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P4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description
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The observed variation of hexadecupole deformation parameter P4 with mass number A in rare-earth

and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-

Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with

SU,dg(3) and SU,dg(5) coherent states. The SU,dg(3) limit is found to provide a good description of data.

PACS number(s): 21.10.Ky, 21.60.Fw, 21.10.Gv, 27.70.+q

Coulomb excitation, electron scattering, Coulomb/
nuclear interference, etc., generated data on hexadecu-
pole deformation parameter P4 all across the rare-earth
region and the latest compilation of these data are due to
Janecke [1]. Similarly Bemis et al. [2], employing
Coulomb excitation with He ions, and Zumbro et al.
[3,4], analyzing muonic E, L, and M x rays, produced P4
data for some of the actinide nuclei. An important
feature of the P4 data in rare-earth and actinide regions is
the change in the sign of P4 after some value of the mass
number A. Bertsch's [5] polar cap model gives a qualita-
tive understanding of the variation in P4 with A. The
Nilsson-Strutinsky renormalization method [6] and its
variants [7,8] and the more microscopic Hartree-Fock +
BCS method [9] are so far employed for the description
of P4 data.

Recently considerable progress was made in establish-
ing that the sdg interacting boson model (sdgIBM or sim-

ply gIBM) is a viable and powerful tool for the analysis
and understanding of E4 data (i.e., select E4 matrix ele-
ments [10], E4 strength distributions [11,12], hexadecu-
pole vibrational bands [13], etc.) which has started accu-
mulating in the past few years. Therefore it is important
and essential to understand the P4 systematics using
sdgIBM. As demonstrated in [14], the sdIBM fails to de-
scribe the P4 systematics in rare-earth nuclei. In Refs.
[15,11] it is shown that the inclusion of g bosons together
with the OAI (Otsuka, Arima, and Iachello) [16] mapped
hexadecupole (E4) transition operator can in principle
explain the change in sign of P4 with A. However, as the
formalism in [15,11] is strictly confined to sdgIBM-1, so
far the experimental data are not analyzed. To this end
one should start with proton-neutron sdgIBM (pn
sdgIBM or sdgIBM-2). Therefore OAI mapping of the
E4 transition operator in p, n spaces is carried out sepa-
rately and the resulting IBM-2 E4 operator is projected
onto IBM-1 space. The E4 operator thus obtained is
used in the SU,d (3) and SU,d~(5) limits of sdgIBM [17] to
analyze P4 data in rare-earth and actinide nuclei.

In sdgIBM-2 quadrupole (A. =2) and hexadecupole
(A, =4) transition operators T„are written as
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q&'t'. ~ (qI"t'.„) are effective charges that define the one-
body transition operators Q~t

' (Q'„') and e'„"' (e'„') are
the overall efFective charges, respectively, in proton (neu-
tron) boson space. Using the OAI correspondence
[16,18],
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where N (N„) is proton (neutron) boson number,

jP =(2QP —1)/2 with 2Q„(2Q ) being the shell degenera-

cy for protons (neutrons), and equating the matrix ele-
ments of multipole operators in fermion [rPY„(HP, JP)]
and boson (Q„". ) spaces one obtains the efFective charges
q&' I'. . Note that (j,j„)takes values ( —", , —", ) and ( —", , —", )

for rare earths and actinides, respectively. Now carrying
out IBM-2 to IBM-1 projection [19]by assuming that the
low-lying levels belong to F spin F=F,„=(N„+N„)/2
and using the simple result that (,FF,~e„(bj„) +
e (b„b, )~FF, ) = [(e„N +e„N„) / N)(FF~b b~FF);
F, = (N N„)/2 (—IBM-1 states correspond to
F=F,=N/2;N=N +N ) which follows from the
Wigner-Eckart theorem in F-spin space, the OAI mapped
and IBM-2 to IBM-1 projected transition operator T„is
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The two free parameters e'"' (or equivalently e'"') are
defined in (1) and the OAI mapped expressions for the
effective charges q&' t'. appearing in (1) are defined by the
last equation in (3). The ( —) sign for e& &' in (3) is for par-
ticle bosons (fermion number Nf ~ 0;N=Nf /2) and the
(+ } sign is for hole bosons [ferinion number

Nf ~ 0;N =(20—Nf )/2].
In sdgIBM, the N-boson coherent state [17] is written
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where a = I+az az+a4 a4, a& „=(—)'+"a&„,
b0=s0, b2„=d„, b4„=g„. Using the coherent state
~N;a&, the intrinsic quadrupole and hexadecupole mo-
ments M2 and M4 are given by

M, = (N;&i T', iN;a &

SU,dg(3 }and SU,dg(5) limits [17]]by the relation [22]
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In the geometric model analysis [22] that gives rise to (8),
the surface diffuseness corrections are neglected. Note
that R0 =r0 A ' and r0 is chosen to be 1.2 fm.

The mapped E4 operator T„" with e' ', e'„' as the two
free parameters (3) is used to calculate the coherent state
matrix element M~ via (5) and (6) in the SU,dg(3) and

SU,dg (5}limits by using the equilibrium shape parameters
(P&,P&, y ) given in (7). The M4's thus obtained and the
experimental or theoretical [using (3) and (5)] Pz values
when used in (8) give P4 values. The calculated P4's are
6tted to experimental data and the two free parameters
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In [20,17] a&„are parainetrized in terms of the quadru-
pole and hexadecupole deformation parameters Pz, P& and
the asymmetry angle y' (c denotes coherent state),
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In the SU,ds(3) and SU,dg (5) limits, which are appropriate
for deformed nuclei [17,21], the equilibrium shape pa-
rameters (Pz, P4, y ) are given by
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The coherent state matrix elements M2 and M4 are relat-
ed to the geometric model deformation parameters
(Pz, P4) for axially symmetric shapes [as is the case with

FIG. I. Hexadecupole deformation P4 vs mass number for
rare-earth nuclei. (a) The SU,dg(3) and SU,d~(5) predictions are
compared with data. (b) The theoretical results due to Nilsson
et al. [6] are compared with data. In the inset to (b), the polar
cap model prediction for the variation in M4 with A is also
shown. The experimental data are taken from Janecke [I].
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e' ', e' ' are determined. In the present analysis experi-
mental P2 values are used, which is equivalent to compar-
ing the calculated and experimental E4 matrix elements
(M4 = (4+,

ll
T llOs+, ); g.s. stands for ground state

K"=0+ band). The results for rare-earth and actinide
nuclei are shown in Figs. 1(a) and 2(a), respectively.

For rare-earth nuclei the P4 data are taken from
Janecke's compilation [1] and the j()2 data are taken from
the adopted values given by Raman et al. [23]. The
effective charges (e'„"',e'„') in e b units are determined to
be (0.0121,0.0045) and (0.0396,—0.0181) in the SU,de(3}
and SU,dg(5) limits, respectively. It is seen from the re-
sults in Fig. 1(a} that the SU,d (3) limit provides a good
description of experimental data. In Fig 1(b.) the results
of Nilsson et al. [6] are shown. Here the potential ener-

gy surfaces are constructed as a function of quadrupole
(Pz) and hexadecupole (P4) deformation parameters in-

cluding Coulomb and pairing energies and then mini-
mizing the potential energy, the ground state deforma-
tion parameters are determined. In the inset to Fig. 1(b)
Bertsch's polar cap model [5] prediction for M4 vs A is
shown. Where, with JV the sum of proton and neutron
shell degeneracies (for rare earths %=76), m ( A) the
number of valence nucleons [for rare earths m ( A )
= A —132] and the Legendre polynominal P4(x)
=(35x —30x +3)/8,
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It is to be noted that the variation of P4 with A is similar
to that of M4 with A. It is seen from Figs. 1(a) and 1(b)
that the SU,d (3} limit results are similar to those of
Nilsson et al. [6].

For actinide nuclei the P4 data are taken from Bemis
et al. [2] and Zumbro et al. [3,4] and the P2 data are tak-
en from Ref. [2]. The effective charges (e' ', e'„'), in e b
units, are determined to be (

—0.078,0.066) and
( —0.0133,0.026) in the SU,de (3) and SU,dg (5) limits, re-
spectively. Once again the results given in Fig. 2(a) show
that SU,dg(3) limit provides a good description of data.
In Fig. 2(b) the Hartree-Fock + BCS results of Libert
and Quentin [9] and the Nilsson-Strutinsky calculations
of Brack et al. [8] are shown and the SU,dg(3) results are
somewhat better than the microscopic calculations.

By comparing the SU,dg(3) and SU,ds(5) results with
experimental and other theoretical calculations shown in
Figs. 1 and 2 the following conclusions can be drawn: (1}
With two free parameters the data for rare earths and ac-
tinides are described very well. (2) SU,ds(3) limit provides
a good description of data and it is much better than
SU,d (5) limit. This is in conformity with the fact that
the SU,dg(3) limit gives a good description of various
properties of rotational nuclei [21,24]. (3) In actinides
SU,& (3) limit shows change in sign of P4 for Cm isotopes
which is consistent with data; other theoretical calcula-
tions do not produce the change in sign. (4) The free pa-
rameters e'„' and e' ' should be determined by microscop-
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FIG. 2. Hexadecupole deformation P4 vs mass number. for
actinides. (a) The SU,qg(3) and SU,dg(5) predictions are com-
pared with data. (b) The theoretical results due to Brack et al.
[8] and Libert and Quentin [9] are compared with data. The ex-

perimental data are due to Bemis et al. [2] and Zumbro et al.
[3,4].

ic theories involving multi-j-shell mappings (see, for ex-
ample, Ref. [25]) and this is being pursued. The results
of this exercise will be reported in a longer publication.
(5) In the calculations experimental P2 values are em-

ployed which amounts to comparing the calculated and
experimentally determined M4's rather than the deduced
[via Eq. (8)] P4 values. It is useful to note that the experi-
mental M4's are 4—8 times the single particle unit for
rare earths and 6—10 times for actinides (except in a few
cases).

The results given in this paper confirm that sdgIBM
provides a good framework for describing E4 properties
of nuclei. The present formalism is being extended to
study the recently deduced B(IS4:4z ~0+, ) systematics
in rare-earth nuclei [26] and the results will be reported
in a longer publication.
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