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Neutrino- and antineutrino-deuteron elastic scattering and the axial isoscalar nucleon current
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We calculate the neutrino and antineutrino elastic scattering cross section on unpolarized deuterons at
energies from a few MeV to several GeV and squared momentum transfers up to 5 GeV2 These cross
sections can be used to deduce the unknown weak SU(2) isoscalar and SU(3) flavor-scalar axial-vector
coupling to nucleons. This observable can be related to the strangeness axial-vector matrix element in
the absence of QCD radiative or isospin-violating corrections. We show that the unknown weak mag-
netic vector coupling may also be gleaned from these measurements. We use different techniques at
different energies, including light-cone impulse approximation at the highest energies, and show that

they connect smoothly to each other.

PACS number(s): 25.30.Pt, 24.80.—x, 14.20.Dh, 12.15.Mn

I. INTRODUCTION

The puzzling results of measurements of the #N X
term [1] and of the proton spin structure function g, by
the EMC group [2] have suggested that our understand-
ing of the nucleon’s structure is far from complete. For
instance, the feature that the up () and down (d) valence
quarks carry the spin of the proton is called into ques-
tion. Also, the notion that the sea quarks carry none of
the spin may well not be correct. In addition, despite
numerous theoretical arguments to the contrary [3,4], it
is not ruled out that strange quarks play a much larger
role in the structure of the nucleon than is generally ac-
cepted. For instance, a straightforward explanation of
the 7N 2 term and g, measurements is that there is an
appreciable (~20%) probability of strange quarks being
in the proton and also contributing to its spin [5,6]. Since
one may think of the proton ‘“dissociating” into a A(2)
and K, it is not surprising that some strange-quark pres-
ence should be expected.

If strange quarks do contribute to the nucleon struc-
ture functions, then they give rise to new weak form fac-
tors and alter other ones. If only up and down quarks are
present, then the weak nucleon form factors at zero
momentum transfer F;(0) for the weak vector and axial-
vector currents
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are determined by conserved vector current (CVC), par-
tially conserved axial-vector current, and the neutron 8
decay. In Eq. (1) g is the momentum transfer, m is the
nucleon mass, U is the nucleon spinor, and IS and IV are
the isoscalar and isovector components, respectively.

In the standard model with only u and d quarks, we
have

Fi$(0)=—2sin’0y, FIV=(1—2sin%y),
F3(0)=—2xkgsin?0y, FY =k, (1—2sin’0y), ()
F$0)=0, FY¥0)=g,=—1.26,

where the superscripts refer to isospin, sin’6,, ~0.23
with 65 the weak mixing angle, kg~ —0.12 is the iso-
scalar anomalous magnetic moment, and k, ~3.7 is the
isovector anomalous magnetic moment. F, is the in-
duced pseudoscalar coupling, which does not contribute
to neutrino scattering.

If strange quarks contribute to the nucleon’s structure,
they may modify the normalization and four-momentum
dependence of the weak form factors. Although F,(0) is
still fixed by sin?}, (since the net strangeness of the pro-
ton is constrained to zero), the momentum dependence of
F'S and FY is no longer determined from the electromag-
netic form factors by CVC. There could also be new
magnetic and axial contributions, even at g>=0, denoted
by F3 and F¥; (defined below) where s stands for strange.
These new contributions allow tests for the presence of
strangeness matrix elements in the nucleon to be carried

out [7-9]. Among these tests is a determination of
F LS= —F%, (see below), which we examine in detail, via
the ratio

— do(vd —vd)—do(vd —vd)
do(vd —vd)+do(vd—vd)

(3)

This ratio vanishes in the absence of an isoscalar axial-
vector matrix element. In the presence of strangeness, it
is advantageous to use an SU(3) notation; however, we do
not assume SU(3) symmetry. We define the underlying
weak and electromagnetic current operators by [9]
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gk = 'u"yu(l—y Ju—1idy, (1—ys)d
— 15y, (1—ys)s —2sin*6,J

S gy 2ec1—y°
a=0,3,8

)—2sin’0,,a®]A% , (4b)

where ¢ is the (current) quark field operator, A® are the

Gell-Mann SU(3) matrices, normalized to
Tr(A°AP)=8% /2, 7L°=§1, and for the proton

a’=0, b°= -1,

=+1, b*=+1, (4c)

a¥=1/v3, b¥=+1/(2V3).
The matrix elements with nucleon states yield
(i=1,2,4,P)

F)=W(F!+FP+F}),

F}=WF}{=F , (5)

F}=(1/2V3)(F*+F#—2F}) ,

where these quark form factors are defined in exact anal-
ogy with Eq. (1); as an example, we have

o iouvq"

Vet =,

(p'Isy,slp)=Ulp F5(q?) |U(p) .

Finally, the full weak nucleon form factors are thus given
by

Fi,= 3 2(b%—a“in’0y)F{,

a=0,3,8
= 3 (1rP—2Q;sin’0y)F], , (6)
j=u,d,s
Fap= 23 —2b°F4,
a=0,3,8
=¥ —%rf’F{i,P , )]
j=u,d,s
with 7% the third component of the weak isospin Pauli
b p
matrix (¥=1 for left-handed u quarks; 7*'=—1 for

left-handed d and s quarks). Since FS=FP+F", and
SU(2) symmetry on the nucleon gives

(FO8yp=(FO8)
(FRyp=—(F)",

it follows that
FS=—Fs . 9)

For the matrix elements of the nucleon, we have intro-
duced the form factors F©,F®), F®  corresponding to
the SU(3) matrices A%, 7\‘3’ and A®)]

In a previous publication [8], we have used an impulse

approximation and a single-deuteron form factor [valid

for squared momentum transfers ¢’=—Q2?2 —0.5
(GeV/c)?] to evaluate R. In this paper, we go beyond this
approximation and consider three regions of energy: (A)
E, <150 MeV, (B) E, <1 GeV, and (C) E, S5 GeV.
These regions overlap, but we have used different calcula-
tional techniques for the various energy regions. In all
cases, we use an impulse approximation and neglect off-
mass-shell effects and the small ( < 1%) isospin violation.
In region A we use a nonrelativistic reduction of the
current operators in Eq. (1), together with a multipole
decomposition [10] and some meson exchange effects,
through the use of an extended Siegert theorem to evalu-
ate the matrix elements for a deuterium target in the lab-
oratory frame [11]. In region B we use a covariant for-
malism together with a nonrelativistic deuteron wave
function in the Breit frame [12]. Meson exchange
currents are neglected since they are predominantly due
to the pion of isospin 1, which does not contribute to
elastic scattering in lowest order. In region C we use a
light-cone impulse approximation [13], which projects an
instant-form nonrelativistic deuteron wave function onto
the light cone, and boosts it to the Breit frame. Although
exchange currents are also neglected, the light-cone tech-
nique has been shown to include some two-body effects
[14]. As we will show, there is a smooth transition from
one region to the next one.

II. THEORY
A. Low-energy region: Q2 (400 MeV/c)?

The elastic neutrino scattering from deuterium is medi-
ated solely by neutral currents (unless very small multiple
scattering effects are considered). The differential cross
section can be written as

2 , ,
do= 2;’ L Te[H, H}8(E,+E;—E,—E}dE,  (10)
where E, and E’, are the initial and final neutrino ener-
gies, E;,E; are those of the deuteron, Tr is a trace over
spin degrees of freedom, H,, is the weak Hamiltonian,
and d¢£ is the phase-space element

d3k!,
dé=_——7 . (1n
2E,(27)
We express the cross section in terms of the squared
momentum transfer g>= — Q% the transformation is
—d"z —do — (12)
dQ dQ, E

For unpolarized initial and final states, we have
L Tr[H, H) 1= LGETr[J (=) (—)ITe[ 1M ()] ,
(13)

where J,, and /* are the nucleon and lepton currents, and
G is the Fermi weak coupling constant. The leptonic
trace is

LHV=

2 - (k"k'”-l—k”k'“-—g“"k-k’ﬁTie“""ﬁk;kB) ,
v v

where the upper sign holds for v’s and the lower one for

v’s. In region A we have
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g =‘LG§ELk'v(Rain) , with T4(q)=¢'9’—189,T,(q) : ab=T¥(q)a; b;, and lep-
aqQ, 3w tonic kinematical functions
1
= , (14) ~, A
Y I+(E,—E cosb) /E, L,=1+kk,, a7
where M is the mass of the deuteron, and the response L=k +%k’ (18)
functions R, and R, can be related to a set of irreducible v
hadronic response functions Ry ---R,, of rank zero LO=—V3(1— %ﬁ'v k), 19)
(defined in the Appendix) through
! L),=V2k,—k,), (20)
R¢§0\2=3 ——_Rss(o)Lss ~,n
V3 L2, =2k'k, . 1)
—T/I:RJ(OI)q L++—1/L—RUU(OOO) The set of universal hadronic response functions is
3 evaluated with a nonrelativistic deuteron wave function
1 in the laboratory frame of reference. They can be ex-

(15)

2
+ 175 Ra(02)T5@) : L,

panded in terms of bilinear products of the reduced ma-
trix elements of the multipole operators of the hadronic

R{%= —V73R,,(011)§-L), , (16)  weak current operators. The resulting expressions are
J
RO= |IC/AJ )Ly +2ReCy (A )LIAT ()G Ly, +1LHA )P X | T(@) : L, —73L°
MpJ
| N 1
FE AT )P+ [ (AT )12] 5T2(q) L2 +‘/—3L° (22)
R{®=V2 3 Re&;(AJ )M} (AT )4-LY, (23)
AT
In terms of the response function for the deuteron of spin 1, the ratio R is given by
R =R,/R,, (24)
with
=V2Re(EIM?¥ +E,M3* J§-L}, , (25)
R,= [(|Col2+|C} 1>+ |Cy 1)Ly + (Lo >+ L} 12+ L, %) | T,@) : L3r71§L°
+2Re(CyL¥ +CiL* +C,L3 Yq-L) —(IM, 1>+ |E3I*+|E,|?) %Tz(a) (L2 + 73L° (26)

B. Intermediate-energy region

For energies above ~ 100 MeV we have used a covariant formulation for the scattering [12], albeit we keep a nonrela-
tivistic deuteron wave function to evaluate body form factors in the Breit frame. In this approach, also sometimes
called an “elementary particle treatment” [15], one makes use of deuteron elastic form factors. Nonrelativistic, one-
body current operators and wave functions are then used to provide a (model-dependent) approximation to these covari-
ant form factors. This formalism is described in some detail in Refs. [12] and [15], and references therein. We begin
with elastic deuteron matrix elements of weak currents written as [15-17]

(D'U,JD)E‘/TIDI G (QNE*-EP,+G,(QPE,(E*-q)—EF(Eq)]— *eg)—t ] @7
o~0
- iG5(Q?)
(D1 ID) = 4D‘D iG4<Q2>euaﬁy§'*“§ﬂP’+’—%—eﬂaayq“ﬂw@'*-q>—§'“<§-q)] (28)
o~ 0

where P¥=p+pl,p, (p;) is the deuteron’s initial (final)
momentum, D,= V' M?+Q?/4 is the deuteron energy in
the Breit frame, and §, (§,) is the polarization four-
vector for the initial (final) deuteron. In writing (27) and

I
(28), we have already assumed vector current conserva-
tion, time-reversal symmetry, Hermiticity, and the ab-
sence of second-class currents. It is also common, and
convenient, to rewrite the three-vector terms into linear
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combinations corresponding to charge, quadrupole, and
magnetic form factors:

Gc(QH)=G,(QY)—(Q*/6M?*)Gy(Q?) ,
Go(QH)=G,(Q%)—G,(Q)+(1—Q%/4M*)G5(Q?) ,
Gy (QH=G,(Q?) . (29)

The neutrino-deuteron elastic cross sections are then
given by
252
do 5 _ GrEy
dQ 2172

r(2 sinzg W, +coszg W,

with 6 the lepton scattering angle in the laboratory frame
and E, (E;) the initial (final) neutrino energy. The nu-
clear recoil factor r=[1+(1—cosf)E,/M]"!, and the
response functions are given by

2

_ 0* Q2 2,2 Q*?
Wia?) o | T Guty e Gi
0% 2 0t

W,(g2)= |G:+—<—G G2 31)
24 ¢t a2 O T gag 00

2 Q* 2

T e [0

2y 2 Q*

Wilgh=73 |1+ 25 [GyG .1,

with G , =G, +(Q?*/M?*)G5. The relation of do /dQ? to
do /dQ is found immediately from dQ /dQ*=n/E'%.

Equation (31) involves no deuteron-model-dependent
approximations. In order to explicitly evaluate and com-
pute the body form factors G,-Gs, we recast Egs. (27)
and (28) in the Breit frame into a nonrelativistic appear-
ance [16]. The left-hand sides are explicitly evaluated us-
ing nonrelativistic reduced single-nucleon current opera-
tors in the Breit frame for the deuteron [10]:

F (g%

Jo=Fg(Q%, JJ = o-(p+p)=0

i F(g?%)
J= |Fy(Q}) =0 Xq+—=
M(Q)Zma 9 2m

(pt+p') |, (32)

J(5)=FA(Q2)0.

where the Fp,’s are the free, single-nucleon (electric,
magnetic) Sachs form factors, which are related to F, and
F, in the usual manner.

Furthermore, we use S- and D-state deuteron wave
functions u(r) and w(r), as given by various popular
nonrelativistic potential models [18]. After some algebra,
we compare the derived expressions for the matrix ele-

ments with the general form for the right side in the Breit
frame, yielding the usual expressions for G¢ g » [12,16]
and for the axial piece

2
= 2y M e a2 WL [ gF
G,=F,q )Dof u > Vo |5
)y
+(w +;/2uw)j g2r ar. (33

where the j’s are spherical Bessel functions, ¢ =V Q?
and Fgp 4 =Ff p 4+ FE p 4 are the weak isoscalar nu-
cleon elastic form factors.

A strange-quark presence in the deuteron is included at
this level by simply allowing s-quark contributions to the
isoscalar nucleon form factors. From Egs. (2) and (4),
and assuming only good SU(2) symmetry at the nucleon
level, we can relate weak, electromagnetic, and strange
nucleon form factors. For the proton, we have for the
weak electric, magnetic, and axial form factors

Ff =1 =2sin’0p ) FL§ — H(FEy+Fiy)
Fh=1FP—L1Fs (34)

with cc indicating the charge-changing (isovector) axial
form factor. None of the strange-quark form factors ap-
pearing above are firmly established experimentally, and
we use arbitrary parametrizations in our calculations to
look for experimental sensitivities to them. (To minimize
the number of unknown parameters, we assume the usual
dipole forms for the Q2 dependence.) We can now im-
mediately compute the neutrino-deuteron elastic cross
sections of interest from Egs. (30), (31), (33), and (34).

C. High-energy region

For still higher energies and momentum transfers, we
use light-front dynamics. This method was developed in
Refs. [14] and [19].

In light-front dynamics, the form factors of the vector
and axial-vector currents of the deuteron are calculated
from the + component of the currents. The null plane is
defined by x " =x%+x3=0. The construction of the +
component of the currents in the light front also uses
nonrelativistic deuteron wave functions [10]. Due to the
cluster separability property of the square of the free
mass operator for two particles [21], the c.m. (center-of-
mass) coordinate can be separated. The free mass opera-
tor of the two-body system is expressed by means of the
null-plane momenta. The third component of the relative
momentum can be defined as a function of the relative
perpendicular momentum and the variable £=p* /p/,
which is analogous to the nonrelativistic mass; p
(=p°+p?) is the nucleon light-front momentum and p;
is the same quantity for the deuteron momentum.

The coupling of the angular momentum and spin is
also carried out in the c.m. frame, but in the instant form,
and reexpressed in terms of light-cone spinors; this gives
the front form of the Clebsch-Gordan -coefficients
[14,19,20]. The deuteron is boosted like the two single-
nucleon light-cone wave functions, in contrast to the usu-
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al technique of employing the boost operator in the in-
stant form. The null-plane impulse approximation means
that one is projecting the instant form of the wave func-
tion onto the light cone and then boosting it to the Breit
frame.

The matrix elements of the deuteron currents are cal-
culated in the Breit frame where the momentum transfer
is chosen such that ¢ ¥ =0 and q,=(q,0,0); with this
choice the current is conserved when we calculate J*.
The matrix element of the vector and axial-vector (J'*)
currents in the deuteron light-cone basis come from the
integrals [13,19]

(n',q,72|J8% |n, —q,/2)
= [dedk, @YK, n" ) p' T |p)Dy(&,k,n)
(35a)
(n',q, /72108 % |n,—q, /2)

= [dedk, ®}(EK,n" ) p' TS p)@y (&K ,n)
(35b)

where the matrix element of the isoscalar vector (axial)
nucleon current JB* (J153%) is calculated with the
light-cone spinors [21]; k] =k, +(1—£)q,, and n’ and n
are the deuteron spin projections. In the above expres-
sions the wave functions in the rounded bras and kets are
on the light cone. The deuteron wave function in the null
plane is connected to the equal time one by a Melosh ro-
tation of the spins in the c.m. [19-21]:

®,4(E,k)=R}(£k )R (1—E—k))
¢d(k) (ki+m2)1/4

- s (36)
VE 20—
where
[ki4m? ]
k,=(£—1) ————-—é_(l_é_) (37)

is the third component of k, the relative momentum [14].
The normalization factor in the definition of the null-
phase deuteron wave function in Eq. (36) arises from the
Jacobian of the transformation [19] of k,,k, —&,k;, and a
factor of £7!/2 appears to take into account the normali-
zation of the current J' at zero momentum transfer.
The matrix element of the nucleon isoscalar vector
current J®S at g T =01s

+ IS
0 yIS+] . y— Pd £l us_.F2
(p'lIB%p) - F} 12M(ql><a)z . (38)

n

The deuteron vector current J'S* in the light-cone
basis can be obtained by applying a Melosh rotation to
the instant-form representation [22], and in the Breit
frame it becomes

1 Vg g

G -
Jt= 1+C —\/5_7 1—-p V2q
TUn v
V7 3
Gy 1 V2 -3
—— | =V2y —2+4n7 V2g
3(1+1) A
—3-2n —V2y 1
— [ V27 -1 —V2y
m l‘l 2v2y q—1 |, 39
—V2y 1—qm V2q

where n=02%/4M>.

From the rotational properties of the deuteron wave
function, it appears that there are four independent ma-
trix elements in the null-plane impulse approximation;
they are (J},J5,J1_1,J0). From Eq. (39) it can be
seen that these matrix elements are not independent; the
following angular condition holds [19,20]:

i
Jt= 22’11;1— L ge—Jt—Jif. @0

0 2V2q

The matrix elements of J© calculated from Eq. (35a)

violate the angular condition, and this fact gives rise to

different prescriptions for the magnetic deuteron form

factor at large g2 in Refs. [19] and [23]. According to
Ref. [19], the form factors can be written as

Ge=ho+L1hy—2q(hg+hy+3h),

Gy=2hyt+h,+h (1—7), 41
3v2
Go =4 " ha+nith—ho=h1)],
where
N U
ho 2(1+n)(J“+J°°)’
hl'—'——_;/z——‘]?b,
Vin(1+7)
1
h2=—mJ1+_1 .
In Ref. [23] the form factor G,, is written as
i
Gy=2|J{i—1. 42
M 11 Vg (42)

The expressions for G, are equivalent if the angular
condition (40) holds, but they do give different results for
large momentum transfers. In the particular case of a
pure S-wave deuteron this problem disappears [13].

The null-plane matrix element of the nucleon isoscalar
axial current which is needed for the impulse approxima-
tion is

+
P
P17 p) =2 E pise )

The deuteron axial current has three form factors [15],
but using parity and time-reversal properties, one is able
to show that only two of them are independent; only the
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combination proportional to G , in Eq. (31) is relevant for
our calculation. The matrix element of the axial current
in the Breit frame and in the instant form is [13]

pd
Tt " =770 4S: - (44)
The null-plane matrix element of J'®'% is obtained
from Eq. (44) by applying the Melosh rotation for a spin-

1 particle. Then, we have

1 Vvin/2 0
TS+ =G | —vp/2 o —Vvn/2|. (45)
0 Vin/2 -1

Due to current conservation for the neutrino, only G,
enters into the calculation of R. The matrix element
JY™" is used because it gives the usual nonrelativistic lim-
it for G 4 [13], although, in principle, the axial form fac-
tor of the deuteron can be calculated from J{J'* or J{3) .

III. RESULTS AND DISCUSSION

In Fig. 1 we show the calculated differential cross sec-
tions for incident v and Vv energies of 500 MeV. The
quantity do /dQ? is a function of Q2 (or ) and E,, al-
though it is determined primarily by Q2. For this figure,
as well as in most of our work, we use the Paris potential
to bind the deuteron and a dipole fit to the nucleon form
factors. The curves shown are for F%(0)=0.2 and for
the three methods of calculations. Even though the larg-
est momentum transfers possible are higher than those
applicable for method A, the agreement with the other
two methods is good for 0%50.5 (GeV/c)?, which corre-
sponds to backscattering at E, X400 MeV. The
differential cross sections agree even better at lower neu-
trino energies. At higher energies, e.g., for E, R 1 GeV,
differences between methods B and C become significant
at large Q2 (see Fig. 5) because the zeros of the deuteron
body form factors differ somewhat from each other. At
these large values of Q2, measurements become corre-
spondingly difficult because the elastic differential cross
section drops significantly due to the falloff of the deute-
ron form factors.

-~
=
L3
o
o~
~
=
o
<
g
v
<
& 104 E
<4 E
o
3 §
3 L
07° =, | . P O
0 o2 0.4 0.6

Q° (Gev?)

FIG. 1. Neutrino (selid) and antineutrino (dotted) differential
cross sections as a function of Q? for methods A, B, and C.

The key feature we wish to call attention to is the ratio
R [Eq. (3)] of the difference of v and ¥ cross sections di-
vided by their sum. The numerator of R is directly pro-
portional to the interference of axial and vector magnetic
deuteron form factors. It vanishes identically if there are
no axial isoscalar matrix elements since neutrino and an-
tineutrino cross sections would then be identical. It is for
this reason that R is a promising observable to study the
s-quark spin matrix elements in the nucleon.

Figure 2 shows the ratio R at E,=250 MeV. The
curves for the different methods agree with each other to
better than a few percent at the largest Q% and converge
smoothly at low Q% In Fig. 3 we show R at E, =500
MeV for methods B and C, where the agreement is also
very good. We have omitted a curve for method A be-
cause it is not applicable at the higher Q% accessible here.
As can be seen from both figures, R grows smoothly and
monotonically from O to 1 for both F%(0)=0.1 and 0.2.
Its value is larger than 1 for reasonable vaiues of 0% eg.,
Q%20.4 (GeV/c)®. The magnitudes of F5 (0) represented
in these figures are typical of those obtained from Ref. [2]
and from measurements of the elastic v and ¥ scattering
cross sections on H. We assume the Q2 dependence of
the isoscalar axial form factor to be the same as its iso-
vector partner [24].

The sign of R is fixed by the sign of F%(0). From Figs.
2 and 3 one sees that even a fairly conservative value of
F%(0)=0.1 yields a large (~100%) difference in v and v
cross sections at large Q2. At the highest values of Q2
the ratio R is no longer proportional to F* because the
square of this form factor contributes to the denomina-
tor. In Figs. 4 and 5, R is shown as a function of Q2 at
E, =1 and 2 GeV. At these energies the simple behavior
of R present at lower energies is absent. Here, even for a
small value of F*(0)=0.1, R rises at small angles, but it
is forced back down to zero at Q?=1.5 (GeV/c)?, where
the first zero of the deuteron form factor occurs. Both
magnetic and axial form factors vanish at roughly the
same Qz; the exact location of these and further zeros is
quite model dependent, so that there is considerable vari-
ation of R at large Q2. The variations of R for the Paris

1.0 R S B B
08 |-

0.6 —

Ratio

0.4 —

02 |- F,%(0) = 0.1

0 0.05 — 0.1
Q% (Gev?)
FIG. 2. The ratio R as a function of Q2 at E, =250 MeV for
F5(0)=0.1 (lower curves at small Q?) and 0.2 (upper curves at
small Q?) and for methods A (dotted), B (dashed), and C (solid).
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0.8

0.6

Ratio

F,%(0)=0.2

0.2

0.0

Q® (Gev?)

FIG. 3. Same as Fig. 2 at E,=500 MeV; only curves for
methods B and C are shown.

and Bonn potentials [18] appear in both Figs. 4 and 5.
The Bonn potential produces a second diffraction
minimum in both axial and magnetic form factors for
0%=4.5 (GeV/c)?, while the Paris potential does not.
The second minima for the axial and magnetic form fac-
tors are separated, so that R flips sign and grows fairly
large before being pulled back to zero. The two calcula-
tional techniques B and C differ considerably in their
treatment of relativistic corrections, and also yield a quite
different behavior of R at these large Q2. Thus, it is quite
clear that, in order to extract a quantitative value of
F$(0) or of the deuteron weak form factors more gen-
erally, it is necessary to remain at Q%<1 (GeV/c)?. Since
the cross section drops rapidly with Q2, this constraint is
compatible with experimental requirements.

In Fig. 6 we further examine the role of the nucleon-
nucleon potential, as well as the role of uncertain nucleon
properties, on our calculated quantities; the Gari-
Krumpelmann [25] form factors for the nucleon are used
as a variant of the dipole ones. The variations produced
by the use of Bonn, Reid, and Paris N-N potentials, and
the change in form factors, are all included within the un-
certainty band shown in Fig. 6; the spread due to the cal-
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FIG. 4. Same as Fig. 3 for F5(0)=0.1 at E,=1 GeV for
both Paris and Bonn potentials. Method B is shown dashed for
the Paris and dotted for the Bonn potential; method C is shown
solid for the Paris and dot-dashed for the Bonn potential.
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FIG. 5. Same as Fig. 4 at E,=2 GeV.

culational techniques (B or C) are no longer than this er-
ror band.

We next examine the sensitivity of the ratio R to the
axial strange-quark form factor F%(0). First, comparing
the curves of Fig. 2, which shows R vs Q% at E, =500
MeV, with F$(0)=+0.1 and +0.2, we see that at the
larger Q% (backward angles), even very crude measure-
ments of R are sufficient to observe a nonzero value of
F$(0). The value of R is near its maximum of 1 in both
cases. Changing the sign of F$(0) would result in a sign
flip of R. When R is near its maximum, at backward an-
gles, it is difficult to distinguish between the values of
F$(0)=0.1 and 0.2. To do this, one would need to go to
more intermediate angles and Q2. For example, at the
same energy, with 02=0.4 GeV? (§=90°), Fig. 2 shows
that a measurement of cross sections with errors around
10-20% would be roughly sufficient to distinguish
F$(0)=0.1 from F$(0)=0.2.

In Fig. 7 the sensitivity to F3(0) is shown directly for
fixed 8=180°. We plot R as a function of F$(0) for three
different incident energies. The nonlinearity is again
quite apparent. For F$(0)=0.1, R has a broad max-
imum at moderate energies. Thus, as observed above, R
here serves as a strong signal for the presence, and sign,
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FIG. 6. R as a function Q2. The curves shown bound the use
of the Paris, Bonn, and Reid potentials and variations of the
mass M 4 in the axial form factor from 0.996 to 1.065 GeV/c?.
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FIG. 7. R as a function F%(0) for backward (180°) v and ¥
scattering at E, =150 (dashed), 250 (dotted), and 500 MeV
(solid).

of a nonzero axial isoscalar form factor due to strange
quarks. It is moderately insensitive to the specific value
of F5(0). At smaller angles, the curves are “stretched
out,” and become more sensitive to the value of F?(0), at
the cost of needing to measure a smaller R.

As discussed earlier, it is possible that strange quarks
modify the weak vector form factors as well. In particu-
lar, an s-quark contribution to the nucleon’s magnetic
form factor is currently largely unconstrained by experi-
ment. It is the object of a proposed experiment at
BATES [7,9]. Such a contribution enters the ratio R by
modifying the deuteron weak magnetic form factor,
which interferes with G 4. In fact, the effects on R are
similar to those of variations in the size of the axial iso-
scalar form factor, and thus one cannot easily extract
F$(0) without further measurements. This is demon-
strated in Fig. 8 where we show R vs Q% at 500 MeV,
with F%(0)=0.2, but allowing F};(0) to be 0, +0.2, or
—0.2. Because there is already a finite, nonstrange, iso-
scalar magnetic form factor, R is not symmetric with
respect to the sign of this quantity. The spread in Fig. 8
is roughly comparable to the spread caused by
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FIG. 8. R as a function of Q% at E,=500 MeV for

F%(0)=0.2 and for F},(0)=0 (solid), 0.2 (dashed), and —0.2
(dotted).

F%(0)=0.240.1.
Such a nonzero vector s-quark matrix element would
be very interesting in its own right, but some means is re-
quired to separate the effects of F% from Fj;. As men-
tioned, parity violation in lepton-hydrogen or lepton-
deuteron scattering are possibilities. Another possibility,
involving only neutrino (or ¥) scattering, is to measure
the Q2—0 absolute cross section. This depends directly
on F ;(0)2, whereas the contributions from Fj,(0) and
Fg(0) to the forward cross section are both explicitly
suppressed by factors of Q2/M?. For small Q7 and 6, the
v (or ) elastic differential cross section is given roughly
by
d GrE;
Q27

dUV( g

3

(—2sin%0, )2+ < F2 |+0(Q?) .

(46)

Experimentally, however, it is difficult to measure abso-
lute normalizations of neutrino beams. Note that to get
|8FS| $0.15 requires a neutrino cross section with less
than 10% total uncertainty. Also, small Q% means the
recoiling deuteron is difficult to detect. Thus, the R ratio
(where overall normalization, at least, cancels) may be the
best one can do with v-d elastic scattering to detect
strangeness form factors.

What is the best energy range of average neutrino ener-
gy at which to carry out these experiments? Figures 1-8
make it clear that there are various tradeoffs. A large Q?
affords one an easier opportunity to detect the recoiling
deuteron nucleus, but the cross section falls rapidly due
to the deuteron body form factors. Furthermore, it is
necessary to stay away from the zeros of these form fac-
tors. If one arbitrarily sets a criterion that the differential
cross section do /dQ? should exceed some minimum, an
upper bound on 6 for any given beam energy is implied.
This is simply because do/dQ? drops monotonically
with Q%(0) for fixed E,. Similarly, requiring R to exceed
some minimum value (which will be based on the experi-
mental error estimates) generally implies a lower bound
on 6 given E , because R tends to rise with Q%(6).

We demonstrate such kinematic bounds in Fig. 9, with
do/d0*>10"* cm?/GeV? and R >0.25 chosen for ex-
plicitness. There is clearly an allowed “window” of beam
energies (under ~400 MeV here) and scattering angles.
As do/dQ2,, is lowered, the upper-bound curve rises,
opening the window. This is seen in Fig. 9 from the
dashed curve, which shows the upper bound if the
minimum measurable cross section is 10 times smaller
than that assumed for the solid curve.

Similarly, as R,;, is raised, the lower-bound curve
rises, closing the window. Smaller values of F(0) also
raise the lower bound, but not significantly, especially at
lower energies. This figure is intended only as a crude
demonstration, as experimental constraints and correla-
tions between R ;, and do /dQ?2,, would have to be care-
fully considered to set up optimal kinematics for a real
experiment.

In conclusion, we have shown that neutrino and an-
tineutrino scattering cross sections on isospin-0, spin-1
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FIG. 9. Region of allowed kinematics, 6 vs E, (see text). The
upper-bound curves are obtained from the arbitrary constraints
do/d0?*>10"*" cm?/GeV? (solid) and do/dQ?>10"%
cm?/GeV? (dashed). A lower-bound curve (dotted) is given by
the constraint R >0.25. All curves assume Paris wave functions
and F5(0)=0.2.

targets, particularly deuterium, can be used to measure
strangeness matrix elements in the nucleon. We suggest
the measurement of R, the ratio of the difference of v and
¥ scattering cross sections to the sum [Eq. (3)], as a means
to extract information on the axial isoscalar nucleon form
factor FX(g2). This form factor in turn can be related to
the strangeness axial-vector matrix element in the nu-
cleon, F¥, [Eq. (9)]. The ratio R vanishes if the isoscalar

approximately directly proportional to F5(0). When R
approaches unity, it remains sensitive to (but is no longer
directly proportional to) F$(0) due to its appearance in
the denominator of the ratio. If the strangeness vector
matrix element Fj, is also nonvanishing, then a separa-
tion of F5, and Fj, requires a measurement of neutrino
and antineutrino cross sections over a range of kinematic
conditions. We also discuss the “best” neutrino energy
region for the proposed measurement; it appears that
average neutrino energies below 500 MeV are appropri-
ate.
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APPENDIX: HADRONIC RESPONSE FUNCTIONS
IN TERMS OF THE REDUCED MATRIX
ELEMENTS OF MULTIPOLE OPERATORS

We adopt a phase convention for Y}, such that
Yy =(—D"Y,_, , (A1)

where Y,,, is a spherical harmonics. It is found that the

axial-vector matrix element is zero. When R is small, itis  response functions R, ..., R, are
|
J JJ
— . o f
R,(0)=VErz 3 3 (-1 7" [J 7 o [FsM o), (A2)
My i
J JJ
— J+I +T+a |V f ,
VT
J; JJ
— : i f
Rw(apr)=\/4m722(—1)J’+Jf+J+o[J 7 o [Fasddiapr), (A4)
M T i
with
. (a||Y,|J>
FSS(Mf;JJ'U)=(i)J‘J(—I)JLJH——@J(Uf)@}‘:(Mf) , (AS)
FEWI 307 ap)=(iY =7 fo (M 130T 0 p) £ f o (M 130T ap) (A6)
1 rrJ
Fo (Ml 'apr) =) (=197 2T % 3 (=1 K p| YD) 41 1 T al(Mpai (M), (A7)
r T p O
and
’ oaF 12 J I p J'
foM 3 JJ op)=(—1)J Zl(p||Y1||l> 1 o J' C,(Mp)aj * (M), (A8)
f (U -JJ' y=(—1 J+1F2 1( J P Ji *
(A 30 op)= Y ;(—1) pll Y 1) 1 o J[@AMpCHAI,) (A9)
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and

a,J,l(Mf)=<—1)J2J1+1 (VIF16,(M,)
+VIL,A], (A10)

a}(u,)=<—1vﬁ%(u,) , (A11)
—VI+1L,(M)],  (A12)

where A enumerate different final states of the NN system
with the same total and angular _momentum, which is
defined in Ref. [11]. The quantity L is defined as

L=V2L+1. (A13)

The reduced matrix elements @,, L;, &§;, and M; of
the hadronic charged weak currents can be decomposed
into

C, (M )=C,(M )+ CA ;) , (A14)
LM )=L;(M)+L}M ), (A15)
&, (M )=E;(M)+EJ M), (A16)
My (AT ) =M;(MT ) +MF(AJ ;) (A17)

where superscript “5” indicates that the corresponding
matrix element originates from the axial-vector current
and the remainder from the vector current.

The response function R is a linear combination of bi-
linear products of the density operator J %, The response
function R is a linear combination of the
symmetric/antisymmetric (with respect to the Lorentz
indices p) part of the bilinear products of the density
operator J® and the current operator J. The response
function R, is a linear combination of bilinear products
of the current operators J. The rank of the response
functions is determined by the value of 0=0.1,...,2J,,
which corresponds to the degree of the irreducible polar-
ization tensor of the hadronic system (initial, final, or
both). For example, the 0 =0 response functions are
those which contribute to reactions where the hadronic
system is unpolarized; the o =1 response functions can be
accessed only by polarization of the initial or final (or
both) hadronic system; the o =2 response functions occur
in experiments where the hadronic system contains align-
ment. A property of the irreducible response functions is
that they are of order (Rgq)? (note that p coincides with o
for R,) in the leading g expansion, where R is a typical
size of the nuclear system. This property can be used to
analyze the order of magnitude of each of the irreducible
response functions at low energies.
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