
PHYSICAL REVIEW C VOLUME 46, NUMBER 2 AUGUST 1992

Exclusive deuteron electrodisintegration with polarized electrons and a polarized target

Hartmuth Arenhovel
Institut fur Kernphysik, Johannes Gutenberg Un-iversitat, D 65-00 Mainz, Germany

Winfried Leidemann
Dipartimento di Fisica, Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento,

Universita di Trento, I-38050 Povo, Italy

Edward L. Tomusiak
Department ofPhysics and Saskatchewan Accelerator Laboratory, University ofSaskatchewan, Saskatoon, Canada S7N OWO

(Received 3 February 1992)

Exclusive electrodisintegration of the deuteron using a polarized beam and an oriented target is sys-
tematically investigated in a nonrelativistic framework. The structure functions are expanded in terms
of Legendre functions whose coeScients are quadratic forms in the electric and magnetic multipole mo-
ments. Their experimental separation by specific experimental settings is outlined. The structure func-
tions are studied with respect to their sensitivity to the potential model, to subnuclear degrees of free-
dom, and to electromagnetic form factors in different kinematical regions.
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I. INTRODUCTION

In a recent paper [1] (henceforth called I) we have ini-
tiated by considering first the more simple inclusive pro-
cess H(e, e') a systematic study of polarization effects in
deuteron electrodisintegration utilizing polarized elec-
trons and/or polarized targets. The general purpose of
this study is to reveal to what extent the use of polarized
electrons and/or polarized targets will allow a more de-
tailed investigation of the dynamical features of the nu-
clear system than is possible without the use of polariza-
tion. In particular, we want to see how the various polar-
ization observables are affected by the NN interaction
model, by subnuclear effects like meson and isobar de-
grees of freedom, and by the choice of electromagnetic
nucleon and meson-exchange current form factors.

With the present work we will continue this study by
looking at the exclusive process He(e, e'N )N of deuteron
electrodisintegration. In the past, this process has been
investigated theoretically for unpolarized beams and tar-
gets by various authors in order to study either the deute-
ron wave function [2,3] and relativistic and off-shell
effects [4,5] in the quasifree region or the effects of
meson-exchange currents and isobar configurations [6].
Furthermore, the possibility of determining the charge
form factor of the neutron GE„ from H(e, e'n)p using a
vector polarized deuteron target has been discussed in
[7,8]. A first systematic survey on the structure functions
without beam and target polarization has been given in
Ref. [9]. However, such a survey covering the case when
both beam and target are polarized is still missing.

As in I we are interested in the general aspects and
dynamical properties of the two-body system, e.g., NN

potential model sensitivities and the importance of sub-
nuclear degrees of freedom (d.o.f). Compared to the in-
tegral quantities, namely, the form factors of the inclusive
process, we expect for the exclusive reaction a greater
sensitivity of the observables, i.e., the structure functions,
to the aforementioned dynamical properties, since they
contain interference terms between contributions of
different partial waves of the final n-p states. Whereas the
inclusive deuteron breakup depends on only 10 form fac-
tors the much more complex exclusive process
H(e, e'N)N is governed by 41 structure functions.

In Sec. II we briefly review the formulas required for
describing the H(e, e'N)N process starting from the gen-
eral formalism of Ref. [8]. We will still leave out the dis-
cussion of the polarization of the reaction products, i.e.,
the proton and neutron. This will be reserved for the last
part of our systematic study. The abave-mentioned 41
structure functions are given as Hermitian forms of the
t-matrix elements, i.e., the charge and transverse current
matrix elements between the deuteron bound state and
the continuum n-p state. Using the multipole expansion
of the t matrix, the angular dependence of the structure
functions can be separated by expanding them in terms of
Legendre functions whose coefficients are quadratic
forms of the reduced electric and magnetic transition
multipole matrix elements.

The various polarization asymmetries with respect to
beam and target polarization will be given in See. III.
There we show how the structure functions can be
separated by choosing appropriate experimental condi-
tions. Finally, we study in Sec. IV the structure functions
in various kinematical regions. These regions are select-
ed to represent different areas of sensitivities to the final-
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state interaction and to interaction currents mediated by
meson exchange and 6-degrees of freedom. For the cal-
culation of the structure functions we use the same non-
relativistic framework as described in I with realistic NN
potential models, meson-exchange currents (MEC), and
isobar configurations (IC).

II. FQRMALISM

The starting point of the formal discussion is the
differential cross section for the coincidence reaction
which includes both beam and target polarizations as
given in Ref. [8],

d 0 c PI fi. +PTfT+PLTfi Tcosf'+PTTf TTcos20+hpl TfL T»nk
2 e p1p
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total momentum ql, b. Kinematical effects of the boost
from the laboratory to the c.m. system are included in the
virtual photon density matrix which thus has to be evalu-
ated in the c.m. system leading to

2 1/2

pz zk p z& k+n

The scattering geometry is illustrated in Fig. 1. Here, 0
and P [0'„„=(8,$)] denote the spherical angles of the
relative 6nal-state n-p momentum k in the final n-p c.m.
system. Note that only longitudinally polarized electrons
are considered. The quantities' p„'„' describe the virtual
photon density matrix [(p,'p) =(00), (11), (01), and ( —11)
correspond to L, T,LT, and TT, respectively], h is the de-
gree of longitudinal electron polarization, k', and k"
denote the laboratory frame momenta of the initial and
the scattered electrons, respectively, while q is the four-
momentum transfer squared (q=k& —k2). The structure
functions f„")™(f„"„' =f„"„')are all calculated in the
Ana1 n-p c.m. system. This system, which sometimes is
also called antilab system, moves in the laboratory with

ORIENTATlON PLANE

REACTlON PLANE

Primed and unprimed quantities, p„„and p„'„, are here re-
ferred to collectively as p„"„', a similar convention is used for

(~)IM
P IL

FIG. 1. Geometry of exclusive electron-deuteron scattering
with polarized electrons and oriented deuteron target. Relative
n-p momentum is denoted by k„~ characterized by angles 0 and

P and deuteron orientation axis by d characterized by angles 0„
and P„
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where P expresses the boost from the laboratory to the

c.m. system. The deuteron target is characterized by vec-
tor and tensor polarization parameters P", and Pz, respec-
tively, and by the angles 8d and Pd describing the direc-
tion of the orientation axis d of the polarized deuteron
target with respect to the coordinate system associated
with the three-momentum transfer q (see Fig. 1). We
would like to remind the reader that d is the axis with

respect to which the deuteron density matrix is diagonal.
Note that thp deuteron density matrix undergoes no
change in the transformation from the laboratory to the
c.m. system, since the boost is along q [10].

The structure functions f„'„" are proportional to ei-

ther the real or imaginary parts of the quantities

I
md md

1 I
sm p'm' smspm~~ I' , , (8)t (8),

d d S d
S

where t, „ is the reduced transition matrix for thesm @md

process d+e ~np+e'. Counting all different combina-
tions of (ir, 'irIM) one finds a total number of 81. Howev-
er, the corresponding v„„IM are not all linearly indepen-
dent because of the two symmetry relations given in Eqs.
(76) and (77) of [8] which follow from parity conserva-
tion. The first one

I—M+ @'—pu, ,rM (10)

I+(u„„rM)'=( —) +" "u „„IM

then leads to 41 independent real functions which are re-
lated to the above-mentioned 41 structure functions in
(1).

In detail one has [8]

i+Sro
4( —) Rei 'u 8f„„8=

(1+$ )(I+/ $ )
Re[' u„„IM 8 l

(12)

eliminates one, namely voo&0
=0, and relates for

~p'~+~p~+~M~&0 the u„.„rM with M~O to different
ones with M~O. Thus there remain 41 complex func-
tions v„„,M, namely 27 with M &0 and 14 with M =0.
The second symmetry relation

purely transverse structure functions and (a) the
differential cross section do o/d 0 of deuteron photodisin-
tegration for unpolarized photons and unoriented deute-
rons and (b) the corresponding photon and target asym-
metries of the differential cross section [11,12]

doo
dQ

6Md fIM

W fT TrM
npy ~T

(14)

f iIM flM
c TlIM f & IM

(8)=(—)"Q(1+5„o)

where Md, 8'„p, and ~z denote, respectively, the deuteron
mass, the invariant mass of the final n-p system, and the
photon c.m. energy.

In order to have a convenient parametrization of the
angular behavior of the structure functions it is useful to
expand them in terms of Legendre polynomials or associ-
ated Legendre functions. This will also facilitate the
analysis of the contributions of the various electric and
magnetic transition multipole moments to the different
structure functions. To this end we use the multipole ex-
pansion for the t matrix as given in I

IO

MO p'p
(13)

—(lmdLA.
~ jm )

l

Ljlm. A, Jj

Reference [8] should be consulted for a detailed descrip-
tion of all the terms in (1). Note that the structure func-
tions depend on 0, the c.m. angle of the relative n-p
momentum of the Anal state, on E„, the n-p final state
c.m. energy, and on q, , the c.m. three-momentum
transfer.

Incidentally, we would like to mention that at the pho-
ton point one has the following relationships between the

(16)

where

8 "(Aj ls ) =&4m e Uj qN„(Aj ), (17)

X (10sm,
~ jm, )6 "(Ajls )dr (8),
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N„(lj )= 5(„),[E (A j)+PM (Aj )]+5„0C ()(j) .

In complete analogy to what has been done in deuteron
photodisintegration (see the appendix of Ref. [11]) one
finds first

vp plM(8) = QV p pIMdM+p p 0(8)
E

where the coefficients are given in terms of the multipole
moments
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These coefficients have as symmetry properties
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which follow directly from (10) and (11). A specific
consequence of these relations is that U „„IM for
p= —1,0, 1 are real for I=0 and 2 and imaginary for
I =1 and thus lead to the vanishing of f ' for a=L and
TT as has been noted already in [8]. We would like to
point out that in (19) the vanishing of V„„IM at 8=0 and
n. for p' —pAM is directly evident.

Correspondingly one obtains from (12) and (13) the fol-
lowing expansions of the structure functions:

F(&)IM 2V f (&)IM 0
PP 3 PP

which corresponds to Eqs. (13), (14), and (19) of I.

(26)

III. SEPARATION OF STRUCTURE FUNCTIONS

Note that the inclusive form factors discussed in I are
just given by the (E =0) coefficients, i.e.,

with the coefficients

(23)
For the purpose of discussing how the various struc-

ture functions can be separated experimentally it is more
advantageous to rewrite the cross section as given in (1)
in the following form:

2 I
=c g PI g [(pLfL +pTfT +pLTfLT+cos1tI+pTTfTT+cos2$)cos(MQ —5I,m/2)

dkz' dQ,"dQ'„™ r=o M=o
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+h( —)'[(pTfT' +pLTfL'T cosIt))sin(Mp 5I (~I2)—
+pLTfLT sindcos(M1t) 5I, )1rl2)]Idio(8d) (27)

with p=p —pz. For the sake of a more compact notation, we have introduced P0 =1, the original notation f =f
for a=L, T,LT, and TT and for the interference terms new structure functions f" *(a=LTand TT and M ~0) the
following combinations of the old structure functions:

f (&)IM+ — [f(&)IM+( )I+Mf
(~)I —

M)(1+5 )
{28)

with a=LT or TT Note that f,.f, and f ' + vanish identically. For this reason we will use later in the discus-
sion of the results the notation f,f', and f instead off +, f', and f +, respectively.

In the absence of beam and target polarization, the four structure functions f can be separated choosing different (t

angles and applying the Rosenbluth separation to determine fL and fT. The separation of the additional structure
functions in the presence of a polarized beam and/or target can be achieved by exploiting the independence of the pa-
rarneters h, the longitudinal electron polarization, P i and Pz, the deuteron vector and tensor polarization, 8& and pz,
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the orientation angles of the deuteron polarization axis, and P, the out-of-plane angle. By a proper variation of the po-

larization parameters h and Pl one can first separate the various beam, target, and beam-target asymmetries as defined

in [8]

S(b pd pd ) S [ l+pdg v+ pdg r+b( g +pdg v+pdg r )]

where So =S(0,0,0) denotes the completely unpolarized differential cross section.
For the asymmetries one obtains from {27)the explicit expressions
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The various asymmetries are functions of the deuteron
orientation angles 8d and pd, viz. , p and the azimuthal or
out-of-plane angle {(). We will now sketch how one can
utilize these variables for the further separation of the
different structure functions.

The general functional form of an asymmetry is

ao+a, cosP+azcos2$ (37)

or

The P-dependent functions cIM and si~ have either the
form

I
& '($,$, 8d ) = y a (y, y)d (8 ),

where

aIM(y, y)=elf/(y)cosMy+s, M(y)sinMy .

(35)

(36)

b, sinP+b2sin2$ . (38)

For a given I the M-dependent pieces aiM can be separat-
ed by a proper choice of 8d. For I =1 (vector asym-
metries) taking 8d =0 or n i2 yields a,o or a», respective-
ly, and for I=2 (tensor asymmetries) one may first



ARENHOVEL, LEIDEMANN, AND TOMUSIAK 46

choose Od =0 yielding directly a20, and then Od =~/4
and m/2 from which the remaining two terms a2& and a22
can be determined. For a2& and a22 one can also choose
Od =8d =arccos(1/&3) together with P and P+~. Then
the sum and difference of the corresponding asymmetries
result in a» and a», respectively.

In the next step in order to separate cz~ and s~~ one
can take first /=0 giving cr~ and then P= sr/2M for
MAO which yields directly s&~. The remaining separa-
tion of a„or b„ is then achieved by appropriate choices
of P. In a few cases the constant term ao in (37) will con-
tain two structure functions in the combination

pL fr +prfr . In this case one needs a Rosenbluth sep-
aration in addition. This completes the general discus-
sion of how to separate in principle the different structure
functions although that might in practice become quite
involved.

More details can be found in the Appendix. Since
some of the structure functions will need only one or a
few different asymmetry measurements while others will
require a larger number, we will in particular address the
question of how many settings are necessary to separate
each of the structure functions.

IV. RESULTS AND DISCUSSION

The various structure functions f„"„' are calculated
within the same nonrelativistic framework that has been
used for the form factors of the inclusive process in I. It
is described in detail in Ref. [6] with the one exception
that we do not use the nonrelativistic approximation in
the kinematical factors of the T matrix as given in Eq.
(61) of Ref. [8] but take instead the relativistic expres-
sions. In the calculation of the t-matrix elements we cal-
culate explicitly all electric and magnetic multipoles up
to the order L =6. That means we include the final-state
interaction in all partial waves up to j =7. For the
higher multipoles we use the Born approximation for the
final state, i.e., no final-state interaction in partial waves
with j &8 as has been described in Ref. [6]. We would
like to remark that for the electric transitions we use the
Siegert operators in the convention of [13] except in the
case of the Born approximation. In this way the major
MEC contribution is incorporated implicitly.

For the deuteron and n-p scattering wave functions we
use the Nijmegen potential [14] in addition to the poten-
tial models employed in I, namely, the Paris [15]. Bonn
[16] (r-space version), and Argonne V,4 and Vzs poten-
tials [17]. The latter explicitly includes b, degrees of free-
dom within a coupled-channel (CC) approach. Above
pion threshold V28 is modified for the 'Dz channel in or-
der to give a better description of this channel as de-
scribed in Ref. [18]. For the other potential models we
use the impulse approximation (IA) for the calculation of
the IC [18].

In the current operator we include explicit meson-
exchange contributions beyond the Siegert operators,
essentially from m. and p exchange, and isobar contribu-
tions. For the electromagnetic form factors of the one-
body current we use two models: (i) the dipole fit with
the two choices GF„=O and Gz„=D (with p =5.6) [19]

for the neutron electric form factor and (ii) the Gari-
Kriimpelmann model (GK) [20]. Finally, for the MEC
form factor we consider both cases Gz and F& [21]. In
detail we will investigate the following effects: the
infiuence of meson-exchange (MEC) and isobar currents
(IC), the potential model dependence, and neutron elec-
tric (Gz„) and MEC form factor effects (Gz vs F, ).

In addition to their dependence on 0, the structure
functions f„"„' are also functions of E„and q, , the
relative n-p energy and the three-momentum transfer
squared, respectively, both in the c.m. system. Since E„
and q, cover a whole plane, we have chose for this ex-

ploratory study three different cuts in this plane in order
to cover regions with different dynamic properties. We
have chosen one cut at a constant low energy E„=30
MeV taking momentum transfers of 1,10, and 20 fm
The second cut is chosen at a constant intermediate ener-

gy E„=120 MeV choosing momentum transfers of 2, 12,
and 25 fm . Finally, we have taken the third cut at
E„=240 MeV, the region of 6 excitation, with momen-
tum transfers of 5, 15, and 30 fm . These different kine-
matic sectors are marked in Fig. 2 where we also intro-
duce a numbering in order to facilitate the following dis-
cussion of the results.

A. Current contributions

250 IIIc+

ZOD-

150—

A,
g f00-

JIc

50-

0 I I I I

fD ZO 30

FIG. 2. E„~-q, plane with indication of the location of the
quasifree ridge and the kinematic sectors, for which the struc-
ture functions have been evaluated.

In order to give a first survey on the size and the
characteristic features, we show the "unpolarized" struc-
ture functions f in Figs. 3—6 in all kinematic sectors
calculated using the Paris potential, the dipole parame-
trization of the nucleon form factors (GE„=O) and Gz
for the MEC. The effect of the final-state interaction and
of the separate current contributions are also indicated in
the figures. The prominent feature of fL is the forward
peak corresponding to proton emission in the direction of
the momentum transfer q. This peak becomes very nar-
row in the quasifree case but broadens considerably if one
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Enp= 240[NeV] q& = E p= 240[~ev] qg = 15 [fm-q ] q~~= 30[fm j
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0
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0
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0
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FIG. 3. The structure function fL calculated using the Paris p po
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The traansverse structure function f is of the

in z L one notes in the quasifree case a stron and
n a ition, another peak appears in the

E~p= 240[MeV] q& = 5[fm Q E~p= 240[NeV] q& = 15 [fm Q E~p= 240[NeV] q~ = 30[fm $

60 8 [deg] 120 180

E~p= 120 [NeV) q&~= Z[fm Q

0
0 60 8[deg] 120 180

E~p= 120 [NeV] q& = 1Z [fm Q

0
0 60 8[deg] 120 180

E~p-—120 [Jfev] q& = 25[fm $

0
0 60 8 [deg] 120 180

30[NeV] q& = 1 [fm Q

0
0 60 8 [deg] 1ZO 180

30[Nev] q& = 10 [fm Q

0
0 60 8[deg] 120 1BO

E~p —— 30[Nev] q~ = 20[fm P

0
0 60 8 [deg] 120 180

0
0 60 8[deg] 1ZO 180

0
0 60 8[deg] 1ZO 1BO

FIG. 4G. 4. The structure function ~~ as funion ~~T as unction of 0 in the kinematic t f F . . ricsecorso Fi . 2. In rF g. . gredients and notation as in Fig. 3.
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Enp= Z40[NeV] q~ = 5[fm Q E~&= 240[NeV] q~ = 15 [fm. J E~&= 240[NeV] q~ = 30[fm $

0 60 8 [deg] 1ZO 180
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P

0 60 8 [deg] 1ZO 180

E &= 120 [NeV] q f = 1Z [fm Q
0
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E '
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E~&= 30[NeV] q~ = 20[fm $

60 8[deg] 120 180 608[deg) 1ZO 180 60 8[deg] 120 180

Fi . 3.rs of Fi . 2. Ingredients and notation as in 'g.s function of t9 in the kinematic sectors o ig.FIG. 5. The structure function ft r as function o
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the diagonal ones, i.e., fi and fT. The longitudinal-
transverse function fI T exhibits a strong forward peak in

the quasifree case as well as at higher energies and
momentum transfers. Only at low momentum transfers
does one note an oscillatory behavior at all energies (sec-
tors Ia, IIa, IIIa) although for the lowest energy this be-
havior also occurs at higher momentum transfers (sectors
Ib and Ic). Here the final-state interaction is important
and there is some sensitivity to MEC and —of lesser
extent —to IC. The other interference function fT7 is in

most kinematic sectors almost an order of magnitude
smaller than fLT except for the sectors Ic, IIc, and IIIa.
Right on the quasifree ridge (IIb) it is even two orders of
magnitude smaller. In general fTT shows a much larger
sensitivity to both final-state interactions and subnuclear
d.o.f., in particular in the low momentum transfer sectors
Ia-IIIa. One also notes a marked difference in the func-
tional behavior offTT in the various kinematical sectors.

Now we will consider the "polarized" structure func-
tions. In Fig. 7 we show in all kinematic sectors the fifth
structure function fL T for a longitudinally polarized elec-
tron beam. According to Eq. (13) it is proportional to the
imaginary part of Uo&oo and therefore, as is well known,
vanishes in Born approximation due to Watson's final-
state theorem. Thus, compared to fLT it is almost an or-
der of magnitude smaller at low and medium momentum
transfers above the quasifree ridge. In this region fLT
shows a similar angular behavior as fLT except for a
more pronounced forward neutron peak. Only at higher
momentum transfers below the quasifree ridge (sectors
IIc and IIIc) is it comparable in size although the angular
behavior then is quite different. In the sectors Ia and IIa
one notes also a greater sensitivity to IC contributions.

With respect to deuteron orientation we will first con-

sider the diagonal structure function fL and fT (I & 0).
In Fig. 8 we show these in sectors Ib, IIb, and IIIb for a
vector polarized target. They vanish in Born approxima-
tion for the same reason as did fr T and, therefore, are as
small in size. At low energy (sector Ib) one notes for fi"
a rather broad minimum around 25' and a maximum
around 110' while the opposite behavior is observed in

fT . With increasing energy both structure functions de-
velop a pronounced minimum at small forward angles.
However, while fl" exhibits a shallow minimum at back-
ward angles, fT' shows another pronounced maximum of
almost the same absolute size as its forward minimum.
MEC and IC show in general very little influence even in
the b, region. The only exception is for fT' in sector Ib
where a strong effect from explicit MEC beyond the
Siegert operators is seen.

The corresponding structure functions for a tensor po-
larized deuteron target are shown in Figs. 9 and 10 again
in the sectors, Ib, IIb, and IIIb. Compared to fL the
structure functions fz (M=0, 1,2) are roughly an order
of magnitude smaller. The prominent feature is the pro-
nounced maximum or minimum at small forward angles
for higher energies (sectors IIb and IIIb). One notes
some influence from final-state interactions but no effect
from MEC and IC. This is not true for the correspond-
ing transverse structure function fT (M=0, 1,2) where
one readily sees some influence —mainly MEC beyond
Siegert —in sector Ib and for fT' even in the quasifree
case (sector IIb). Otherwise there is almost no sign of
subnuclear degrees of freedom even in the 6 region.

Finally we show a few selected examples of further
structure functions f, in Fig. 11 and f' in Fig. 12
(I & 0) which are either quite large in size or which show
a particularly strong sensitivity to final-state interaction,

E~p——240[NeV) q~ = 5[fm Q

0

E~p= 240[NeV] q~ = 15 [fm P E~p= 240[NeV) q~ = 30[fm Q

4

0 60 8 [deg] 120 180

E p= 120 [MeV) qg = 2[fm 8
0 60 8[deg] 120 180

E~p= 1ZO [NeV] q& = 12 [fm Q

p o

g'

0 60 8[deg] 120 180

E~p= 120 [NeV] q~ = 25[fm Q

V

0 60 8 [deg] 120 180

E = 30[MeV] q = 1 [fm Q

0 60 8[deg] 120 180

E~p= 30[NeV] q~ = 10 [fm Q

60 8 [deg] 120 180

Enp-— 30[MeV] q~ = 20[fm, Q

1-

b

60 8[deg] 120
0

180 0 60 8[deg] 120
0

1BO 0 60 8[deg] 120 180

FIG. 7. The structure function fir as function of 8 in the kinematic sectors of Fig. 2. Ingredients and notation as in Fig. 3.



ARENHOVEL, LEIDEMANN, AND TOMUSIAK 46

E~&= 240[NeV] q& = 15 [fm Q E~&= 240[NeV] q~ = 15 [fm g 8. Potential model dependence

0 60 8 [deg] 120 180

E~&= 120 [NeV] q~ = 12 [fm $

0 60 8[deg] 120 180

E~&——1ZO [N'eV] q~ = 1Z [fm Q

0 60 8 [deg] 120 180

E~&= 30[N'eV] q& = 10 [fm Q

0 6'0 e[deg) 120 18O

Enp= 30[MeV] q~ = 10 [fm $

2-

60 8[deg] 120 180 60 8[deg] 120 180

FIG. 8. The structure function fr" and fT as function of 8 in
the kinematic sectors Ib, IIb, and IIIb of Fig. 2. Ingredients and
notation as in Fig. 3.

MEC or IC. All examples in Fig. 11 and the two upper
cases in Fig. 12 exhibit a strong influence from final-state
interactions —fLT, fTT, and fr would even vanish
without them —to MEC and IC. The two lower exam-
ples in Fig. 12 are comparable or even larger than f1T
and are insensitive to MEC and IC.

Just as in the last section we start the discussion by
first showing the potential model dependence for the four
"unpolarized" and the fifth structure functions in those
sectors where it is relevant (Figs. 13 and 14). Apart from

fr ( right side of Fig. 13) all of them exhibit interesting
effects at least for a few kinematics. The longitudinal
structure function (left side of Fig. 13), for example, is
affected at proton forward angles at low momentum
transfer (sectors IIa and IIIa) and here it is worth noting
that one has the strongest deviations from other potential
models for the CC with V28. The two interference struc-
ture functions fLT and fTT and the fifth one fLT shown
in Fig. 14 depend much more on the potential model than

fl . Here one finds the most significant effects again for
the two sectors IIa and IIIa, but potential model depen-
dence is present in other sectors as well. In particular,
fTT shows in almost all kinematic sectors quite large po-
tential effects. It is interesting to note that fLT appears
to be less sensitive to the potential model in sector IIIa
than fI T although it vanishes without final-state interac-
tion. In general, these interference structure functions
may thus serve as a test for the various NN interaction
models. However, one should note that all of them, espe-
cially fTT, receive subnuclear current contributions
which have a size that is similar or even bigger than the
size of the potential model dependence (see Figs. 5 —7). It
would of course be much better to have cases where the
potential effects dominate all other effects. Polarization
structure functions which best fulfill such a condition will
be described in the following.

One may expect particularly strong potential model
effects for those structure functions which vanish in Born

0

-1-

E~&= 240[NeV) q& = 15 Lfm Q E~p= 240[NeV] q& = 15 [fm Q E~&= 240[kfeV] q~ = 15 [fm P
0

Cb
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z-

0
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p

60 8 [deg] 120 180

E~&= 120 [kteV] q& = 12 [fm, $
0

0 6'0e[d g] 120 180

E~~= 30[NeV] q~ = 1Q [fm Q
0

0

0 60 8[deg] 120 180

E~&= 30[NeV] qf' = 10 [fm Q

0 60 8 [deg] 120 180

E~&—— 30[NeV] q~ = 10 [fm, Q

0

60 8[deg] 120 180 60 8[deg] 120 1BO 60 8[deg] 120 180

FIG. 9. The structure function f~M (M=(), 1,2) as functions of 0 in the kinematic sectors Ib, IIb, and IIIb of Fig. 2. Ingredients

and notation as in Fig. 3.
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E~p= 240[NeV] q& = 15 [fm Q E~p= 240[NeV] q~ = 15 Lan $ E~p= 240[NeV] q~ = 15 [fvn Q
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E~p= 120 [NeV] q~ = 12 [fm Q
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FIG. 10. The structure functions fz (M=0, 1,2) as function of 8 in the kinematic sectors Ib, IIb, and IIIb of Fig. 2. Ingredients

and notation as in Fig. 3.

E~p= 30[%'eV] qc~~= 10 [fm
0

Enp= 30[NeV] qg~= 10 [fm g

approximation. These are f~ and f ' according to
Eqs. (12) and (13). Altogether there are 16 cases (one L-
three T , nine LT , and-thre-e TT-structure functions). In
fact all of them exhibit a potential model sensitivity.
However, the T- and TT-structure functions are even
more affected by subnuclear currents. Thus the best can-
didates for studying the potential model dependence are

the L- and LT-structure functions. We will concentrate
on the most interesting ones which are fi T'*, fi'T*, fi",
and fr T. As described in the Appendix they can be ex-
perimentally determined by one (fl"T,flT) or two
(fl T'*,fl"T+,fi" ) asymmetry measurements. Only in case
of fr" one needs an additional Rosenbluth separation.

The structure function fLT'* are strongly potential
model dependent for a variety of kinematics. This is
shown in Fig. 15 for fr r'+ (sectors IIa, IIb, IIIc) and for
fLT' (sectors IIa, IIc, IIIb). Furthermore, we show in
Fig. 16 in sector IIa the current contributions and the
form factor effects. Comparing the results for the two
structure functions in sector IIa it is evident that both of
them are similarly influenced by the various potential

0 60 8 [deg] 120 180

E~p= 240[NeV] q~~ = 5Lfvn Q

0 60 8 [deg] 120 180

E~p= 240[NeV) q& = 5[fm $ E~p= 240[NeV] q& = 5[fm g E~p= 30[NeV] q~ = 1 [fm g
0

I

~F
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E~p-— 30[NeV] q& = 1 [fm Q

r

/ ~ ~X
+

0 60 8 [deg) 120 180

E~p= 30[NeV] q~ = 1[fm $

0

g-

0 60 8 [deg] 120 180

E~p—- 30[NeV] q& = 1[fm Q
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0 60 8 [deg] 120 1BO

E~p—- 30[NeV] q~ = 1 [fm g

0

p 6-

b

0
0 60 8 fdeg] 120 180 60 8[deg] 120 180

0
0 60 8[deg] 120 180

0

60 8[deg) 120 1BO

FIG. 11. Various structure functions fr™Tand fTT as function
of 8 in different kinematic sectors of Fig. 2. Ingredients and no-
tation as in Fig. 3.

FIG. 12. Various structure function f I~ as function of 8 in
different kinematic sectors of Fig. 2. Ingredients and notation as
in Fig. 3.
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6-
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FIG. 13. Potential model dependence of the diagonal struc-

ture functions fL and fz as function of 8 in the kinematic sec-

tors IIa and IIIa. (MEC and IC included, dipole fit with GE„=O
for nucleon form factors, GE as MEC form factor): Bonn (dot-

ted curve), V&4 (dashed curve), Nijmegen (dash-dotted curve),

V» (dash-double-dotted curve), and Paris (full curve) potentials.

0
l

60 8[deg] 120 1BO

p
0

60 8[deg] 1ZO 180

E~&= 120 [NeV) q~ = ZLfm Q En@= 240[NeV] q~ = 5[fm, g

o

-1-

models. In particular, one readily sees a very strong po-
tential model dependence at forward and backward an-

gles. Furthermore, one notes that form factor and subnu-
clear current effects are considerably less important and
that for some of the shown cases, in particular at proton
backward angles, these effects are even negligible. How-
ever, we would like to point out that this is not always
true for the other sectors, especially at high momentum

FIG. 15. Potential model dependence of the structure func-
tions fL'z' +as functio—n of 8 in the kinematic sectors IIa, IIb, and
IIIc. Ingredients and notation as in Fig. 13.

transfer (sectors Ic-IIIc).
Also the two structure functions fLT

—are affected in a
similar way by the various ingredients of our calculation.
This is shown in Fig. 17 for altogether four kinematics
(sectors Ia, IIa, Ilb, IIIa). The strongest potential model
effects are again present at forward and backward angles.
Though form factor and subnuclear current influences-
not shown here —are somewhat more important than
for fLT'

+ the potenti—al model dependence remains the

E~&= 120 [N'eV] q& = Z[fm Q E~&= 120 [NeV] q~ = Z[fm g

O 6'0 8 [deg] 120 1eO

E~&= 120 [NeV] q~ = Z[fm-Q
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240[MeV] q& = 5[fm g

F-
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p

o
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0 6O 8 [deg] 12O 1BO

E~p= 120 [NeV] q& = 2[fm Q

0 60 8 [deg] 120 1BO

E~&-—240[hfeV] q~ = 5[fm $

E~&= 120 [NeY] q~ = Z[fm Q

p

o

E~&= 1ZO[NeV] q~ = 2[fm P

0 60 8 [deg] 120 1BO 60 8[deg] 120 1BO

60 8[deg) 120 1BO 60 8[deg] 120 1BO

FIG. 14. Potential model dependence of the interference
structure functions fLr,

fear,

and the fifth structure function fl z.

as function of 0 in the kinematic sectors IIa and IIIa. In-
gredients and notation as in Fig. 13.

FIG. 16. The structure functions fr T as function of 8 in the-
kinernatic sector IIa. Current contributions (upper part, nota-
tion as in Fig. 3) and nucleon form factor dependence (lower

part) with GK (full curve) and D (dashed curve) fits, and dipole
fit with GE„=O (dotted curve) (MEC and IC included, Paris po-
tential, GE as MEC form factor). Results with GK fit also for
F I as MEC form factor (dash-dotted curve).
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Enp= 30[NeV] q& = 1[fm Q Enp= 1ZO [NeV] q& = 1Z [fm Q

0 60 8 [deg] 120 180

Enp= 120 [N'eV] q~ = 2[fm Q

0 60 8 [deg] 120 180

Enp= 240[hfeV] q f' = 5[fm Q

i

80 8[deg] 1ZO 180 0 60 8[deg] 120 180

FIG. 17. Potential model dependence of the structure func-
tions fr'r+ and fL'r as function of 8 in various kinematic sec-
tors. Ingredients and notations as in Fig. 13.

most prominent effect.
Our next case, the structure function fL", exhibits a

very interesting behavior for the kinematics IIa and IIIb
as shown in Fig. 18. The various potential models lead to
very diFerent results for fr" for a rather large kinemati-
cal range which extends for proton angles between about
10' and 90 for kinematics IIa and between 10' and 60' for
kinematics IIIb. Since all other model dependences
remain very small, fL' seems to be very appropriate to
study potential effects. However, as mentioned above,
the experimental determination of fl' requires not only
two asymmetry measurement but also a Rosenbluth sepa-
ration. Results for the last of the above-mentioned six
structure functions are also shown in Fig. 18 for two ki-
nematics (sectors IIa and IIb). The potential model
dependence is already considerably smaller than for the
other five discussed cases. One finds the cleanest evi-
dence of potential effects in the region of the second max-

imum for the kinematics IIa. For the other kinematics
form factor effects have already a similar size as potential
effects.

As last topic of this section we want to study to what
extent explicit 6-degrees of freedom in the interaction
model do lead to a different behavior of a structure func-
tion. As already mentioned before, of all our potential
models only V28 includes explicit 5-degrees of freedom.
Thus we have searched for structure functions where the
results with V28 are rather different from the ones with
the other potential models. The most interesting kine-
matics turns out to be sector IIIa, i.e., in the 5 resonance
region at low momentum transfer, where one finds the
largest effects and quite a number of cases. Choosing
only structure functions where one or two asymmetry
measurements are sufBcient for an experimental deter-
mination we end up with four cases: fr T, frr ",and

fT '. Their potential model dependence is shown in Fig.
19. It is evident that V28 leads for all these structure
functions to a significantly different behavior compared
to the other NN interaction models. Thus one may hope
that an experimental study of these four cases might shed
some light on the role of explicit 5-degrees of freedom in
the NN interaction.

C. Form factor efT'ects

It is of interest to examine all 41 structure functions
with regard to their sensitivity to nucleon electromagnet-
ic form factors. In particular we are interested in deter-
mining which structure functions would be useful in
determining GE„. Thus the structure functions have been
calculated using the three above-mentioned models for
the electromagnetic form factors: (i) the dipole fit [19]
with GE„=O, (ii) the dipole fit of [19] using p =5.6, and
(iii) the Gari-Krumpelmann model [20]. We refer to
these here as the GE„=O, D, and GK models, respective-
ly. In addition we have looked for those structure func-

Enp= 120 [N'eV] q&~~ Z[jm Q Enp= 240[%'eV] q& = 15 [fm Q Enp= 240[@'ev] qg = 5[fm-Q Enp= 240[NeV] q& = 5[fm Q
0

I

0

0 80 8 [deg] 120 180

Enp-—1ZO [NeV] q~ = 2[fm Q
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Enp= 120 [NeV) q~ = 1Z [fm, $
0 80 8 [deg] 1ZO 180

Enp= 240[NeV] q~ = 5[fm Q

0 60 8[deg] 1ZO 180

Enp= 240[NeV] q~ = 5[fm Q
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0

6oe[d g] 120

ca g„
3

180 60 e[degj 120 180

t

0 60 8 [deg] 120 180 60 9[deg] 1ZO 180

FIG. 18. Potential model dependence of the structure func-
tions fr" (upper part, sectors Ila and IIIb) and fLr (lower part,
sectors IIa and IIb) as function of 8. Ingredients and notations
as in Fig. 13.

FIG. 19. Potential model dependence of the structure func-
tions fLr, frr, frT, and fr '. Ingredients and notation as in
Fig. 13.
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tions which might unambiguously differentiate between
the effects of using GE or F

&
in the calculation of the

meson-exchange currents. This issue has been discussed
in detail in [21] with the conclusion that whenever one
finds a sizable difference in results depending on which
form factor is used, then a relativistic treatment is called
for.

In order to be a good candidate for learning about nu-
cleon form factors a structure function must not only be
sensitive to such effects but must, in all other respects, be
essentially model independent. We have examined the re-
sults of our calculations to see which structure functions
satisfy these criteria. In most cases the criteria are met in
only a few kinematical regions. Table I lists the structure
functions which show sensitivity to G&„as well as model
independence in the sectors indicated. We note that for
all these structure functions the effect shows up either at
8=m. or close to n.. Figure 20 illustrates these effects for
the structure functions fL and fi in the kinematical re-
gions listed in Table I and for fl' in sector IIIc. The oth-
er structure functions listed in the table show similar
effects.

It is not surprising to see the structure functions fLT'

listed in Table I since they play a dominant role in deter-
mining A,& as discussed by us in an earlier publication
[1]. In addition to the structure functions listed in Table
I, there are others where the effect of GE„ is somewhat
weaker or where the model dependence is a little
stronger. These are fr", fi T, and fLr. For example, Fig.
21 shows that the structure function fi" has a strong GE„
sensitivity not only at backward angles but even at for-
ward angles in sectors IIIc and IIc. However, there is a
strong potential model sensitivity at forward angles so
that the measurement should be for the backward angles
where the potential model dependence is weak. Also,
whereas fLT shows a strong GE„dependence at forward
angles in sectors IIIc and IIc, the potential model depen-
dence is severe in sector IIIc and moderate in sector IIc.
This is one of the only examples we could find where a
measurement at forward angles of 0 could give informa-
tion on GE„.

Our search for a structure function which would help
address the GE-F, controversy was less successful. Al-
though many of the structure functions show a large
difference depending on whether or not the exchange
currents are computed using GE or F, , in many of these
cases there is an equally large potential model depen-
dence. There are a few cases, however, where the poten-

6-

4-

E~&= 120 [MeV] q~ = Z5[fvra Q~

3"
E~&= 240[NeV] q~ = 30[fm. Q~

0 60 8 [deg] 120 180

E~&= 120 [NeV] q& = 12 [fm Q

0

0 60 8[deg] 120 180

Enp= 120 [N'eV] q~ = 25[fm. J

0 60 8 [deg] 120 180

E~&= 240[NeV] q& = 30[fm g
0
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0 60 8[deg] 120 180

E~&= 240[NeV) q~ = 30[fm P

60 8 [deg] 120 180 60 8[deg] 120 180

FIG. 20. Sensitivity of fr, fl, and fr ' to the electric neutron
form factor GE„ in various kinematic sectors (Paris potential
and GE for MEC form factor). Dotted curves, dipole form fac-
tor with G&„=0;dashed, dipole form factor with G&„%0, solid
curves, GK form factors.

tial model dependence may be suSciently weak to justify
a measurement of the structure function, especially if the
uncertainty in GE„has been removed by a measurement
of, say, one of the structure functions listed in Table I ~

These are shown in Table II. As an illustration Fig. 22
shows that the structure function fJT+ has a strong sensi-
tivity to the MEC form factor at both forward and back-
ward directions.

With this we will conclude our first systematic survey
of polarization effects in exclusive two-body electrodisin-
tegration of the deuteron without polarization analysis of
the outgoing nucleons. We hope that is will stimulate ex-
perimentalists to study this important process in greater
detail in the future. An atlas of all structure functions
showing the influence of currents, potential models, and
form factor effects in various kinematical regions will be
forthcoming.

Structure function Kinematic sector

TABLE I. Structure functions and kinematic regions with
sensitivity to Gz„.
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p
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IIIc
Ib,IIb, IIc,IIIb,IIIc

IIIb,IIIc
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0 60 8[deg] 120 180

FIG. 21. Sensitivity of fL" to the electric neutron form factor
G~„. Ingredients and notation as in Fig. 20.
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TABLE II. Structure functions and kinematic regions with
sensitivity to F&.

E~&= 120 [NeV) q~ = 25[fm, Q E~p= Z40[kfeV] q~ = 30[fm. ]

Structure function

T
22+
LT

i20
LT

fPr
~0

=2m/3

Kinematic sector
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Ib

+
g

60 8 [deg] 120

3
+
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APPENDIX

where we have introduced for convenience in order to ex-
plicitly exhibit the angular dependence

d/ed(0&0&8d) 0(0}~d/ed(0&( &8d } ' (A7)

Six other structure functions and seven combinations
require only two measurements for their separation.
These are

FIG. 22. Sensitivity of fLT+ to the MEC form factors GE and
Fi. Ingredients as in Fig. 20 with GK form factors. Dotted
curves, F

&
as MEC form factor; solid curves, GE as MEC form

factor.

Here we describe an o~ptimal way for separating a given
structure function f™=)(I)0) and f ' ' '. This is a
different task than the complete separation of all struc-
ture functions as discussed in Sec. III. In fact, there we
did not concern ourselves with the question of how many
measurements are necessary for the separation of a
specific structure function.

The first step in the determination of any structure
function is the measurement of that asymmetry to which
it contributes. This requires already a number of mea-
surements with different electron and deuteron polariza-
tion parameters, i.e., two for A„Ad, and Ad and four
for A,d and A,d. Next one must determine how many
different settings of the angles (t&, pd, and 8d are necessary
for the final separation. As one will see in the following,
the structure functions can be divided into different
classes according to the minimum number of asymmetry
measurements required for their extraction. A quick
glance at (30) through (34) shows that the five asym-
metries contain differing numbers of structure functions,
in detail, one in A„8 in Ad, 16 in Ad, 5 in A,d, and 7 in

TA,d.
Obviously, the simplest case is the electron asymmetry

A, containing only fLT. This means that fLT can be
determined from just one asymmetry measurement.
Similarly a close inspection of the dependence of the
asymmetries on the angles p, pd, and 8d shows that four
other structure functions and two combinations need
only one asymmetry measurement, namely,

PTTfTT= —Sd"(n /3&$&0) Sd (m/2—&$&0) &

3
(A8)

—&3Sd (n /2, 0, m. /2) ], (A10)

PLTfLT
= —[Sd (n l4, $&0) Sd (3~/4& $—&0)],

2
(A11)

21, —
PLTfLT 2

[Sd (m/2, n /2, 8d )—Sd (m. /2, n/2, 8d )—],

(A12)

pLTfLT' = Q ', [2Sd (m l—2, n. /-4, m. /2)

+Sd (3n/2, n/4, 0.)], .

pLTfLT =S,d(0, $,0) S,d(~/—2, $,0),
(A13}

(A14)

pLTfLT' = —&2[S,d(0, 0,n/2) —S,d(m. /2, 0,n/2)],
(A15)

2
[S,d(0, n l2, 8d )+S,d(n, ~/2, 8d )],

(A16)

PLTfLTt+ = —[Sd (m l4, n. /2&n l2) Sd (3m. /4—, n l2, n. /2)],

(A9)

PTTfTT
= Q3 [—2Sd (~/3, 0, ~/2)

PLTfLT Sd (~/2 4' 0),
pI. TfLT = &2Sd (n./2, $, m l—2),

pTfT =S,d( /2,n0, 0),

PTfT"= —&2Sed(m /2, 0, m. /2),

PLTfLT' +2S,d(m/2, 1rl2, m l2)

PLTfLT Sed (~/2& $ 0)&

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A17}

i21, —
2

[Sd(0, vr/2, 8d ) Sd(~, n /2, 8d )]—,

(A18}

i21, +
PLTfLT' 2

[S,d(m. /2, 0, 8d ) —S,d(m/2, n, 8d )],
(A19}

PTfT =Q ,'[2S,d(m!2, n/—4, n/2)+S, d(n. /2, ml4, 0)],
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PIT fir'+ —V' —', [S,d(rr/2, 0, Bd )+S,d(n/2, n', Bd )]

(A20)

Increasing the number of asymmetry measurements to
three allows one to determine only one further structure
function and one combination, namely,

=Q —,'[2$,d(n /2, 0, n. /2) +S,d( n. /2, 0, 0)) .

(21)

The terms PL,fl +prf T' in &d and PI fL +prfP in

Ad can also be determined from two asymmetry mea-
surements, i.e.,

PL,fi". +PTfT
= — —[Sd (tr/4, rr/2, tr/2)

2

+Sd (3'/4, rr/2, rr/2)], (A22)

PLfi +PTfP= ,'[Sd(rr—/4,$,0)+Sg(3tr!4,$,0)] .

(A23)

In order to separate the longitudinal from the transverse
part one needs in addition a Rosenbluth analysis.

&i, +
P TTfTT' = —[Sd (n./4, n:/2, n:/2)

v'2

+Sd (3n/4, rr/2, n. /2)

+2Sd (n /2, n /2, m /2) ], (A24)

PTTfTT ,'[S—d —(rr/4,$,0)+Sd(3'/4, $,0)]
—Sd(n/2, $,0) . (A25)

A11 thirteen vector structure functions are then deter-
mined and twelve of the tensor ones or respective com-
binations. For the remaining combination fr'T'+, frT'+,
fIT' fTT fTr' (pif1.'+prfr') and (pifL, +prfP)
one needs four measurements in order to determine them.
The last two combinations require a Rosenbluth separa-
tion in addition. Finally, there remain two combination

fPz'+ and fPy+, where six settings are necessary.
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