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We obtain a mean-field solution for the nucleon as a quark-meson soliton obtained from the action of
the global color-symmetry model of QCD. All dynamics is generated from an effective interaction of
quark currents. At the quark-meson level there are two novel features: (1) absolute confinement is pro-
duced from the space-time structure of the dynamical self-energy in the vacuum quark propagator; and

(2) the related scalar meson field is an extended qq composite that couples nonlocally to quarks. The
influence of these features upon the nucleon mass contributions and other nucleon properties is present-
ed.

PACS number(s): 24.85.+p, 12.40.Aa

I. INTRODUCTION

Because of the importance of chiral symmetry in low-
energy modeling of QCD, the linear sigma model of
Gell-Mann and Levy has formed the basis for many
quark-meson models of baryons, usually at the mean-field
level [1,2]. The local efFective meson fields (cr, sr) simu-
late the Goldstone qq collective modes from the flavor
SU(2) sector of QCD. Given the evident success of chiral
soliton models of the linear sigma variety for describing
many nucleon properties, two questions immediately
arise. First, are there important corrections to the dy-
namics due to the spatially extended nature of the meson-
like qq modes? Second, how should quantum fluctuation
corrections to the mean-field treatment be viewed if the
meson fields already represent qq fluctuations? To deal
with these issues, it is necessary to begin with something
like a Nambu —Jona-Lasinio (NJL) [3] model where the

qq meson modes can be derived through bosonization
techniques [4]. However, the standard NJL four-quark
contact interaction produces point meson fields locally
coupled to the quarks, and the effect of meson size cannot
be addressed. The derived meson parameters and quark
self-energy are divergent vacuum quark loop integrals,
and an additional parameter in the form of a cutoff must
be introduced.

Extended meson fields can be produced through boson-
ization of a quark action if the current-current interac-
tion is mediated by an effective gluon propagator with
finite range [5,6]. It is then necessary to work with a non-
local quark-meson action. However, an advantage is that
the nonlocality from gluon dressing of the quarks pro-
duces convergent loop integrals for the derived meson pa-
rameters. In this work we present self-consistent numeri-
cal results for the nucleon as a mean-field solution of such
a nonlocal linear sigma model in the form derived previ-
ously [7]. We refer the reader to Ref. [7] for further
background and motivation for this type of approach.

The dynamically generated quark self-energy X arises
from the vacuum condensate constructed from bilocal
combinations of q and q fields. The Dirac scalar com-
ponent of X plays the dual roles of the internal form fac-
tor for the finite-size Goldstone qq mode in the (o, sr)
channel and the vertex for the coupling of that mode to
quarks. This economy is guaranteed by chiral symmetry
and the axial Ward identity. We explore the conse-
quences of an absolutely confining ansatz for the timelike
behavior of X(p ) so that the vacuum quark propagator
has no mass-shell pole. This is one of the proposed reali-
zations of confinement in QCD [9,10], but has not before
been employed in solutions of a quark-meson soliton be-
cause of the intrinsic nonlocality of the mechanism.

Soliton models often implement dynamical con-
finement in terms of a color dielectric function mediated
by an auxiliary local scalar field attributed to a gluon
condensate [11]. In contrast, the dynamical confinement
in the present approach has its origin in the space-time
structure of the quark condensate (q(x)q(y)) and the
associated scalar fluctuation field is the chiral partner of
the qq pion. No other field need be introduced to obtain
a self-confining chiral soliton. One of our principal re-
sults is that the valence quark wave functions and nu-
cleon mass produced from the simplest application of this
mechanism are quite acceptable.

The underlying model for the present work is taken to
be the global color-symmetry model (GCM) [6] of QCD
based on a finite-range current-current interaction. This
has the hidden chiral-symmetry property of NJL-type
models, but can also accommodate dynamical
confinement. A quark-meson soliton model arising from
the bosonization of the GCM was put forward some time
ago [5]. However, no previous attempt has been made to
obtain numerical solutions that retain the intrinsic nonlo-
calities. We recently explored [7] the formal develop-
ment of such a generalized soliton model by identifying
the meson loop expansion that produces the mean-field
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approximation as the lowest term. There arguments are
made for the mechanism whereby a confining vacuum
quark propagator without a mass shell combines with a
constant classical scalar meson field to create a constitu-
ent mass shell and thus well-defined quark eigenstates
and energies. In a subsequent work [12], we confirmed
this mechanism through numerical results for the
confining solutions of the corresponding Dirac equation
that contains a nonlocal coupling to a finite-range scalar
field of Gaussian form. The fully self-consistent, non-
linear case in which the meson field is obtained from the
valence quark source is the subject of the present work.

In this numerical work, we ignore the pion degree of
freedom so that, with good quark isospin, we may devel-

op solution methods that handle the intrinsic nonlocali-
ties in the simplest possible setting. The case which is
solved is that of three 1S&&2 quarks in the lowest-energy
baryon state (average of the nucleon and delta), interact-
ing with a qq composite, static, scalar mean field generat-
ed self-consistently by the quarks. The quark self-energy
in the absence of the scalar field is modeled to provide
confinement, and the associated single parameter of the
model characterizes the strength of the effective gluon
propagator. In Sec. II a brief review of this generalized
soliton model and of the employed confinement mecha-
nism is given along with the equations of motion to be
solved. Detailed derivations occur elsewhere [5,7, 12,13]
and will not be repeated. The numerical methods em-
ployed in obtaining the solutions are described in Sec. III.
In Sec. IV the results are presented along with a discus-
sion of the effects of the confinement and the related non-
local quark-meson vertex. In Sec. V we summarize our
findings.

II. GCM AND QUARK-MESON MODELS

A. Chiral model

The underlying action is taken to be the GCM [6]
given in Euclidean space as

S[q,q]= Jd x d y q(x)(y 8+m)5(x —y)q(y)

2

+ j„'(x)D„„(x—y)j;(y), (1)

where the quark current is j„'(x)=q(x)(p'/2)y q(x).
In the limit of zero-current-quark mass m, the GCM has
SU(2)I SU(2)z chiral symmetry in the two-fiavor ver-
sion considered here. The GCM implements only a glo-
bal SU(3) color symmetry With .the assumption

D„,(x —y ) =5„+(x—y ) and the effective gluon two-
point function D(x —y ) treated as a parameter function
constrained only by asymptotic freedom in the Euclidean
domain, this action has provided a successful modeling of
meson properties and dynamics [5,6]. Here we wish to
see whether the model admits acceptable valence quark
states for baryons. For this initial exploration the func-
tion D(x —y) will be parametrized to give a simple
confining and explicit form for the dynamical vacuum

self-energy of quarks. Chiral symmetry dictates that the
Goldstone meson modes will have to couple with a vertex
largely fixed by the self-energy dynamics.

The meson modes of the model are produced through
the bosonization procedure [5,14] in which the quartic
term in quark fields is exactly reformulated as a function-
al integration over auxiliary bilocal Bose fields g (x,y)
having the transformation properties of q(y)A q(x).
Here A are various direct product combinations of
color, flavor, and spin matrices resulting from the Fierz
reordering of the current-current term of the action in
Eq. ( 1). Fluctuations in these fields will be interpreted as
effective meson fields. For the fluctuations we wi11 ignore
the color-octet sector and deal only with color-singlet
effective meson fields. At this level the Fierz-reordered
form of (1) is essentially a nonlocal version of the NJL
model. The limit D(x —y) ~5(x —y) recovers the local
NJL model. With the quartic quark terms replaced by
Bose field integrations, the remaining bilinear quark field
term can be handled by Grassmann integration in the
standard way. To obtain a mean-field model for a
baryon, one can [7] use a canonical transformation to in-
troduce chemical potentials p to fix the baryon number
and flavor. Then integration over Grassmann fields with
the appropriate adjustment of boundary condition pro-
duces the grand partition function Z given by

Z=X D exp —S p, (2)

with the vacuum action given by

S[% ]=—TrlnG '[p, =0,$ ]

1 4 4 S (xy)S (yx)+— dxdy
g D(x —y)

(4)

The separation in Eq. (3) isolates the valence quark
contribution and requires that meson modes be produced
from the vacuum action. The inverse propagator appear-
ing in (3) is [7]

G '(p;x, y)=e" 'G '(x,y)e

=(y 8+m —
y4M )5(x —y )

+e 'A% (x,y)e (5)

The quarks are Yukawa coupled to the auxiliary Bose
field variables of integration with bare vertices A . Be-
sides the familiar shift of the time derivative, the addi-
tional p dependence in (5) is due to the nonlocality of the
Bose fields. With appropriate boundary conditions, the p
dependence of G will serve to shift the pole structure in
the momentum component conjugate to x4 —

y4 so that
valence and vacuum configurations are treated together
in the usual way. The saddle-point or classical vacuum
configuration Mo, defined by 5S/LBO =0, produces a
translation invariant quark self-energy X(x —y )

where the bosonized action is

S[p,% ]=—Tr[ lnG '[p, % ]
—lnG '[p=0,% ]]+S[S], (3)
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=A $0(x —y ), which in momentum space satisfies

X(p}=iy p-[A(p ) —1]+8(p )

d q=g Dp —
q y

1

iy q+. m+X(q) 2
(6)

where r =x —y and R = (x +y )/2, and we have approxi-
mated the off-mass-shell vertex with the on-shell form
factor 8.

A chirally symmetry derivative expansion of the vacu-
um action (4) to leading order in derivatives of the fields
0 =y c so[/If ] and n =Py si [nP f/] can finally be
written as

S[cr,~]—S[f„,O]

= f d R[ —,'[(B„cr}+(B„m) ]+U(g (R))], (8)

where U(y ) is the effective potential (meson self-
interactions) given by

an equation of Schwinger-Dyson form, where D(p ) is the
Fourier transform of D(x —y ).

The propagating Bose fields are identified as the fluc-
tuations 8 (x,y )=8 (x,y }—%0(x —

y ). We retain only
color-singlet (cr, n) propagating modes in the expansion
of S[Re] about the saddle-point configuration [5,7].
Quantum loop effects from all the auxiliary Bose modes
can presumably give the quark-gluon vertex structure
that is missing from (6). We do not do this, but look for
classical solutions in the selected 8 induced by the
valence quark source within the baryon. At this level in
the m~O limit, which we employ from this point for-
ward, dynamical chiral-symmetry breaking in the QCD
vacuum is attributed to 8(p )%0. The same amplitude
B(p ) is identifiable, through the Ward identity for the
axial-vector vertex [8], as the on-mass-shell vertex (inter-
nal meson form factor} for quark coupling to the massless
pion and its scalar partner. This result can also be ob-
tained directly by considering the eigenfunctions of the
inverse propagator for the 8 fields [15],which are solu-
tions of the ladder Bethe-Salpeter equation consistent
with the self-energy X. These eigenfunctions define the
off-mass-shell vertices, and the pion vertex reduces to the
scalar portion 8 of the quark self-energy when the on-
mass-shell condition is invoked. The color-singlet
scalar-isoscalar and pseudoscalar-isovector fluctuations
that are retained for the chiral model can be written as
[5,6]

Ae+e( )
8 (r)

(R }
'Y5r 0)R)If'

and where f is the pion decay constant given by

dq BA
(2m) [q A +8 ]

,'q —[(8')+BB"]+BB'
qA+8 (10}

B. Scalar model

In this initial numerical work, we focus upon treatment
of the nonlocalities from the quark self-energy and
quark-meson coupling. We therefore truncate to /=0,
thus giving up explicit chiral symmetry for the conveni-
ence of good quark isospin. This amounts to keeping
only radial fluctuations away from the chiral circle at the
vacuum point / =0, where y is the radial field. When the
constant vacuum value of the action is discarded, the
complete action for the scalar soliton model can be writ-
ten

S[)M,y] = —Tr[ lnG '(p, y) —lnG '(O, y)]
+ fd'R[-,'(a~)'+U(q')] . (12)

The chemical potential dependence of the fermion Tr ln
term ensures that a meson source from valence quarks
wi11 be generated. The inverse quark propagator occur-
ring in (12) is, for @=0,

x+y
G '(x,y ) =y.B„A(x —y )+f 'B(x —y )y

Here the argument of A and 8 is q and primes denote
differentiation with respect that argument. The loga-
rithm term in (9) is the sum of single quark vacuum loops
with all possible insertions of chiral meson fields to
zeroth order in their derivatives. The expression for f
comes as usual from the quark loop with two inserta-
tions. All integrals are finite because of the natural regu-
lation provided by the amplitude 8(p ). The potential
U(y ) has turning points at g =0 and at the degenerate
vacuum configuration y =f corresponding to a local
maximum and absolute minima, respectively. The ob-
tained Mexican hat structure is displayed later. The
meson masses can be obtained from the second derivative
of the potential U(y ) with respect to the corresponding
field at the absolute minimum. The pion mass is zero in
the exact chiral limit of zero-current-quark mass, while
the mass of the scalar is finite and is given by

2 48 dq B(q)
f (2m) [q A (q }+8 (q )]

Numerical values obtained for the pion decay constant
f„and the scalar field mass mx are given in Sec. IV.

d 4q q'A '(q')+8'(q')(y/f. )'
U(y )= —12 tin

(2m-)4
( q A (q )+8 (q )

8'(q') [(X/f. )'—1]

q A (q )+8 (q )

(13)

If the chemical potential p in the action S[p,,g] is set to
zero, the saddle-point configuration will be y= f . With
a finite chemical potential, there wi11 be a classical field
expectation value of y that reflects the spatial source dis-
tribution of the valence quarks.
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E[n X]=E,[n X]+E [X] (14)

At the level of a mean-field approximation, only a stat-
ic X(R } field appears and the baryon energy functional
can be identified as the zeroth term in the meson loop ex-
pansion of the effective action. For the present model the
energy functional corresponding to a fixed set of quark
occupation numbers n is [7]

This is the standard result for a scalar soliton model ex-

cept that here the potential U and the dynamical relation
between eo and y are calculated from the nonlocal
confining quark self-energy amplitudes.

The meson field equation 5E/5x=O, after use of (21)
and accounting for the self-consistent energy dependence
of the qyq coupling, becomes

where the valence quark contribution is
—V X(z)+ +Qr(z}=0,

5Xz
(22)

E [n,X] —fdx4

=Tr[lnG '[p, X]—lnG '[O,X]} p n— , . (15)

and the scalar field contribution is

where the meson source provided by valence quarks is [7]

Qr(z) = g fd x d y u (x)8( e, ;x —y)—1

j 17J

E [X]=fd'x[-,'(~X)'+ U(X'}]. (16) X5 —z uj(y).x+y (23)

where the eigenvalue p4=k4=iEj'enters in a nonlinear
way. The spatially dependent part of the y field has been
separated out, that is, X=f +X. Note that the meson
vertex is energy dependent. A wave-function renormal-
ization constant Z. can be identified from the residue at
the pole of the Green's function and is given by [7]

BG '(ie;p, k)
Zj= —fd pd kuj(p) u(k). (20)

J

The net result for the energy functional of the baryon is

E[n X]=3eo[X]+f d'x[ ,'(~X)'+ «X')1, - (21)

where eo is the energy of the degenerate lowest S state.

The field y satisfies the equation of motion 5E!5y=0.
The chemical potentials p are now functionals of the
field g and the particle numbers due to the constraint
n =BTrlnG '/Bp. .

With static meson fields, G '(x,y) depends on time
only through the variable ~=x4 —y4. The tirne-
translation invariance of G '(x,y) allows stationary

eigenstates of the form uj(x}e ', which satisfy

fd y G '(co;x, y)uj(y)=iy4A, (co)u, (x) . (17)

The eigenvalues have the form AJ(co) =co iej(c—o), where
E'j is the quark eigenenergy for state j. The co dependence
of ej(co) arises from the dynamical nature of the self-

energy X(co,x —y). The index j labels the set of distinct
states of the spectrum for a given value of co.

The quark component (15) of the baryon energy func-
tional reduces to the sum of positive eigenenergies bound-
ed by the chemical potentials and satisfying A, =0, that
is, ej = —i co . The associated states satisfy a self-
consistent Dirac equation, which, in momentum space, is

fd k G '(ie, ;pk)uj, (k) 0,= (I')

that is,

[iy pA(p )+8(p )]uj(p)

d k

In the limit of point coupling where the amplitude B
above becomes 85(x—y), the source reduces to the local
form of conventional soliton models. The frequency
dependence of the dynamical quark self-energy is respon-
sible for the wave-function renormalization Z . Depar-
tures of Z from unity are produced when the self-energy
amplitude A(x —y) departs from 5(x —y) and when
8(x —y) is not static. Equations (19) and (22) are the
equations of motion we solve for the scalar model.

C. Absolute confinement

The issue of how confinement is realized in QCD is un-

resolved. One of the goals of this work is to investigate
the effects of a novel confinement ansatz on the self-
consistent solutions of the soliton equations of motion.
We take up the proposal that confinement is realized
through the absence of a mass-shell pole in the vacuum
propagator for dressed quarks [9,10]. Such a behavior
has been noted in studies of model Schwinger-Dyson
equations if the effective gluon propagator has sufBcient
infrared strength [16]. So confinement in the present
model is defined as the inability of a quark to propagatein
the Uacuum where X=f . In this situation the Dirac
equation (19) reduces to

0=[iy pA(p )+8(p )]uj(p) . (24)

If there is no solution to p+M(p )=0, where
M(p )=8(p )/A(p ) is the dynamical mass function,
then we say that the quark is confined. This implies that
a quark is restricted to a region in which XAf . In the
present model this region will have finite spatial extent
due to the localized valence quark source. This
confinement mechanism has no knowledge of a bag sur-
face and does not presuppose a hadronic environment for
its implementation. Rather, it is the presence of a ha-
dronic environment that induces XAf and creates a
constituent quark mass shell through self-consistent solu-
tions to (19) and (22). A simple illustration of constitu-
ent mass generation from a confining propagator of this
type has been presented previously [7].

The confinement condition p +M (p )%0 implies as a
minimum that Mi(p ) for p &0 is linear with slope less
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than or equal to —1 and is nonzero at p =0. A simple
realization of this is produced from use of the model
gluon propagator [16]

D (p ) = ( 2' ) —,', a 5'4'(p ), (25)

B(p')= ' (
2 4 2)l/2 p2 (~2/4

0, p &a/4.
For p (0 this gives M (p ) =a /4 —p . Several studies
have obtained useful results with this simple confining
dynamical mass function [5,12,17]. We use the parame-
trization (26) for the present numerical work. The result-
ing quark propagator is asymptotically free for large
spacelike momenta, but not for large timelike momenta.
There are arguments [18] for timelike asymptotic free-
dom and also arguments [10] that such behavior is not
implied by perturbative analysis of timelike production
processes. The present calculation, however, is not
affected by the deep timelike region. Loop evaluations
such as that in Eq. (9} are performed purely in the Eu-
clidean domain, and the constituent quark eigenvalue
determination from Eq. (19) entails a very limited con-
tinuation into the timelike region. We have previously
shown [12] that for these amplitudes A and B, the Dirac
equation (19) has only discrete solutions in the presence
of a finite-range y field. This follows because, in position
space, the large-distance behavior of the states is not
governed by vacuum solutions since none exist. No solu-
tions with scattering boundary conditions are possible.
This clearly implements one distinction between confined
systems and energetically bound systems: A conPned sys-

tem has no continuum. Our previous numerical work
[12] also confirmed that with such a confinement mecha-
nism the quark eigenenergies necessarily tend to infinity
as the strength of a finite-range y field approaches zero.
Thus the constituent mass shell disappears as other
valence quarks are moved away. This indicates that a
finite-size soliton in this model will always exist and is the
only type of solution possible.

III. METHOD OF CALCULATION

The coupled equations of motion to be solved are the
coordinate-space equation for the scalar field (22), and the
momentum-space Dirac equation (19). The Dirac equa-
tion is solved in momentum space because the dynamical
nature of the nonlocality and comparison to a local limit
(point coupling and constant mass) are most easily han-
dled in that format. After projection onto S waves, the
Dirac equation (19) is brought to the matrix form
R(e,. )u, =0 by use of Gauss-Legendre quadrature. The
lowest positive SI &z energy is found from the condition
det(R) =0 by stepping slowly away from e, =0 in the
positive direction until a root is bracketed. The root is
then obtained to the desired accuracy using Brent's

in the Schwinger-Dyson equation (6). The resulting self-
energy amplitudes are

2 p ~ca /4
A( )=.p l

[ 1 + ( 1 +2lz2 /p
2

)
1 /2

] p
2 & t22 /4

(26}

F[y) =F[yo]+ Jd x (y —yo)(x )+ . (27)~ fiFX
tip(x ) ro

The condition F[y]=0 implies

J d x 2)(x)= —F[go] .4 fiFX
5y(x )

(28)

This can be solved as a matrix equation for the vector
2)(x ) =g(x )

—go(x ), from which the new solution

g;(x ) =2);(x )+y;,(x ) is formed. Equation (28) is then
iterated to the desired accuracy. For the present case the
functional F is that given in Eq. (22), from which one can
see that the integration in (28) is removed by the delta
function generated from the functional differentiation.
The starting solution is that obtained from the linearized
Klein-Gordon equation formed by the substitution
5U/5y m', y.

IV. NUCLEON RESULTS

The nonlinear potential U as calculated from Eq. (9),
with the amplitudes A and B of Eq. (26}, is displayed in

Fig. 1. The shape is very similar to the standard fourth-
order polynomial form adopted in most chiral models, ex-
cept that here U increases quadratically with g for very
large y. The obtained Mexican hat structure is quite in-
sensitive to the detailed form of the amplitudes A and B
and is dictated by the underlying chiral symmetry. The
results for the mean-field nucleon calculations are sum-
marized in Tables I and II and in the graphs of Figs. 2 —5.
The soliton mass is estimated from the calculated energy
E, by approximate removal of the spurious center-of-

method [19]. The eigenfunctions u. are then obtained by
iteration.

The scalar field Klein-Gordon equation, on the other
hand, is most easily handled in position space because of
its nonlinear form. This implies that at each iteration in
the solution of the coupled equations a Fourier transform
must be performed twice. The source term Qz of Eq. (23)
is calculated in momentum space from the quark states
and is then Fourier transformed to position space. The
scalar field solution y(x) is Fourier transformed back to
momentum space for use in the Dirac equation. The re-
striction to S wave allows use of a fast-Fourier-transform
algorithm [19) designed strictly for one-dimensional
problems. With an initial guess for a finite-range scalar
field, the quark states are calculated, and the resulting
source term is constructed. A new scalar field is generat-
ed, and a comparison with the previous field provides a
better estimate. The pair of coupled equations of motion
is iterated this way until convergence is achieved. The
convergence criteria used is that the components of the
baryon energy should be accurate to 10

The nonlinear scalar field equation is solved iteratively
by the application of Newton's method to a functional.
For example, given a functional F[g] for which a solu-
tion y, defined by F[y, ]=0 is sought, one can proceed as

follows. Expansion of F[g] to first order about an initial
solution yo gives
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1.0 TABLE II. Mean-field calculations of the nucleon/delta.
Results that include nonlocal quark-meson coupling (CM-NLC)
are compared with results from the purely local reduction of the
model (CM-LC). In both calculations the dynamical mass is
frozen at a constant value and there is no confinement.

U(x )
0.5—

(fm' )

0.0 -2

X/fly

mass component present in a mean-field model. That is,
M, =[E,—3(p )]', where (p ) is the expectation
value of the square of the quark momentum. The first
two columns of Table I contain results from a pair of cal-
culations that retain the confining dynamical quark mass
and nonlocal quark-meson coupling. We refer to this as
the DM-NLC case. The two versions shown correspond
to different choices of the single parameter a for the
gluon propagator strength; in the first column the pion
decay constant f is fitted to its experimental value,
while in the second column the soliton mass M, is fitted
to the average of the nucleon and delta masses. Since the
pion, excluded from the present work, would lower the
soliton mass by about 200 MeV, the mass obtained with
the correct f value is encouraging. The second column
illustrates that a modest decreased of a can lower the
baryon mass by 300 MeV while increasing the quark rms
radius by 25%. The increase in binding there is due

FIG. 1. Calculated vacuum effective potential of Eq. (9) is

plotted as a function of the chiral-invariant scalar field y for the
case in which the self-energy amplitudes A and 8 are those of
Eq. (26). The form shown here displays the Mexican hat behav-
ior adopted in most chiral models.

CM-NLC CM-LC Expt.

a (GeV)
e (MeV)

g potential energy (MeV)

y kinetic energy (MeV)

~, (MeV)
E, (MeV)
m, (MeV)
R, , (fm)

f (MeV)
Z

1.04
395
137
108
465
1430
1328
1.0
93
2.5

1.04
434
119
82

465
1504
1406
1.0
93
2.0

1086
0.83
93

mainly to the increased range of the distributed quark-
meson vertex. Clearly, there are relevant processes which
have been neglected in this work; however, the range be-
tween these two solutions is not large, indicating that this
model with one parameter gives a reasonable description
of the physics involved. Obviously, a major uncertainty
in a model of this type is the effect of a more realistic
gluon propagator.

For comparison we report the results of a calculation
for the limit of local coupling and no confinement. For
this limit the dynamical nature of the amplitudes A and
8 in the Dirac equation is suppressed by employing the
constant p =0 values ( A =2, 8 =a) for all p . The orig-
inal potential U[y ] and the value f =93 MeV are re-
tained. The result is a local soliton model with a constant
constituent quark mass M =a/2 and a point coupling to
the scalar field with a coupling constant g =M /f . We
label this case as CM-LC. It is well known for such a lo-
cal model that there is a critical value of the coupling
constant g below which a stable soliton cannot form [1].

TABLE I. Mean-field calculations of the nucleon/delta. The
mass M, is calculated from the scalar field y and quark eigenen-

ergy e. Results that include a confining dynamical mass and
nonlocal coupling (DM-NLC) are compared with results that
follow from the constant mass and local coupling limit (CM-
LC). The single model parameter is a, a characterization of the
infrared strength of the effective gluon propagator. The quanti-

ty Z is the quark wave-function renormalization constant.

(fm ')

DM-NLC

DM-NLC CM-LC Expt.

a (GeV)
e (MeV)

g potential energy (MeV)

y kinetic energy (MeV)
mz (MeV)
E, (MeV)
m, (MeV)
R, (fm)

f {MeV)
Z

1.04
390
119
256
465
1545
1359
0.79
93
1.8

0.86
301
116
208
374
1227
1086
1.0
74
1.8

1.04
434
119
82

465
1504
1406
1.0
93
2.0

1086
0.83
93

C

FIG. 2. Upper and lower components of the quark wave
functions are plotted for two treatments of the dynamics. The
solid lines follow from the full model containing a confining
dynamical mass and nonlocal coupling. The dashed lines follow
from a reduction to a constant (nondynamical) mass and local
coupling. The differing asymptotic behavior is a result of the
confinement.
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FIG. 3. Self-consistent scalar field y is plotted for the cases of
confining dynamical mass and nonlocal coupling (solid line) and
constant mass and local coupling (dashed line).

FIG. 5. Self-consistent scalar field g is plotted for the cases of
constant mass and local coupling (solid line) and constant mass
and nonlocal coupling (dashed line).

In contrast, for a confining model such as the present
DM-NLC calculation, any nonzero value of a ensures a
stable soliton.

As can be seen from Table I, the combined effect of the
removal of the confinement mechanism and nonlocal cou-
pling is a slight increase in the baryon mass, but a 25%
increase in the quark rms radius. This is the result of
several mechanisms. In the confining case, the large dis-
tance falloff of the quark wave functions is guaranteed to
be significantly faster than the exponential behavior of
typical bound states associated with a constant quark
mass parameter. This effect is illustrated in Fig. 2 where
wave functions from the confining DM-NLC calculation
are compared with those of the local CM-LC case. The
quark source for the meson field is consequently more

compact in the presence of confinement. The dynamical
nature of the coupling vertex provided by the scalar self-

energy amplitude 8(p ) introduces an energy-dependent
and finite-range spatially dependent coupling strength.
For low three-space momenta of the quark states, the
DM-NLC model has much stronger coupling than the 1o-

cal CM-LC model, and the reverse is true for high-

CM-LC

CM-NLC

C
0

FIG. 4. Upper and lower components of the quark wave
functions are plotted for the cases of constant mass and local
coupling (solid lines) and constant mass and nonlocal coupling
(dashed lines).

momentum components. This also induces a more com-
pact behavior for quark states. One may expect that the
self-consistently determined meson field would be weaker
and of smaller range in the confining nonlocal case.
However, this is not so, and the scalar fields obtained in
the two cases are displayed in Fig. 3. Although the
ranges are similar, the confinement mechanism induces a
deeper potential in agreement with a more compact
quark source. The integrated potential energy of the
meson field is largely unaffected, but the meson kinetic
energy is greatly increased in the confined case.

Although in the present mode1 the dynamical quark
self-energy and the nonlocal quark-meson coupling arise
from a single mechanism as expressed through the ampli-
tude B(p ), it is of interest to investigate the effect of the
nonlocal coupling separately. We have performed a cal-
culation in which the self-energy dynamics was
suppressed as described above, but the distributed nature
of the coupling vertex was retained. We label this calcu-
lation as CM-NLC. In Table II we compare the results
to the earlier purely local limit. The principal effect of
the nonlocal coupling is a lowering of the quark energy
and a raising of the meson energy without change in the
quark rms radius. This effect is largely due to the
energy-dependent increase of the strength of the coupling
vertex and accounts for essentially all of the reduction of
the quark energy evident from Table I in the presence of
confinement. On the other hand, it can be concluded that
it is the confinement mechanism that produces the reduc-
tion in the quark rms radius. The effect of the nonlocal
coupling on the wave functions and scalar field is quite
small, as indicated by Figs. 4 and 5, respectively.

We consider now the nucleon axial coupling constant
within this model. In general, it is of interest to explore
the coupling to various fields, such as the electromagnetic
field and isovector axial field, since the nonlocality of the
quark-meson action (12) can make significant dynamical
contributions. There will not be associated currents that
are local combinations of the quark and meson fieids.
This is because the quarks there are dressed and the cou-
pling to mesons respects the extended qq structure. How-
ever, the original action (1) of the GCM is unambiguous



46 CONFINING QUARK CONDENSATE MODEL OF THE NUCLEON 345

in requiring that the bare quarks couple to an external
vector field A„(here taken to be Abelian) through the co-
variant derivative 8—iA, A. Here A, is the quark charge
operator —,'(r3+ —,') for electromagnetic coupling or y5r3
for axial coupling. The generating functional Z of Eq. (2)
then acquires a dependence upon the external field, and
after the saddle-point configuration for quark dressing is
obtained, the current that couples to the external field is
identifiable as

5 lilZ

5A„(q)

tr f d p d k G(k,p )I (p, k;q) . (29)
1

(2m )

Here G is the quark propagator corresponding to (19) and
I „ is the irreducible three-point vertex for the coupling
of dressed quarks to the external field. In the present
model this quantity can, in principle, be obtained from its
defining integral equation that is the counterpart of the
simplified Schwinger-Dyson equation (6). This is still
quite difficult.

For the axial coupling constant, we use a simple
minimal-substitution approximation for I „that still per-
mits us to explore the effects of the confinement mecha-
nism and nonlocal coupling upon g~. Since the present
work omits the pion, only the valence quark contribution
to axial coupling is required, and the self-energy function
contains the relevant information. The Dirac scalar am-
plitude 8(P ) is a chiral-symmetry-breaking term that
does not contribute to the axial current. Minimal substi-
tution into the relevant part of the quark inverse propa-
gator then leads to

I'„'(P,Q;q)= —5(Q —q) iy PA(P )y,r, (30)

where P= ,'(p+k) and —Q=p—k. This approximation
amounts to use of the q =0 value for all q and should be
accurate for a coupling constant calculation. The depen-
dence upon the momentum P is a consequence of the
quark self-energy dressing and (30) satisfies the axial
Ward identity with the induced pseudoscalar mode re-
moved as is appropriate for the present pion-free calcula-
tion. The axial coupling constant is given by the valence
quark contribution to Id x J3(x ), and it is easily seen to
be independent of x4. The result is

TABLE III. Comparison of values calculated for the axial-
vector coupling constant in three cases of di6ering dynamical
content.

DM-NLC

1.23

CM-LC

1.42

CM-NLC

1.15

Expt.

1.24

V. SUMMARY

where g(p ) is the upper Dirac component and —o"pf (p )

is the lower component of the S-wave quark state. We
have not displayed terms that involve derivatives of the
amplitude A since they make a negligible contribution
here. In the limit where A and Z are constants that can-
cel, (32) reduces to the standard result for a point-
coupling model.

In Table III we display results from evaluation of (32)
for the three different dynamical cases discussed earlier.
Although the value of gz obtained in the full dynamical
model with confinement and nonlocal coupling (DM-
NLC) is essentially identical to the empirical value, this
cannot be taken seriously in the absence of a pion. In lo-
cal models of this type [lj, pionic eB'ects can increase the
value of some 70%. Whether this will also be the case in
the present model is under investigation. The purpose of
the g~ calculations here is to explore the effect of the
confinement mechanism and nonlocal coupling on the
valence quark contribution. From Table III it is evident
that the con6ning dynamical mass and related nonlocal
coupling produce a 15% reduction from the purely local
nonconfining (CM-LC) value. This is due to the finite
range of the vector self-energy amplitude A (p ) and the
smaller effective range of the confined quark states. Since

g~ is usually overestimated in local chiral soliton models,
the appearance of a reduction mechanism whose origin
lies in the composite nature of the confining vacuum con-
densate (q(x)q(y)) and associated meson modes is an
interesting phenomenon. The greater reduction in g~
that is produced by introducing only the nonlocal meson
coupling can be attributed solely to the increase in the
wave-function renormalization constant Z. We recall
that A =2 in both calculations that have a constant
quark mass and the wave functions are essentially identi-
cal. The confining dynamical mass actually decreases Z,
but the overall decrease in g„ is due to the momentum
falloff of the amplitude A and the confining behavior of
the wave-function components.

= g'Z~ ' f d p u~(p) iy pA(p ) ysr3ggi(p)
Bp3

(31)

where p=(i@~,p) and the spin-fiavor summation over j is
weighted by the occupation probabilities of the standard
SU(4) valence quark inodel of the nucleon. After angular
integration the dominant contribution can be expressed
as

g~ =
3 fdPP'—A( —~'+P') 'g'(P) f'(P), (32)——

We have explored a mean-field solution for the nucleon
in a model where valence quarks are confined by the non-
local structure of the quark scalar condensate generated
by dynamical chiral-symmetry breaking. Associated with
this mechanism is a composite, extended scalar qq field
which is the chiral partner of the Goldstone pion. The
employed quark-meson action has it origin in the global
color-symmetry model where quarks interact via a
current-current term mediated by a parameter function
to represent the finite-range effective two-point gluon
function. The model is defined in Euclidean metric. The
meson fields that arise from bosonization are extended
objects even at the tree level employed here. Only the
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scalar meson mode is kept in this initial numerical study.
The self-consistent mean scalar field and corresponding

quark states are calculated in the presence of the nonlocal
coupling dictated by the scalar term of the vacuum quark
self-energy function. A combination of rnomenturn- and
position-space numerical methods is found to be con-
venient for this problem. The invariant four-space struc-
ture of the self-energy induces a self-consistent depen-
dence of the quark-meson vertex upon the quark energy
and three-momentum. Despite these unusual dynamical
features, the obtained nucleon mass, size, and constituent
quark wave functions are very acceptable for a pion-free
model with one free parameter. The separate effect of the
confinement mechanism and nonlocal coupling is present-
ed. Both mechanisms increase the binding and raise the
meson field kinetic energy, while the confining rnecha-
nism significantly reduces the nucleon size. The nucleon
axial coupling constant g~ is calculated, and it is found
that both the confining dynamical mass function and
nonlocal coupling serve to reduce the value below the lo-
cal, nonconfining limit. Local chiral soliton models usu-
aIly overestimate g„, and it is interesting that there is a
reduction mechanism arising from the composite nature
of the confining vacuum quark condensate and associated
extended meson mode.

The field content of this nontopologica1 soliton is quite

primitive, but the dynamics is rather novel. It remains to
be seen whether the introduction of the pion field will al-
low the presently successful features to survive. No new
parameters are needed to include the pion in this model
since there is a natural place for it due to the hidden
chiral symmetry maintained in the original derivation. A
crucial element in implementing a model of this type is
knowledge of the vacuum quark propagator in the time-
like region. We have used a simple confining form gen-
erated from an infrared momentum delta function as the
effective gluon propagator in a Schwinger-Dyson equa-
tion. For a more realistic case, the analytic continuation
is diScult in general and very little work in that direction
is available. One exception is provided by the recent
work of Burden, Roberts, and Williams [16] in which
dressing of the quark-gluon vertex is included along with
the delta-function gluon propagator.
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