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The ' C+a system is described in terms of the new semimicroscopic algebraic cluster model, which is

based on the coupling of the SU(3) shell model to the vibron model. Molecular states of the "0nucleus

built on the ' C levels with (0,2) SU(3) quantum numbers are constructed, and the corresponding energy

eigenvalues are obtained from a model Hamiltonian with SU(3) dynamical symmetry. The model is able

to account for 34 experimental "0 states assigned to even- or odd-parity bands, some of which are new.

Enhanced E1 and E2 transitions are also obtained.

PACS number(s): 21.60.Fw, 21.60.Gx, 27.20.+n

I. INTRODUCTION

Following some early studies on ' 0 [1—4], much ex-
perimental and theoretical attention was concentrated on
this nucleus when enhanced E1 transitions were predict-
ed [5—7] as a signature of the dipole degrees of freedom
related to its ' C+a cluster structure. According to this
scenario, El transitions originate from the asymmetry of
the center of charge and center of mass in systems where
the charge-to-mass ratio is different for the two clusters.
This prediction for the ' 0 was confirmed experimentally
[8], initiating further theoretical studies of the ' C+a
system. The interpretation of the results, however, was
not unequivocal. Some of the studies [9,10] supported
the idea of the existence of a mixed parity dipole band
consisting of the ' 0 states 0+(3.63 MeV), 1 (4.46),
2+(5.26), 3 (8.28), and (probably) 4+(10.29) implied by
the phenomenologic dipole picture [5,11], while some
others did not. A generator-coordinate method (GCM)
calculation first assuming only the ' C, +a
configuration [12], then considering the ' C(2,+ ) +a
channel as well [13], gave bands with unique parity. At
about the same time a coupled-channel orthogonality
condition model (CCOCM) calculation including the
same two ' C states was also performed [14]. This latter
study also yielded separated positive- and negative-parity
bands.

Here we apply the new semimicroscopic algebraic clus-
ter model [15,16] to the a-cluster states of the ' 0 nu-

cleus. In this model the internal cluster structure is de-
scribed in terms of the SU(3) shell model [17], while the
relative motion is treated within the vibron model [5,11].
The model space is constructed to be free from the
Pauli-forbidden states and from the spurious excitations
of the center-of-mass motion. In this respect it is similar
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to the microscopic SU(3) cluster model. The interactions,
however, are handled phenomenologically, and in this
respect the model is similar to the algebraic models of
various collective motions.

By applying this model to the ' C+a system we ad-
dress the question, whether the algebraic model is able to
reproduce the whole energy spectrum of ' 0 together
with the enhanced electric dipole and quadrupole transi-
tions [18,19) when we combine the dipole degrees of free-
dom of the relative motion with the internal degrees of
freedom of the nonmagic ' C core. Our choice is also
motivated by the fact that a wide variety of models (both
microscopic and phenomenologic) have been used earlier
for the description of the ' 0 nucleus assuming a ' C+a
configuration, and we expect that comparing our results
with other calculations can show how well microscopic
effects are approximated by the present semimicroscopic
model. Furthermore, the amount of experimental infor-
mation (on the energy levels and the electromagnetic
transitions) has increased considerably in the past couple
of years [18,19], so we can rely on a more complete data
set than what has been considered in earlier theoretical
studies.

The arrangement of the paper is as follows. In Sec. II
we give a brief review of the model we apply. Section III
contains the results, such as the form of the wave func-

tions, the energy spectrum, and electromagnetic transi-
tions derived from the model in the SU(3) dynamical
symmetry approximation. Finally, we summarize the re-
sults in Sec. IV.

II. THE MODEL

In the semimicroscopic algebraic model of a core-plus-
alpha-particle system [15,16] the internal structure of the
core (C) is taken into account by allowing a set of SU(3)
shell model states characterized by the following group
chain, and labeled by the corresponding irreducible rep-
resentations [17,20]:
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User(4) @ Uc(3) «Uc(2)Uc(4) Oc(3)

l[f»f, ,f3,f4], [n, ,n~, n, ], ~c~ ~c~ &c Lc) .

Uc (4) is the spin-isospin group of Wigner [21] which,
due to the total antisymmetry of the cluster wave func-
tion is also uniquely related to the permutational symme-
try of the nucleons. Uc(3) is the orbital group, the irre-
ducible representations [n, , n 2, n 3 ] which characterize
the distribution of oscillator quanta (carried by the nu-

cleons) in the three spatial directions, while Sc and Tc
denote the spin and isospin of the core. Lz is the angular
momentum assigned to the orbital part of the core wave
function, while the role of Ec is to distinguish between
states with the same Lc within an Uc(3) multiplet.

The relative motion (8) of the clusters is described by
the U(3) limit of the vibron model corresponding to the
group chain [11]

Ua (4) «UR (3) «Oii (3)
2

1[%,0,0,0], [n,0,0], L„) .

Here n„ is the number of dipole bosons (m bosons},
characterizing the excitations of the relative motion of
the a particle and the core. Its possible values are limited
from above by N =n +n, where N is the number of di-
pole and monopole bosons together, while a lower limit
also follows from the Pauli principle [22,23]. According
to this, n should not be smaller than the number of os-
cillator quanta carried by the nucleons of the smaller
cluster (a) if we view the unified nucleus as a whole, in its
ground state. Finally, Lz is the orbital angular momen-
tum assigned to the relative motion of the clusters.

Similarly to other algebraic models of coupled degrees
of freedom, the two group chains are coupled. Now this
is done on the level of the U(3) groups, resulting group
chain (3), which supplies quantum numbers to label the
model states:

Usc (4) @ Uc(3) I3 Uit(4) «Uc(2)Uc(4)I3 Uc(3)g Uii(3)

[fc fc f f ] [„„„c][Ã000], Sc Tc [n, 0,0]

«U(3) Uc(2)Uc(2) «O(3 )ISUc(2}I8ISUc(2)«SU(2)g SUc(2)

[n„n„n, ], XL z). (3)

Instead of the U(3) groups closely related to the graphic
oscillator picture, practical calculations make more ex-
tensive use of SU(3) groups. SU(3) representations la-

beled by (A, ,p ) can be readily derived from the

[n, , n2, n 3 ] U(3) ones by setting A, =n, n2 a—nd

p=n2 —n3. From now on we restrict the formalism to
the SU(3) notation. y is a quantum number used in the
SU(3) «O(3) [or U(3) «O(3)] decomposition [24] to
identify states with the same O(3) representation within
an SU(3) one. It is defined similarly to the quantum num-

ber E of the Elliott SU(3)«O(3) basis [17,20], with the
difference that the latter basis is not orthonormal. y also
difFers slightly from the ~ quantum number of the ortho-
normal Vergados basis [25] in the way of handling certain
states with high angular momenta. The spin Jof the gen-
eral basis state is obtained from angular momentum cou-
pling of L and Sc. The parity is determined by the parity

n
assigned to the relative motion [(—1) ] and to the core

Pf +n +n
nucleus [( —1) ' ' ' ]. These labels, together with
the Tc isospin of the core, supply a complete set of quan-
tum numbers to label the basis states as follows:

l[f i f2 f3 f4 ](~c pc)~c&c +n

(4)

Some of these basis states are Pauli forbidden, or corre-

spond to spurious center-of-mass motion of the unified
nucleus. A simple procedure for excluding these states
on the basis of a matching condition between the an-
tisymmetric shell model basis and the cluster model basis
in Eq. (4) is given in Refs. [15,16]. Since the spin-isospin
symmetry is not affected by the a particle, this means the
exclusion of states with specific (A,,p) labels.

In principle, several internal core configurations can be
allowed, nevertheless usually it is enough to consider only
a single SUc(3) multiplet, the one assigned to the ground
state. The particular choice of the core nucleus usually
also selects certain spin-isospin configurations.

In contrast to the microscopic basis, physical operators
are treated phenomenologically, reflecting the semimicro-
scopic nature of the model. In particular, they are con-
structed as Hermitian combinations of the group genera-
tors. Like the wave functions, these operators can also be
characterized by irreducible representations of the groups
in group chain (3). These algebraic manipulations simpli-
fy the calculations to a considerable extent: for example,
an analytic solution of the eigenvalue problem is possible
if dynamical symmetry holds, i.e., if the Hamiltonian is
built up from the invariants of group chain (3). In gen-
eral the Hamiltonian has to be diagonalized, nevertheless
the evaluation of matrix elements is helped significantly
by tensor algebra in this case too.

Similarly to other algebraic models the Hamiltonian
usually contains terms which are linear or quadratic ex-
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pressions of the group generators, but higher-order terms
can also be used if required. An important new element
here is that due to the presence of the Uc (4) and Uc(2)
groups, the Hamiltonian can have iso spin-dependent
terms as well. The parameters of the various terms in the
Hamiltonian are fixed by fitting the model spectrum to
the experimental one. One can also include higher
(second- or third-order) terms in the phenomenologic
electromagnetic transition operators in order to describe
a wide enough range of transitions. These terms are par-
ticularly important in calculations within the dynamical
symmetry limit, when the basis states are not mixed and
the lowest-order transition operators, several of which
are group generators, are able to connect model states
only in a limited domain. Reduced transition probabili-
ties with multipolarity col are calculated from the matrix
elements of the corresponding transition operator T' "in
the usual way:

B(col;a;J; ~aIJI)= ~(,af JI~~~T ~~a'J')
~

(5)
1

2J;+1

The parameters of the phenomenologic transition opera-
tor T'""are fitted to the experimental data, usually by re-
quiring the reproduction of some precisely known B(col)
values. Cluster spectroscopic factors can also be calculat-
ed in terms of the algebraic approach [26].

SUC(3) representation containing two states with LC =0
and Lc =2, which, due to S&=0 represent the full angu-
lar momentum of the core states in this configuration.
Thus, in addition to the ground state of the ' C nucleus
(with Jc =0+ and Tc = 1,} we also include the first

Jc=2+ state at E =7.012 MeV (also with Tc =1) in our
model calculations. It has to be mentioned that there are
several other ' C somewhat below E =7 MeV; neverthe-
less, the coupling of these states to the ground state is less
significant than that of the 2+(7.01 MeV) state.

The excitations of the relative motion of the ' C and e
clusters are characterized by n . According to the model
its lowest possible value is n =6, while its upper limit

min

is given by N. The choice of N is a technical question
rather than a physical one: its role is to provide a large
enough model space to account for the experimental
data. It appears explicitly in some matrix elements,
inAuencing slightly the relative strength of electromag-
netic transitions between different major shells. In our
calculations we used N = 12.

Following the notations of Eq. (4) the general form of
the model states is

l [4,4, 3, 3](0,2)SC =OTC = 1,Nn; ( k, p)+L =J"M),
(6)

III. RESULTS FOR THE i80 NUCLEUS IN THE SU(3)
DYNAMICAL SYMMETRY APPROXIMATION

A. The model states

We assume that in the ground state of the ' C nucleus
the 14 nucleons occupy the s and p shell according to the
[4,4, 4, 2] permutational symmetry, which means that the
distribution of the oscillator quanta (carried by the ten
nucleons on the p shell) corresponds to the
[n z, n 2, n 3 ]= [4,4, 2] Uc(3) representation. Further-
more, due to the antisymmetry of the wave function, the
irreducible representation of the Uc (4) spin-isospin
group must have a Young pattern adjoint to that of the
permutational symmetry group (S,~) [17,20], therefore we
have [f, ,f2,f3,f4]=[4,4, 3, 3]. These are two spin-
isospin configurations belonging to this Uc (4) represen-
tation, one with Tc = 1 and Sc=0, the other with Tc =0
and Sc=1, but the latter one is obviously irrelevant to
the ' C case with TC, =1. The orbital part of the core
wave function is characterized by the (Ac,pc)=(0, 2)

I

~[4,4, 3,3](0,2}S COTc=1,Nn;(A. ,p}yJ"M)

( (0,2)Lc, (n, 0)Lz
~~

(A., p)gJ )
~cL

where, due to Sc =O,J and L have the same values, so we

shall omit one of them (L) as a redundant label. (A, ,p) is
obtained from the (0,2)(n„, O) outer product, and its
possible values are (A.,p)=(n, 2), (n —1, 1), and

(n —2, 0). According to the matching condition be-

tween the states (6) and the SU(3) shell model basis for
the unified ' 0 nucleus, some of the states [SU(3) multi-

plets (A.,p)] have to be excluded from the lowest two al-
lowed major shells (with n =6 and 7). Our model states
with n ~ 9 are presented in Table I, where we used only
the essential quantum numbers for labeling. We mention
here that our basis is practically the same as the one used

by Suzuki et al. [14] in a coupled-channel orthogonality
condition model (CCOCM} calculation, and which was
obtained by evaluating the norm kernel of the resonating

group method (RGM). The only difference arises from
the finiteness of the vibron model basis due to the finite
number of bosons (N).

The explicit form of the wave functions in the SU(3)
coupled basis can be written in terms of Clebsch-Gordan
coefficients and SU(3) DO(3) isoscalar factors [24,25]:

(LcM~L~Mq ~
JM )

X
~ [4,4, 3,3](0,2)LCSC =OMc Tc ) ~N(n, O)L+Mz ) .

(7)

The parity of the states is determined uniquely by n, so
we did not write it out explicitly on the right-hand side
(r.h.s.) of Eq. (7). The phenomenologic operators act ei-
ther on the coupled wave function [as in the l.h. s. of Eq.

I

(7)], or on its core (C), or relative motion (R) coinponent
(in the r.h.s.). A summary of the algebraic techniques
used in the computation of inatrix elements in an SU(3)
coupled basis can be found in the appendix of Ref. [27].
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TABLE I. Pauli-allowed model states for the ' C+a system
with n ~9.

(4,0) p+ 0+2+4+

(5,0)
(6,1)

0 1 3 51234567
(6,0)
(7,1)
(8,2)
(8,2)

p+
1+
p+
2+

0+2+4+6+
1+2+3+4+5+6+7+8+

0+2+4+6+8+
2+3+4+5+6+7+8+9+10+

(7,0)
(8,1)
(9,2)
(9,2)

0

0

1 3 5 7123456789
13579

2 3 4 5 6 7 8 9 10 11

As it can be seen from Eq. (7), the wave functions in
general have components from both internal ' C states
(except for the unnatural parity ones, or those with
J)n ). The ratio of the LC =0 and LC =2 components is
determined by the isoscalar factors. As we can expect
from the statistical weight of the L& =0 and 2 states, the
latter one dominates the majority of the basis states. The
only exceptions are states with (((,p)y=, (n, ,2)0, most of
which have a 50 to 75%%uo contribution from the Lc=0
configuration. Besides these states, some other states
with high angular momenta also have a more balanced
share of the two internal ' C states due to the general
trend that mixing increases with increasing J.

B. The energy spectrum

We restricted our calculations to the SU(3) dynamical
symmetry of the model, so the Hamiltonian was con-
structed from invariants of the groups in group chain (3).
As a result of this, the Hamiltonian is diagonal in basis
(6), and the energy eigenvalues can be obtained as closed
expressions of the quantum numbers n (A, , )M), g, and J.
Since all model states have the same isospin (T= 1), we
do not consider isospin-dependent terms in the Hamil-
tonian.

In order to fix the model parameters we tried to identi-
fy rotational bands with levels roughly following an
E=J(J+1) spacing in the experimental energy spec-
trum [18]. Several bands were identified in this way,
partly in agreement with the band assignment of other
models [2,13,14]. The J content of our model basis (in
Table I) agreed surprisingly well with the experimental
data set consisting of states with definite or tentative J
assignment. Taking only states with T=1 below E =10
MeV, for example, we could assign model correspondents
to the vast majority of experimental states. Among the
22 states with definite J value in this region there was
only a single 0 state (at E„=6.880 MeV} which was
unaccounted for by our model. Based on these initial re-
sults we (more or less speculatively) identified other ex-
perimental states, at higher energy or with tentative J

assignment, with model states, and determined the final
model spectrum by a weighted least-squares fit of the
model parameters. The weight of each state was
%=1/E„,„„(MeV), except for the ground state where
we used 8'=1. This 8'was halved for states with uncer-
tain J assignments. We present the resulting energy
spectrum in Figs. 1 and 2, respectively.

We used the following seven-parameter expression for
the energy in the fitting procedure:

E=e+v( —1) +yn +2)C2(A, ,)(2)+o C3(A, , )M)

+gy +PJ(J+ 1) .

(8)

The resulting parameter set (in units of MeV) was
e= —12.817, v= —0.946, y=1.570, g=0.332,
(r = —0.015, g= —0.817, and P=0. 183. Expression (8) is
essentially an anharmonic oscillator spectrum distorted
by various interactions. Instead of the usual quadratic
term in n, now the ( —1) term proved more useful: its
role was to separate the positive and negative parity part
of the spectrum. n„represents the harmonic oscillator
term, while C2(((,, )M) =A, +p, +A)(2+3k, +3p and
C3(A, ,p)=(((,—)(2}(A,+2)u+3}(2A,+)(2+3) are the eigen-
values of the second- and third-order Casimir invariants
of the SU(3) group for the representation (A,, )M). As
phenomenologic interaction terms in the Hamiltonian,
C2(A, , )M) and C3(A, ,)u} can be expressed in terms of the
SU(3) generators, i.e., the Q' ' quadrupole and the L"'
angular momentum operators in the following way (see,
for example, Ref. [28]):

C (SU(3))= 'g( ) g( )+ )L( ) L( )

' 1/2
1 7

36 2
[g(2)X Q(2) ](2).g(2)

(9a)

' 1/2

+ 1 5 [L("XQ(2']("L"'. (9b)
4 2

—(+ —6+

(+

lp

—6+

)+

1+

i2+

2+ 1+

0+ 0+ —1 2

Theor.

p —o+

((.&. 0)o

7(6, 1) 1

8(6, 0}o+ )((8, 2)O+

iN(5, 2)2+

, 0}o

9(6. 1)1

9(9.2)0

9(9,2)2

FIG. 1. The energy spectrum of the ' C+a system obtained
from the SU(3) dynamical symmetry limit of the semimicroscop-
ic algebraic cluster model. The cluster bands are labeled by the

symbols n (A, ,p)y .
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15
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(8+,4-)(

().+, (+

FIG. 2. The experimental energy spectrum of the ' 0 nucleus
[18] arranged into bands suggested by the model calculations.
Notations (I( ) used earlier for labeling some of the bands are
also shown.

Here A ' '8'"' is the scalar product of two rank-k spheri-
cal tensors, while [ A(J'XB(")]'" is the tensorial product
of a rank-j and a rank-k tensor resulting a rank-I spheri-
cal tensor. The numerical factors in (9a) and (9b) may de-
pend on the conventions accepted.

The term proportional to J(J + 1) in Eq. (8) is the rota-
tional energy obtained as the eigenvalue of the J"'J' "
angular momentum square operator in a state with angu-
lar momentum J. Here we again stress that L and J have
equal values, and therefore the e6'ect of
C2(O(3))=L"' L"' is the same as that of
C2(SU(2))=J"'J"', hence we include only one of these
operators in the Hamiltonian. The energy proportional
to y is a phenomenological term which splits the
different y bands within an SU(3) representation. Just
like the other terms in Eq. (8), it is included here as a
phenomenologic interaction, which is diagonal in the
SU(3) basis. It is worth mentioning, however, that a simi-
lar interaction has been introduced recently in the shell
model description [29]. This operator was constructed
from SU(3) generators and was found to be nearly diago-
nal in the Elliott basis [17].

The experimental energy spectrum in Fig. 2 consists of
28 states with definite, and 6 states with uncertain J .
The states missing from some of the bands are mainly un-
natural parity ones or are expected at higher energy. In
addition to the 0 state mentioned before, there are only
two more states with tentative J" assignment below
E =10 MeV to which we cannot associate theoretical
states. One is a (2 ) state at E„=6.351 MeV, and the
other is a (3 ) state at E =9.672 MeV. Besides these,
there are ten more experimental levels between E =8.4
MeV and 10 MeV with unknown J . These could ac-
count for several theoretical states in Fig. 1. There are
many more states above 10 MeV with or without J" as-
signment, but we did not analyze them in terms of our
model. Some experimental states with even parity

around E =12 MeV and some odd-parity ones around
E =14 MeV can be interpreted, however, as the lowest-

lying states with n =10 and 11, respectively.
Some of the 11 cluster bands in Figs. 1 and 2 are simi-

lar to certain bands discussed in other studies. The
n„(A.,)u)y =8(6,0)0+ band, for example, consists of the
same experimental levels as the ' C+cz band of Buck
et al. [2], derived from a local potential cluster model, or
as the "a-transfer band" of Suzuki et al. [14], interpreted
in terms of a coupled-channel orthogonality condition
model calculation. In this latter study the ground-state
band and the negative-parity "partner" of the a-transfer
band was also reproduced. In our approach these bands
are labeled as n (k, )u)g =6(4,0)0+ and 7(5,0)0, re-
spectively. It was also suggested [14] that the a-transfer
band and its negative parity partner are analogous to the
E"=0+ and 0 bands based on the 0+(6.05 MeV) and
1 (9.63 MeV) states of the ' 0 nucleus. Furthermore,
the similarity between some cluster bands of nuclei with
A = 16, 18, 19, and 20 was also discussed [30]. In addition
to the examples mentioned above, three more bands were
analyzed in Ref. [13] in terms of a microscopic cluster
study. These authors use the same two ' C states in the
generator coordinate formalism and get also the K = 1+,
02, and 1 bands, corresponding (up to some minor ex-
ceptions) to our n (A, ,p)y =8(7, 1)1+, 9(7,0)0, and
7(6, 1) bands, respectively. The remaining five bands in
Fig. 1 including the low-lying y =2+ and 2 bands were
not found in these earlier studies. The 2+(3.92 MeV) and
0+(5.34 MeV) states, which we assigned to the
n„()(,,p)y =8(8,2)2+ and 0+ bands, are considered in
Refs. [3,14] to have a dominantly shell model structure.

Referring in advance to the next section, we mention
here that the five members of the mixed parity "dipole
molecular band" discussed by several authors [9,8, 10,19]
belong to four different bands in our approach. Three of
these, the n„(A,p)y"=7,(5,0)0, 8(6,0)0+, and 9(7,0)0
bands, seem to consist of states usually considered to
have well-developed cluster character, including the first
four members of the dipole band.

In summary, our model is able to reproduce a more
complete ' 0 spectrum than other model calculations
known to us [2—4, 13,14]. This is partly due to the recent
extension of experimental information [18], which al-
lowed us to include certain previously unknown or misin-
terpreted ' 0 levels in our work.

C. Electromagnetic transitions

A relatively large experimental data set of electromag-
netic transitions between ' 0 states is available [18],part-
ly extended by a recent experiment [19]. Here we present
reduced E2 and E1 transition probabilities obtained from
our model and compare them with the experimental
values, as well with the results of some other model cal-
culations [3,14,13] assuming a ' C+a configuration of
the ' 0 nucleus.

1. E2 transitions

The following phenomenological electric quadrupole
transition operator is considered:
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qR QRm +qCQCm +BRPRm
(2) (10}

The QR
' and Qc' quadrupole momentum operators,

which are SUR(3) and SUc(3) generators, respectively,
act on the relative and the core component of the wave
function in Eq. (7). Their selection rules are hn =0,
AA, =+1, hp=+1, so they allow interband transitions as
well, which are usually much weaker than the intraband
ones, and vanish if qR =qc holds. (All the signs in the
selection rules should be taken either in lower or upper
case.} The operator PR '=[[cr XFr]"'X [o.
X Fr ]"']' '+ H. c. introduced earlier in the vibron-
fermion model [27,31] is able to generate transitions be-
tween major shells. It allows relatively strong transitions

with b,n =12, hA, =+2, hp=0 and somewhat weaker
ones with hn =+2, hA, =+1,hp = + 1.

Experimental and theoretical reduced E2 probabilities
are shown in Table II, together with the results from
three other model calculations. These are two micro-
scopic cluster studies [3,13] and a coupled-channel ortho-
gonality condition model calculation [14]. In order to il-
lustrate the selection rules of the operators in Eq. (10), we
also show the quantum numbers assigned to the ' 0
states in our model. Experimental data are from Refs.
[19]and [18].

We used the most precisely determined even ~ even
and odd ~ odd transitions with hn =0 to fix q& and
q&, while pz was fitted independently to the hn = —2

TABLE II. Reduced E2 transition probabilities (in W.u. ) between 0 states. The more recent experimental compilation in Ref.
[19]was used, whenever it was possible. Otherwise data were taken from Ref. [18],as indicated below. (E, is given in units of MeV. )

J; (E„;)

2+{1.98)
4+(3.55)
3 (5.10)
5 {8.13)
1 (6.20)
2 (7.77)

0+(3.63)
2+(5.26)

4+(7. 12)

6+(11.69)

2+(8.21)

4+{10.29)

0+(5.34)

2+(3.92)

6+(12.53)
1 (7.62)
3 (8.28)

5 (11.62)
3 (6.40)

Experimental data
J,(E., )

0+(0.0)
2+(1.98)
1 (4.46)
3 (5.10)
3 (5.10)
1 (4.46)
3 (5. 10)
1 (6.20)
3 (8.28)
2+(1.98)
0+(0.0)
2+(1.98)
4+(3.55)
0+(3.63)
2+(3.92)
2+(1.98)
4 (3.55)
2+(5.26)
2+(3 ~ 92)
4+(3.55)
4+(7.12)
0+{0.0)
2+(1.98)
4+(3.55)

(1+)(3.55)
2+( l.98)
4+(3.55)
2+(5.26)
2+(8.21)
2+(1.98)
2+(3.92)
0+(0.0)
2+(1.98)

4 {10.29)
1 (4.46)
1 (4.46)
3 (5.10)
3 (8.28)
1 (4.46)

B(E2),„
3.4+0. 1

1.2+0. 1

&57
5+5a
& 166

17+2
2.0+0. 1

0.9+0.5
20.3+10.8

23+14

3.3+0.8
&0.15
&12

2.3+0.6

0.9+0.3'

2.4+1.0'

1.5+0.5

& 15.0
1.5+0.2
5.6+3.7

M1+E2'
8+8'

9.7+6.0

[13]

2.9
2.1

11
8

2
5
7
2
4.3
1.6
1.5
0.7

24

2.3
0.6

32

1.3

0.06
0.18
0.16

18
0.14
0.09
5.2

29

30

13
4

B(E2)theory
[14]

8
2.2

28
29

15
2.0
3.7
5.2

17

13
3.5

17

30

2.5

29

9.8

41

[3]

2.38
1.26

6.23
1.61
1.39

31.8
6.13
1.86
0.73

37.5
4.02

0.29
0.45
0.28
1.32

B(E2)

3.4'
3.1

6.9
S.ob

1.5
2.2
3.9

15.8
0.4
3.8
2.0
1.6
0.7
9.4
0
4.5
0.9

10.9
0
7.1

7.1

0
0
0

89.1

0
0
8.2

45.9
0

92.7
0
0
4.0
2.2
2.6
1.2

15.4
0

6(4,0)0

7(5,0)0

7(6,1)1

8(6,0)0

8(7,1)1

8(8,2)0

8(8,2)2

9(7,0)0

9(9,2)2

6(4,0)0
6(4,0)0
7(5,0)0
7(5,0)0
7(5,0)0
7(5,0)0
7(5,0)0
7(6,1)0
9(7,0)0
6(4,0)0
6(4,0)0
6(4,0)0
6{4,0)0
8(6,0)0
8(8,2)2
6(4,0)0
6(4,0)0
8(6,0)0
8(8,2)2
6(4,0)0
8(6,0)0
6(4,0)0
6(4,0)0
6(4,0)0
8(7,1)1
6(4,0)0
6(4,0)0
8(6,0)0
8{7,1)0
6(4,0)0
8(8,2)2
6(4,0)0
6(4,0)0
8(7,1)1
7(5,0)0
7(5,0)0
7(5,0)0
9(7,0)0
7(5,0)0

Present work
n (A, ,p, )y; i~f

'From Ref. [18].
Used to fit model parameters.
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transition with the smallest relative error. The numerical
values of the parameters obtained in this way are
qR=»08 qc=5. 5» andy

The strongest transitions calculated from the semimi-
croscopic algebraic cluster model are the intraband ones.
There are only two cases where predicted intraband
transitions can be compared with experimental
data. Although the prediction of our model for
B(E2;2+(5.26)~0+(3.63)) is less than half of the mean
experimental value, the two results are still in agreement
due to the large experimental error bars. The very strong
transitions within the SU(3) multiplets with p, = 1 and 2
arise because these transitions are much more sensitive to
the asymmetry of the qR and qc parameters than those
within the (A., O) bands, including the two transitions used
in fixing the model parameters. By taking a more bal-
anced parameter pair, e.g. , qR =1.5 and qc=2. 9 these
large B(E2) values could be halved, without changing
the transition probabilities within y=0 bands by more
than 10 to 20%. This latter parameter pair would result
in the same B(E2) value for the 2+(1.98)~0+(0.0)
transition as the old one, and would yield
B(E2;5 (8. 13)~3 (5. 10))=4.4 W.u. in satisfactory
agreement with the experimental counterpart
B(E2)=5+5 W.u.

Transitions with hn =+2 in our model are repro-
duced fairly well. The only striking exceptions are the
0+(3.63)~2+(1.98) and 2+(5.26)~4+(3.55) transi-
tions between the first two y =0+ bands, but these large
B (E2}values are unexplained by the microscopic models
as well [3,13). There are some weak transitions which are
forbidden in our model due to the selection rules of the
phenomenological transition operators. The correspond-
ing B (E2) values are extremely small in the other models
too [see, e.g. , transitions to the ground-state band from
the n (A, ,p) =8(7, 1) and 8(8, 2) states]. This seems to in-

dicate that the SU(3) dynamical symmetry is a relatively
good approximation of the real physical situation in this
case.

An especially remarkable finding is that our results
show a relatively strong correlation with the GCM re-
sults of Descouvemont and Baye [13], sometimes even in

contradiction to the experimental data. This appears to
indicate that the effects of antisymmetrization are fairly
well approximated within the semimicroscopic algebraic
cluster model. Our data show a less pronounced correla-
tion with the results of another microscopic study [3] and
are generally smaller than the B (E2) values of the
CCOCM calculation [14].

Quadrupole moments can also be computed using the
phenomenological operator in Eq. (10) as

1/2

Q(a, J)= (aJM=JITo 'laJM=J~ .

Only the first two terms of T' ' contribute to this ex-
pression. Using qR and qc fixed earlier, we find that the
quadrupole momentum of the first excited state is —6.50
e fm, which agrees excellently with the larger of the two
possible experimental values ( —5.8+1.5 e fm ) presented

in Ref. [18]. We remark here that the intrinsic quadru-
pole momentum (Qo) in a band E defined [32] by

3K —J(J+1)
(J+1)(2J+3)

(12)

is constant by construction for states with p=0 in our
model. The constant value of Qo for the members of a
band suggests the rotational character of that particular
band, therefore the n (A, p,)g =6(4,0)0+, 7(5,0)0
8(6,0)0, and 9(7,0)0 bands in Fig. 1 are ideal rotation-
al bands in our model. Most of the experimental states
having molecular properties are assigned to these bands.
The constancy of Qo is less pronounced for the (A, , 2)y=0
bands, while it has a less regular, staggering character for
the (A., 1 }1and (A, , 2)y= 2 bands. This is similar to the re-
sults for the 1+ and 1 bands in Ref. [13].

2. El transitions

In the present version of the model the phenomenolo-
gic electric dipole transition operator T' "contains only
terms acting on the relative motion component of the
wave function in Eq. (7). The usual first-order dipole
operator, D" ' [l l], is not enough for the sufficient
description of E1 transitions in the ' 0 nucleus, because
its selection rules are too restrictive. It can generate only
transitions with An =+1, bA, =+1, Ap=0 and
An =+1, b A, =O, hp = + 1, the latter ones being much
weaker. It is also unable to connect states with
hn =+3, although our model should be able to describe
transitions of this kind. Therefore, we also considered a
third-order term in T' "to solve this problem:

T(E))—d D(1)+f [D(1)yp(2)+p(2)XD(1)](1)
m R m R m (13)

The most important selection rule of the second term is
An =+3, AA, =+3, hp =0. Weaker transitions with
hn =+3, b, A. =+2, hp= +- 1 and even weaker ones with
hA, =+1, hp = +2 are also allowed, but there are no ex-
amples for these within the present model basis (see Table
I). The b, n =+1 selection rules are also relaxed some-
what due to the presence of the second term in T' ",and
weak transitions with b, n =+1, hA. =+2, bp=+1 and
An „=+1,AX = + 1, Ap = + 2 also become possible.

We displayed our results and the experimental data
[18,19] in Table III. We also presented the B (E 1 ) values
obtained from an earlier GCM [13] and CCOCM [14]
calculation. Certain selected enhanced E1 transitions
were interpreted recently in terms of the simple vibron
model [19]. Despite the similar formalism, this approach
is essentially different from ours, e.g. , it has a completely
different model basis, nevertheless we displayed the re-
sults of Ref. [19] obtained in the U(3) dynamical symme-
try case.

We fixed the two model parameters by requiring the
reproduction of the two experimental B (E 1 ) values with
the smallest relative error. The numerical values of the
parameters obtained this way are dR = 1.12 and

fI( = —0.011. (A least-squares fit of the model parame-
ters using the inverse of the relative error as a weight for
each transition amplitude resulted in similar values of dR



46 SEMIMICROSCOPIC ALGEBRAIC STUDY OF THE a-CLUSTER. . . 555

and fz.) The agreement between calculated and experi-
mental values is much less satisfactory than in the E2
case. While the average magnitude of the theoretical and
experimental B(E1) values is similar, the intensity of
some transitions is too small. Our model gives relatively
strong E1 transitions between bands with the same p,
nevertheless all other transitions seem to be underes-

timated significantly. This is the result of the too strict
selection rules of the phenomenologic T' " operator.
These effects would probably be less pronounced if the
SU(3) dynamical symmetry was broken, and the wave
functions were a mixture of the basis states in Eq. (7).

Another difficulty is that experimental B(E1) values
for different transitions between the same bands usually

TABLE III. Reduced E1 transition probabilities (in 10 ' W.u. ) between "0states. The more recent experimental compilation in
Ref. [19] was used, whenever it was possible. Otherwise data were taken from Ref. [18],as indicated below. (E, is given in units of
MeV. )

J; (E„;)

1 (4.46)

3 (5.10)

5 (8.13)

1 (6.20)

2+(5.26)

4+(7. 12)

6+(11.69)

2+(8.21)

4+(10.29)

0+(5.34)
6+(12.53)

1 (7.62)

3 (8.28)

5 (11.62)

1 (8.04)

3 (6.40)

5 (7.86)

Experimental data
Jf(E f)
0+(0.0)
2+(1.98)
0+(3.63)
2+(3.92)
2+(1.98)
4+(3.55)
2+(3.92)
4+(3.55)
4+(7. 12)
0+(0.0)
2+(1.98)
0+(3.63)
2+(5.26)
0+(5.34)
2+(3.92)
1 (4.46)
3 (5.10)
3 (5.10)
3 (6.40)
5 (8.13)

5 (11.62)
1 (4.46)
3 (5, 10)
3 (5. 10)
5 (8. 13)
3 (8.29)
1 (4.46)
5 (8.13)

5 (11.62)
0+(0.0)
2+(1.98)
0+(5.34)
2+(1.98)
4+(3.55)
2+(5 ~ 26)
4+(7. 12)
4+(7. 12)
4+(10.29)
0+(0.0)
2+(1.98)
0+(3.63)
2+(5.26)
2+(1.98)
4+(3.55)
2+(5.26)
2+(3.92)
4+(3.55)

B(E1),„
& 5.0X 10
0.40+0. 10

2827
3.7+1.7

0.57+0.23
0.37+0.17

2.5+1.0
6.1+1.1'

1.6+0.3
0.056

0.64+0. 13
18+3.3

7.4+2.4
(0.25

7.4+0.9

0.31+0.08( 1.2

4.9+1.6'
5.0+1.1'

5. 1+1.2

0.46+0. 11'
El+M2'
4 5+1 3'

6. 1+1.6'
14+5'

0 70+0 17'
7.2+1.5'

0.28+0.08'
4 3+1 4'

0.37+0.19
0. 15+0.08

1.8+0.9
0. 19+0.10

)09'

[13]

28
40
63

23
11

1.1
1.8

29
52

84
73
74

13
30
22
21

116

1.4
0.5

94
111

B(E1)theory
[14]

56

170

59
67

180

140
77

26
36
79

55
93

78
35
52
84

[19]

28

12
15

36

39

28

B(E1)

5.7
9.8
5.7
0
6.9
5.3
0
6.1b

3.7
0.1

0.02
0.2
0.02
0.02
0.1

74
8.3
7.8
0
7.2
3.3
0.1

0.01
0.04
0.01
0.3
0
0
0
3.7
4.2
0
4.9
1.5
8.8
7.2
9.2
0.1

0
0
0.03
0.01
0
0
0
5.1

0

7(5,0)0

7(6,1)1

8(6,0)0

8(7,1)1

8(8,2)0
8(8,2)2

9(7,0)0

9(8,1)1

9(9,2)0

6(4,0)0
6(4,0)0
8(6,0)0
8(8,2)2
6(4,0)0
6(4,0)0
8(8,2)2
6(4,0)0
8(6,0)0
6(4,0)0
6(4,0)0
8(6,0)0
8(6,0)0
8(8,2)0
8(8,2)2
7(5,'0)0

7(5,0)0
7(5,'0)0

9(9,2)2
7(5,0)0
9(7,0)0
7(5,0)0
7(5,'0)0
7(5',0)0
7(5,'0)0

9(7,0)0
7(5,'0)0

7(5,0)0
9(7,0)0
6(4,0)0
6(4,0)0
8(8,2)0
6(4,0)0
6(4,0)0
8(6,0)0
8(6,0)0
8(6,0)0
8(7,1)1
6(4,0)0
6(4,0)0
8(6,0)0
8(6,0)0
6(4,0)0
6(4,0)0
8(6,0)0
8(8,2)2
6(4,0)0

Present work
n (A,p}y;.i +f—

'From Ref. [18].
Used to fit model parameters.
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differ by more than an order of magnitude, while model
calculations give a more or less uniform set of amplitudes
for such transitions. The most striking example for this
is the set of E1 transitions between the 0& and the 0,+

(ground-state) band. The extremely weak 1 (4.46 )

~0+(0.0) transition together with three more ones with
B (E 1 ) =0.5 X 10 W.u. cannot be reproduced either by
our model or by other cluster studies [13,14]; rather all

three models have B (El ) values comparable to (or even

larger than) that of the 5 (8.13)~4+(3.55) transition
[(6.1+1.1)X10 W.u.]. This fact suggests that the
molecular component is overestimated in the wave func-
tions of the lowest-lying states. In our case this arises
from the fact that the 6(4,0}0+ ground-state band is very
similar to the other bands with (A, , O) SU(3) labels. Hence
the matrix elements of the phenomenologic transition
operators between the (A, , O} and (A, +1,0) states are not
expected to differ significantly for different values of A, .
The B(E1) values of transitions between the E =0&+

band and the negative parity E =0, and 02 bands
[which are labeled as 8(6,0)0+, 7(5,0)0, and 9(7,0) in
our approach] are relatively well reproduced, but the
smaller B(El ) observed for the 4+(7. 12)~3 (5. 10)
transition is overestimated considerably (similarly to oth-
er model calculations).

Transitions to the ground-state band from higher-lying
negative-parity states (assigned to n =9 in our inodel)
are reasonably well reproduced. B (E 1 ) values compara-
ble to the experimental values were obtained for the
9(7,0)0 ~6(4,0)0+(K =02 —+0,+ ) transitions. All oth-
er transitions with hn = —3 are forbidden in the model,
which seems to agree with the experimental situation,
since most of these B (E1) values are very small.

The microscopic cluster studies usually predict strong
electric dipole transitions, which often exceed the experi-
mental values by more than an order of magnitude. If we
compare, however, the relative strength of transitions
from a given band to various bands, we find that the
GCM results [13] follow selection rules resembling those
discussed earlier in this section. In particular, transitions
to which we associate a significant change of the SU(3) la-
bels A, and p are usually weaker in the GCM description
too. [See, for example, transitions from the K"=1,1+,
and 02 bands corresponding to 7(6, 1)1,8(7, 1)l+, and
9(7,0)0 in our approach. ] This again seems to suggest
that some microscopic effects are approximated relatively
we11 by combining the microscopic basis with
phenomenologic operators within our semimicroscopic
algebraic model.

The B(E1) values obtained with the simple vibron
model of [19] were calculated by applying the same
phenomenologic dipole operator D'" which we used in
Eq. (13). Although the internal degrees of freedom of the
clusters were ignored in this simple application (conse-
quently, the model basis and the labeling of the experi-
mental states was completely different from ours), the
enhanced E1 transitions could be explained in a straight-
forward way [19]. In our interpretation, however, the
four lowest-lying members of the mixed parity dipole
band proposed by the authors [8,19] belong to the
n„(A.,p)y =8(6,0)0+, 7(5,0)0, 8(6,0)0, and 9(7,0)0

bands, which are also connected by relatively strong E1
(and E2) transitions.

IV. SUMMARY AND CONCLUSIONS

In this paper we have applied a new semimicroscopic
algebraic cluster model to the ' 0 nucleus. The (0,2)
SU(3) shell model representation was used to describe the
internal structure of the ' C nucleus. The model basis
built on this ' C configuration was found to be similar to
that applied in microscopic cluster studies.

We restricted our calculations to the SU(3) dynamical
symmetry limit, which allowed the analytic solution of
the eigenvalue problem. We identified 34 T =1 states of
the experimental spectrum with model states and as-
signed them to 11 bands with both positive and negative
parity. Several of these are new ones, while the others
are essentially identical to cluster bands identified earlier.
We were able to interpret almost every experixnental state
below E„=10 MeV in terms of our model.

Reduced E2 and E1 transition probabilities were also
calculated applying phenomenologic transition operators.
E2 transitions are generally in good agreement with the
experimental data set (of 16 items); moreover, the quad-
rupole momentum of the first excited (2+) state is also
excellently reproduced. The results were somewhat poor-
er for the E 1 transitions (30 items), mainly because of the
too strict selection rules of the phenomenologic transition
operators. It seems that by introducing symmetry break-
ing terms in the Hamiltonian more realistic results could
be obtained.

A remarkable finding was that our results, especially
the B (E2) values, showed non-negligible correlation with
the GCM results, in the sense that the same transitions
were found strong (or weak) in the two models, some-
times even in contradiction to the experimental data.
This trend was less pronounced for E1 transitions, but
could be seen in the relative strength of transitions going
form a given band to different bands. These results show
that the semimicroscopic algebraic cluster model approx-
imates certain microscopic effects reasonably well.

The we11-known cluster states of the ' 0 nucleus were
assigned to model states belonging to the SU(3) represen-
tation labeled with (A, , O) in our approach. These states
have strong rotational character in our model and are
connected by relatively strong E2 and E1 transitions.
This is in accordance with their interpretation as states
with molecular nature. K =1+ and 1 bands were also
reproduced; furthermore, two new bands based on the
2+(3.92 MeV) and the 2 (5.53 MeV) states were predict-
ed. The proposed members of these bands are less well
known experimentally. The few electromagnetic transi-
tions to and from these states are generally weak, which
is in accordance with our model calculations showing
that these two bands are weakly connected by elec-
tromagnetic transitions to the K"=1+ and 1 bands,
while transitions between them and the molecular bands
discussed above are forbidden.

The semimicroscopic algebraic cluster model is able to
reproduce several important characteristics of the ' 0
nucleus. Furthermore, some results obtained from the
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model, e.g., band structure, and the trend of reduced
transition probabilities are similar to the corresponding
results of microscopic cluster studies, which seem to indi-
cate that the semimicroscopic model is able to account
for some microscopic effects as, e.g., the antisymmetriza-
tion. The importance of this finding lies in the fact that
although calculations get more involved for more corn-

plex nuclei, the semimicroscopic model can be applied to
nuclear systems which may not be described by micro-
scopic cluster models due to computational difficulties.

This work was supported by the DAAD, the Alex-
ander von Humboldt Stiftung, and the OTKA (Grant
No. 3008).
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