7)

The matrix elements N„ip ~ jj are nothing but the over-
laps between the elements of the basis, and are always
available since they are computed in the first step of the
structure calculation.

@ = ) +vii'(l'vii) ~

Vfl

The coeEcients F ii result from the nuclear-structure
calculation.

The amount of two-cluster clustering spanned by a
I

APPENDIX B:
SPECTROSCOPIC AMPLITUDE FORMULA

The function 4'; in (18) can be cast into a form showing
a semblance of our three-cluster state by inserting (20)
in it and recoupling the angular momenta as follows:

) (—1) ' '[(2Ii + 1)(2I+ 1)] ) ) (—1) [(2S+ 1)(2L+ 1)] ) W(liSiISz, IiS)W(Sli Jl2, IL)
mixing

I()., (s,)()., (s,)lsX)", (u, )«, (~ —(~)lc ), (B1)

where W are Raeah coefficients. This being substituted into (17), yields

(B2)

g, (r) = ) (—1) ' '[(2Ii + 1)(2I+ 1)] ) (—1) [(2S+ 1)(2L+ 1)] W(liSiISz, IiS)W(Sli Jl2, IL)
mixing S,L

x ) .~l..l.~s.s(x(, , rlA) lx(...xi ),
(12}3

where the ternary clusterization p underlying the binary
fragmentation c is specified by p, = ((12)3;S, (lilq)L),
and the matrix element has been written with the Dirac
convention observed. Thus lr) stands for the eigenvector,
belonging to eigenvalue r, of the spatial coordinate of the
second variable of the abstract operator A„.

To show the method of expressing g, (r) in terms of
N„ii „jj,we need not carry along all subscripts. The
expressions

g(r) = (rlAlx)

dr(xlAlr& &rlAlx& = (xlA'lx&

(B3a)

(B3b)

can be trivially identified with single terms of (B2) and of
the corresponding expression for the spectroscopic factor,
respectively. (A = (x& [A& lx( ), etc.) It thus remains

to show how to express these two quantities in terms of
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) (I' ]I )c~.
' = a,c~'). (84)

(I';]A]I'~), where I';, I'~ are functions of the type of (5).
Let us solve the eigenvalue equation of the positive

definite matrix (I';]I'z):

s ) F (I';]A[1 g)cq a cI "(f')]A]I' )F
ijklm

= ).+,'(N')~l cl,"a, 'c("'&imF~,
ijklm

(88b)

Due to the orthonormality of the eigenvectors,

(i)+ (&)) k
k

(85)

the single-particle state vectors

]&) =a, ").c,"lf')
2

(86)

g(r) =) a,—. 'c,'."f;(r)c'„""(f„]A]r,)F,
ijkl

= ) a, c '
I'~(r)cI,

'
'Nq~F~,

ijkl
(88a)

also form an orthonormal set. If the set (I'z) is cho-
sen so as to cover the spatial region of physical interest
fully enough, then {]i))can be taken as an approximately
complete and exactly orthonormal set, so that

& = ).I')(il = ) .a. ).c, ]f'3)(l'~[c/,
' (87)

i 3k
'

Inserting this in front of A in (83a) and in between the
two opeators A implicit in the extreme right of (83b), we
obtain

where ]y) = Q,. F~]I';) and N~ = (I', ]A]I'~). It is rea-
sonable to choose the single-particle bases (f';) and (I'~ )
to be the same as (I',

& } and (I'
& ) used in the struc-(2) (.2)

ture calculation for the p, and v components, respectively.
In this way the matrix elements N;z and coefficients F;
correspond to N„.. .„~~ and F„;;,respectively. Thus the
only extra calculation needed is the solution of the trivial
eigenvalue problem (84).

We note that, unlike the integral transformation tech-
niques, this method does contain some approximation,
which is, however, just a repeated application of the
approximation underlying the solution of the nuclear-
structure problem. The present method is related to the
exact techniques in the same way as the method used for
the calculation of the amount of clustering is [7]. Test
calculations for the n+ d spectroscopic factor show that
the result agrees with the exact value to a great accuracy.

It should also be noted that we had introduced a se-
ries expansion method for the calculation of the poten-
tial overlap earlier [45], and that proved to be inaccu-
rate. Its inaccuracy was caused by the fact that a non-
antisymmetric function was expanded in terms of anti-
symmetric ones [46]. The present method is free of such
defects, and it could be applied to the calculation of the
potential overlap as well.
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